author | wenzelm |
Sun, 20 Nov 2011 21:05:23 +0100 | |
changeset 45605 | a89b4bc311a5 |
parent 44174 | d1d79f0e1ea6 |
child 51702 | dcfab8e87621 |
permissions | -rw-r--r-- |
37936 | 1 |
(* Title: HOL/Auth/Message.thy |
1839 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1996 University of Cambridge |
|
4 |
||
5 |
Datatypes of agents and messages; |
|
1913 | 6 |
Inductive relations "parts", "analz" and "synth" |
1839 | 7 |
*) |
8 |
||
13956 | 9 |
header{*Theory of Agents and Messages for Security Protocols*} |
10 |
||
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
11 |
theory Message |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
12 |
imports Main |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
13 |
begin |
11189 | 14 |
|
15 |
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) |
|
13926 | 16 |
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" |
11189 | 17 |
by blast |
1839 | 18 |
|
41774 | 19 |
type_synonym |
1839 | 20 |
key = nat |
21 |
||
22 |
consts |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
23 |
all_symmetric :: bool --{*true if all keys are symmetric*} |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
24 |
invKey :: "key=>key" --{*inverse of a symmetric key*} |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
25 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
26 |
specification (invKey) |
14181 | 27 |
invKey [simp]: "invKey (invKey K) = K" |
28 |
invKey_symmetric: "all_symmetric --> invKey = id" |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
29 |
by (rule exI [of _ id], auto) |
1839 | 30 |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
31 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
32 |
text{*The inverse of a symmetric key is itself; that of a public key |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
33 |
is the private key and vice versa*} |
1839 | 34 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
35 |
definition symKeys :: "key set" where |
11230
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents:
11192
diff
changeset
|
36 |
"symKeys == {K. invKey K = K}" |
1839 | 37 |
|
16818 | 38 |
datatype --{*We allow any number of friendly agents*} |
2032 | 39 |
agent = Server | Friend nat | Spy |
1839 | 40 |
|
3668 | 41 |
datatype |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32149
diff
changeset
|
42 |
msg = Agent agent --{*Agent names*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
43 |
| Number nat --{*Ordinary integers, timestamps, ...*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
44 |
| Nonce nat --{*Unguessable nonces*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
45 |
| Key key --{*Crypto keys*} |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32149
diff
changeset
|
46 |
| Hash msg --{*Hashing*} |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32149
diff
changeset
|
47 |
| MPair msg msg --{*Compound messages*} |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32149
diff
changeset
|
48 |
| Crypt key msg --{*Encryption, public- or shared-key*} |
1839 | 49 |
|
5234 | 50 |
|
16818 | 51 |
text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*} |
5234 | 52 |
syntax |
35109 | 53 |
"_MTuple" :: "['a, args] => 'a * 'b" ("(2{|_,/ _|})") |
1839 | 54 |
|
9686 | 55 |
syntax (xsymbols) |
35109 | 56 |
"_MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") |
9686 | 57 |
|
1839 | 58 |
translations |
59 |
"{|x, y, z|}" == "{|x, {|y, z|}|}" |
|
35054 | 60 |
"{|x, y|}" == "CONST MPair x y" |
1839 | 61 |
|
62 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
63 |
definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where |
16818 | 64 |
--{*Message Y paired with a MAC computed with the help of X*} |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
65 |
"Hash[X] Y == {| Hash{|X,Y|}, Y|}" |
2484 | 66 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35109
diff
changeset
|
67 |
definition keysFor :: "msg set => key set" where |
16818 | 68 |
--{*Keys useful to decrypt elements of a message set*} |
11192 | 69 |
"keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
1839 | 70 |
|
16818 | 71 |
|
72 |
subsubsection{*Inductive Definition of All Parts" of a Message*} |
|
1839 | 73 |
|
23746 | 74 |
inductive_set |
75 |
parts :: "msg set => msg set" |
|
76 |
for H :: "msg set" |
|
77 |
where |
|
11192 | 78 |
Inj [intro]: "X \<in> H ==> X \<in> parts H" |
23746 | 79 |
| Fst: "{|X,Y|} \<in> parts H ==> X \<in> parts H" |
80 |
| Snd: "{|X,Y|} \<in> parts H ==> Y \<in> parts H" |
|
81 |
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H" |
|
11189 | 82 |
|
83 |
||
16818 | 84 |
text{*Monotonicity*} |
85 |
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)" |
|
11189 | 86 |
apply auto |
87 |
apply (erule parts.induct) |
|
16818 | 88 |
apply (blast dest: parts.Fst parts.Snd parts.Body)+ |
11189 | 89 |
done |
1839 | 90 |
|
91 |
||
16818 | 92 |
text{*Equations hold because constructors are injective.*} |
13926 | 93 |
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" |
94 |
by auto |
|
95 |
||
96 |
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" |
|
97 |
by auto |
|
98 |
||
99 |
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" |
|
100 |
by auto |
|
101 |
||
102 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
103 |
subsubsection{*Inverse of keys *} |
13926 | 104 |
|
105 |
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" |
|
28698 | 106 |
by (metis invKey) |
13926 | 107 |
|
108 |
||
109 |
subsection{*keysFor operator*} |
|
110 |
||
111 |
lemma keysFor_empty [simp]: "keysFor {} = {}" |
|
112 |
by (unfold keysFor_def, blast) |
|
113 |
||
114 |
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
|
115 |
by (unfold keysFor_def, blast) |
|
116 |
||
117 |
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" |
|
118 |
by (unfold keysFor_def, blast) |
|
119 |
||
16818 | 120 |
text{*Monotonicity*} |
121 |
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" |
|
13926 | 122 |
by (unfold keysFor_def, blast) |
123 |
||
124 |
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
|
125 |
by (unfold keysFor_def, auto) |
|
126 |
||
127 |
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" |
|
128 |
by (unfold keysFor_def, auto) |
|
129 |
||
130 |
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" |
|
131 |
by (unfold keysFor_def, auto) |
|
132 |
||
133 |
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" |
|
134 |
by (unfold keysFor_def, auto) |
|
135 |
||
136 |
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" |
|
137 |
by (unfold keysFor_def, auto) |
|
138 |
||
139 |
lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H" |
|
140 |
by (unfold keysFor_def, auto) |
|
141 |
||
142 |
lemma keysFor_insert_Crypt [simp]: |
|
143 |
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
144 |
by (unfold keysFor_def, auto) |
13926 | 145 |
|
146 |
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}" |
|
147 |
by (unfold keysFor_def, auto) |
|
148 |
||
149 |
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" |
|
150 |
by (unfold keysFor_def, blast) |
|
151 |
||
152 |
||
153 |
subsection{*Inductive relation "parts"*} |
|
154 |
||
155 |
lemma MPair_parts: |
|
156 |
"[| {|X,Y|} \<in> parts H; |
|
157 |
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" |
|
158 |
by (blast dest: parts.Fst parts.Snd) |
|
159 |
||
160 |
declare MPair_parts [elim!] parts.Body [dest!] |
|
161 |
text{*NB These two rules are UNSAFE in the formal sense, as they discard the |
|
162 |
compound message. They work well on THIS FILE. |
|
163 |
@{text MPair_parts} is left as SAFE because it speeds up proofs. |
|
164 |
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} |
|
165 |
||
166 |
lemma parts_increasing: "H \<subseteq> parts(H)" |
|
167 |
by blast |
|
168 |
||
45605 | 169 |
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] |
13926 | 170 |
|
171 |
lemma parts_empty [simp]: "parts{} = {}" |
|
172 |
apply safe |
|
173 |
apply (erule parts.induct, blast+) |
|
174 |
done |
|
175 |
||
176 |
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P" |
|
177 |
by simp |
|
178 |
||
16818 | 179 |
text{*WARNING: loops if H = {Y}, therefore must not be repeated!*} |
13926 | 180 |
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}" |
26807
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
berghofe
parents:
26342
diff
changeset
|
181 |
by (erule parts.induct, fast+) |
13926 | 182 |
|
183 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
184 |
subsubsection{*Unions *} |
13926 | 185 |
|
186 |
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" |
|
187 |
by (intro Un_least parts_mono Un_upper1 Un_upper2) |
|
188 |
||
189 |
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" |
|
190 |
apply (rule subsetI) |
|
191 |
apply (erule parts.induct, blast+) |
|
192 |
done |
|
193 |
||
194 |
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" |
|
195 |
by (intro equalityI parts_Un_subset1 parts_Un_subset2) |
|
196 |
||
197 |
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H" |
|
34185 | 198 |
by (metis insert_is_Un parts_Un) |
13926 | 199 |
|
16818 | 200 |
text{*TWO inserts to avoid looping. This rewrite is better than nothing. |
201 |
Not suitable for Addsimps: its behaviour can be strange.*} |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
202 |
lemma parts_insert2: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
203 |
"parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H" |
34185 | 204 |
by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) |
13926 | 205 |
|
206 |
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" |
|
207 |
by (intro UN_least parts_mono UN_upper) |
|
208 |
||
209 |
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" |
|
210 |
apply (rule subsetI) |
|
211 |
apply (erule parts.induct, blast+) |
|
212 |
done |
|
213 |
||
214 |
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" |
|
215 |
by (intro equalityI parts_UN_subset1 parts_UN_subset2) |
|
216 |
||
16818 | 217 |
text{*Added to simplify arguments to parts, analz and synth. |
218 |
NOTE: the UN versions are no longer used!*} |
|
13926 | 219 |
|
220 |
||
221 |
text{*This allows @{text blast} to simplify occurrences of |
|
222 |
@{term "parts(G\<union>H)"} in the assumption.*} |
|
17729 | 223 |
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
224 |
declare in_parts_UnE [elim!] |
|
13926 | 225 |
|
226 |
||
227 |
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
|
228 |
by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
|
229 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
230 |
subsubsection{*Idempotence and transitivity *} |
13926 | 231 |
|
232 |
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" |
|
233 |
by (erule parts.induct, blast+) |
|
234 |
||
235 |
lemma parts_idem [simp]: "parts (parts H) = parts H" |
|
236 |
by blast |
|
237 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
238 |
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" |
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
239 |
by (metis parts_idem parts_increasing parts_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
240 |
|
13926 | 241 |
lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
242 |
by (metis parts_subset_iff set_mp) |
13926 | 243 |
|
16818 | 244 |
text{*Cut*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
245 |
lemma parts_cut: |
18492 | 246 |
"[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" |
247 |
by (blast intro: parts_trans) |
|
248 |
||
13926 | 249 |
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
250 |
by (metis insert_absorb parts_idem parts_insert) |
13926 | 251 |
|
252 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
253 |
subsubsection{*Rewrite rules for pulling out atomic messages *} |
13926 | 254 |
|
255 |
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] |
|
256 |
||
257 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
258 |
lemma parts_insert_Agent [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
259 |
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" |
13926 | 260 |
apply (rule parts_insert_eq_I) |
261 |
apply (erule parts.induct, auto) |
|
262 |
done |
|
263 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
264 |
lemma parts_insert_Nonce [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
265 |
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" |
13926 | 266 |
apply (rule parts_insert_eq_I) |
267 |
apply (erule parts.induct, auto) |
|
268 |
done |
|
269 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
270 |
lemma parts_insert_Number [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
271 |
"parts (insert (Number N) H) = insert (Number N) (parts H)" |
13926 | 272 |
apply (rule parts_insert_eq_I) |
273 |
apply (erule parts.induct, auto) |
|
274 |
done |
|
275 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
276 |
lemma parts_insert_Key [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
277 |
"parts (insert (Key K) H) = insert (Key K) (parts H)" |
13926 | 278 |
apply (rule parts_insert_eq_I) |
279 |
apply (erule parts.induct, auto) |
|
280 |
done |
|
281 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
282 |
lemma parts_insert_Hash [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
283 |
"parts (insert (Hash X) H) = insert (Hash X) (parts H)" |
13926 | 284 |
apply (rule parts_insert_eq_I) |
285 |
apply (erule parts.induct, auto) |
|
286 |
done |
|
287 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
288 |
lemma parts_insert_Crypt [simp]: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
289 |
"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" |
13926 | 290 |
apply (rule equalityI) |
291 |
apply (rule subsetI) |
|
292 |
apply (erule parts.induct, auto) |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
293 |
apply (blast intro: parts.Body) |
13926 | 294 |
done |
295 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
296 |
lemma parts_insert_MPair [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
297 |
"parts (insert {|X,Y|} H) = |
13926 | 298 |
insert {|X,Y|} (parts (insert X (insert Y H)))" |
299 |
apply (rule equalityI) |
|
300 |
apply (rule subsetI) |
|
301 |
apply (erule parts.induct, auto) |
|
302 |
apply (blast intro: parts.Fst parts.Snd)+ |
|
303 |
done |
|
304 |
||
305 |
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" |
|
306 |
apply auto |
|
307 |
apply (erule parts.induct, auto) |
|
308 |
done |
|
309 |
||
310 |
||
16818 | 311 |
text{*In any message, there is an upper bound N on its greatest nonce.*} |
13926 | 312 |
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}" |
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
313 |
apply (induct msg) |
13926 | 314 |
apply (simp_all (no_asm_simp) add: exI parts_insert2) |
16818 | 315 |
txt{*Nonce case*} |
34185 | 316 |
apply (metis Suc_n_not_le_n) |
317 |
txt{*MPair case: metis works out the necessary sum itself!*} |
|
318 |
apply (metis le_trans nat_le_linear) |
|
13926 | 319 |
done |
320 |
||
321 |
||
322 |
subsection{*Inductive relation "analz"*} |
|
323 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
324 |
text{*Inductive definition of "analz" -- what can be broken down from a set of |
1839 | 325 |
messages, including keys. A form of downward closure. Pairs can |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
326 |
be taken apart; messages decrypted with known keys. *} |
1839 | 327 |
|
23746 | 328 |
inductive_set |
329 |
analz :: "msg set => msg set" |
|
330 |
for H :: "msg set" |
|
331 |
where |
|
11192 | 332 |
Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" |
23746 | 333 |
| Fst: "{|X,Y|} \<in> analz H ==> X \<in> analz H" |
334 |
| Snd: "{|X,Y|} \<in> analz H ==> Y \<in> analz H" |
|
335 |
| Decrypt [dest]: |
|
11192 | 336 |
"[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" |
1839 | 337 |
|
338 |
||
16818 | 339 |
text{*Monotonicity; Lemma 1 of Lowe's paper*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
340 |
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" |
11189 | 341 |
apply auto |
342 |
apply (erule analz.induct) |
|
16818 | 343 |
apply (auto dest: analz.Fst analz.Snd) |
11189 | 344 |
done |
345 |
||
13926 | 346 |
text{*Making it safe speeds up proofs*} |
347 |
lemma MPair_analz [elim!]: |
|
348 |
"[| {|X,Y|} \<in> analz H; |
|
349 |
[| X \<in> analz H; Y \<in> analz H |] ==> P |
|
350 |
|] ==> P" |
|
351 |
by (blast dest: analz.Fst analz.Snd) |
|
352 |
||
353 |
lemma analz_increasing: "H \<subseteq> analz(H)" |
|
354 |
by blast |
|
355 |
||
356 |
lemma analz_subset_parts: "analz H \<subseteq> parts H" |
|
357 |
apply (rule subsetI) |
|
358 |
apply (erule analz.induct, blast+) |
|
359 |
done |
|
360 |
||
45605 | 361 |
lemmas analz_into_parts = analz_subset_parts [THEN subsetD] |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
362 |
|
45605 | 363 |
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] |
13926 | 364 |
|
365 |
||
366 |
lemma parts_analz [simp]: "parts (analz H) = parts H" |
|
34185 | 367 |
by (metis analz_increasing analz_subset_parts equalityI parts_mono parts_subset_iff) |
13926 | 368 |
|
369 |
lemma analz_parts [simp]: "analz (parts H) = parts H" |
|
370 |
apply auto |
|
371 |
apply (erule analz.induct, auto) |
|
372 |
done |
|
373 |
||
45605 | 374 |
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] |
13926 | 375 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
376 |
subsubsection{*General equational properties *} |
13926 | 377 |
|
378 |
lemma analz_empty [simp]: "analz{} = {}" |
|
379 |
apply safe |
|
380 |
apply (erule analz.induct, blast+) |
|
381 |
done |
|
382 |
||
16818 | 383 |
text{*Converse fails: we can analz more from the union than from the |
384 |
separate parts, as a key in one might decrypt a message in the other*} |
|
13926 | 385 |
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
386 |
by (intro Un_least analz_mono Un_upper1 Un_upper2) |
|
387 |
||
388 |
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
|
389 |
by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
390 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
391 |
subsubsection{*Rewrite rules for pulling out atomic messages *} |
13926 | 392 |
|
393 |
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
|
394 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
395 |
lemma analz_insert_Agent [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
396 |
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
13926 | 397 |
apply (rule analz_insert_eq_I) |
398 |
apply (erule analz.induct, auto) |
|
399 |
done |
|
400 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
401 |
lemma analz_insert_Nonce [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
402 |
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" |
13926 | 403 |
apply (rule analz_insert_eq_I) |
404 |
apply (erule analz.induct, auto) |
|
405 |
done |
|
406 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
407 |
lemma analz_insert_Number [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
408 |
"analz (insert (Number N) H) = insert (Number N) (analz H)" |
13926 | 409 |
apply (rule analz_insert_eq_I) |
410 |
apply (erule analz.induct, auto) |
|
411 |
done |
|
412 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
413 |
lemma analz_insert_Hash [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
414 |
"analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
13926 | 415 |
apply (rule analz_insert_eq_I) |
416 |
apply (erule analz.induct, auto) |
|
417 |
done |
|
418 |
||
16818 | 419 |
text{*Can only pull out Keys if they are not needed to decrypt the rest*} |
13926 | 420 |
lemma analz_insert_Key [simp]: |
421 |
"K \<notin> keysFor (analz H) ==> |
|
422 |
analz (insert (Key K) H) = insert (Key K) (analz H)" |
|
423 |
apply (unfold keysFor_def) |
|
424 |
apply (rule analz_insert_eq_I) |
|
425 |
apply (erule analz.induct, auto) |
|
426 |
done |
|
427 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
428 |
lemma analz_insert_MPair [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
429 |
"analz (insert {|X,Y|} H) = |
13926 | 430 |
insert {|X,Y|} (analz (insert X (insert Y H)))" |
431 |
apply (rule equalityI) |
|
432 |
apply (rule subsetI) |
|
433 |
apply (erule analz.induct, auto) |
|
434 |
apply (erule analz.induct) |
|
435 |
apply (blast intro: analz.Fst analz.Snd)+ |
|
436 |
done |
|
437 |
||
16818 | 438 |
text{*Can pull out enCrypted message if the Key is not known*} |
13926 | 439 |
lemma analz_insert_Crypt: |
440 |
"Key (invKey K) \<notin> analz H |
|
441 |
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
|
442 |
apply (rule analz_insert_eq_I) |
|
443 |
apply (erule analz.induct, auto) |
|
444 |
||
445 |
done |
|
446 |
||
447 |
lemma lemma1: "Key (invKey K) \<in> analz H ==> |
|
448 |
analz (insert (Crypt K X) H) \<subseteq> |
|
449 |
insert (Crypt K X) (analz (insert X H))" |
|
450 |
apply (rule subsetI) |
|
23746 | 451 |
apply (erule_tac x = x in analz.induct, auto) |
13926 | 452 |
done |
453 |
||
454 |
lemma lemma2: "Key (invKey K) \<in> analz H ==> |
|
455 |
insert (Crypt K X) (analz (insert X H)) \<subseteq> |
|
456 |
analz (insert (Crypt K X) H)" |
|
457 |
apply auto |
|
23746 | 458 |
apply (erule_tac x = x in analz.induct, auto) |
13926 | 459 |
apply (blast intro: analz_insertI analz.Decrypt) |
460 |
done |
|
461 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
462 |
lemma analz_insert_Decrypt: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
463 |
"Key (invKey K) \<in> analz H ==> |
13926 | 464 |
analz (insert (Crypt K X) H) = |
465 |
insert (Crypt K X) (analz (insert X H))" |
|
466 |
by (intro equalityI lemma1 lemma2) |
|
467 |
||
16818 | 468 |
text{*Case analysis: either the message is secure, or it is not! Effective, |
469 |
but can cause subgoals to blow up! Use with @{text "split_if"}; apparently |
|
470 |
@{text "split_tac"} does not cope with patterns such as @{term"analz (insert |
|
471 |
(Crypt K X) H)"} *} |
|
13926 | 472 |
lemma analz_Crypt_if [simp]: |
473 |
"analz (insert (Crypt K X) H) = |
|
474 |
(if (Key (invKey K) \<in> analz H) |
|
475 |
then insert (Crypt K X) (analz (insert X H)) |
|
476 |
else insert (Crypt K X) (analz H))" |
|
477 |
by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
|
478 |
||
479 |
||
16818 | 480 |
text{*This rule supposes "for the sake of argument" that we have the key.*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
481 |
lemma analz_insert_Crypt_subset: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
482 |
"analz (insert (Crypt K X) H) \<subseteq> |
13926 | 483 |
insert (Crypt K X) (analz (insert X H))" |
484 |
apply (rule subsetI) |
|
485 |
apply (erule analz.induct, auto) |
|
486 |
done |
|
487 |
||
488 |
||
489 |
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" |
|
490 |
apply auto |
|
491 |
apply (erule analz.induct, auto) |
|
492 |
done |
|
493 |
||
494 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
495 |
subsubsection{*Idempotence and transitivity *} |
13926 | 496 |
|
497 |
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" |
|
498 |
by (erule analz.induct, blast+) |
|
499 |
||
500 |
lemma analz_idem [simp]: "analz (analz H) = analz H" |
|
501 |
by blast |
|
502 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
503 |
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" |
34185 | 504 |
by (metis analz_idem analz_increasing analz_mono subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
505 |
|
13926 | 506 |
lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" |
507 |
by (drule analz_mono, blast) |
|
508 |
||
16818 | 509 |
text{*Cut; Lemma 2 of Lowe*} |
13926 | 510 |
lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" |
511 |
by (erule analz_trans, blast) |
|
512 |
||
513 |
(*Cut can be proved easily by induction on |
|
514 |
"Y: analz (insert X H) ==> X: analz H --> Y: analz H" |
|
515 |
*) |
|
516 |
||
16818 | 517 |
text{*This rewrite rule helps in the simplification of messages that involve |
13926 | 518 |
the forwarding of unknown components (X). Without it, removing occurrences |
16818 | 519 |
of X can be very complicated. *} |
13926 | 520 |
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
521 |
by (metis analz_cut analz_insert_eq_I insert_absorb) |
13926 | 522 |
|
523 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
524 |
text{*A congruence rule for "analz" *} |
13926 | 525 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
526 |
lemma analz_subset_cong: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
527 |
"[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
528 |
==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
41693
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
paulson
parents:
39216
diff
changeset
|
529 |
by (metis Un_mono analz_Un analz_subset_iff subset_trans) |
13926 | 530 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
531 |
lemma analz_cong: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
532 |
"[| analz G = analz G'; analz H = analz H' |] |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
533 |
==> analz (G \<union> H) = analz (G' \<union> H')" |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
534 |
by (intro equalityI analz_subset_cong, simp_all) |
13926 | 535 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
536 |
lemma analz_insert_cong: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
537 |
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')" |
13926 | 538 |
by (force simp only: insert_def intro!: analz_cong) |
539 |
||
16818 | 540 |
text{*If there are no pairs or encryptions then analz does nothing*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
541 |
lemma analz_trivial: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
542 |
"[| \<forall>X Y. {|X,Y|} \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" |
13926 | 543 |
apply safe |
544 |
apply (erule analz.induct, blast+) |
|
545 |
done |
|
546 |
||
16818 | 547 |
text{*These two are obsolete (with a single Spy) but cost little to prove...*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
548 |
lemma analz_UN_analz_lemma: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
549 |
"X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" |
13926 | 550 |
apply (erule analz.induct) |
551 |
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ |
|
552 |
done |
|
553 |
||
554 |
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" |
|
555 |
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) |
|
556 |
||
557 |
||
558 |
subsection{*Inductive relation "synth"*} |
|
559 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
560 |
text{*Inductive definition of "synth" -- what can be built up from a set of |
1839 | 561 |
messages. A form of upward closure. Pairs can be built, messages |
3668 | 562 |
encrypted with known keys. Agent names are public domain. |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
563 |
Numbers can be guessed, but Nonces cannot be. *} |
1839 | 564 |
|
23746 | 565 |
inductive_set |
566 |
synth :: "msg set => msg set" |
|
567 |
for H :: "msg set" |
|
568 |
where |
|
11192 | 569 |
Inj [intro]: "X \<in> H ==> X \<in> synth H" |
23746 | 570 |
| Agent [intro]: "Agent agt \<in> synth H" |
571 |
| Number [intro]: "Number n \<in> synth H" |
|
572 |
| Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" |
|
573 |
| MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> {|X,Y|} \<in> synth H" |
|
574 |
| Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" |
|
11189 | 575 |
|
16818 | 576 |
text{*Monotonicity*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
577 |
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" |
16818 | 578 |
by (auto, erule synth.induct, auto) |
11189 | 579 |
|
16818 | 580 |
text{*NO @{text Agent_synth}, as any Agent name can be synthesized. |
581 |
The same holds for @{term Number}*} |
|
11189 | 582 |
|
39216 | 583 |
inductive_simps synth_simps [iff]: |
584 |
"Nonce n \<in> synth H" |
|
585 |
"Key K \<in> synth H" |
|
586 |
"Hash X \<in> synth H" |
|
587 |
"{|X,Y|} \<in> synth H" |
|
588 |
"Crypt K X \<in> synth H" |
|
13926 | 589 |
|
590 |
lemma synth_increasing: "H \<subseteq> synth(H)" |
|
591 |
by blast |
|
592 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
593 |
subsubsection{*Unions *} |
13926 | 594 |
|
16818 | 595 |
text{*Converse fails: we can synth more from the union than from the |
596 |
separate parts, building a compound message using elements of each.*} |
|
13926 | 597 |
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
598 |
by (intro Un_least synth_mono Un_upper1 Un_upper2) |
|
599 |
||
600 |
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
|
601 |
by (blast intro: synth_mono [THEN [2] rev_subsetD]) |
|
602 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
603 |
subsubsection{*Idempotence and transitivity *} |
13926 | 604 |
|
605 |
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" |
|
39216 | 606 |
by (erule synth.induct, auto) |
13926 | 607 |
|
608 |
lemma synth_idem: "synth (synth H) = synth H" |
|
609 |
by blast |
|
610 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
611 |
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" |
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
612 |
by (metis subset_trans synth_idem synth_increasing synth_mono) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
613 |
|
13926 | 614 |
lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" |
615 |
by (drule synth_mono, blast) |
|
616 |
||
16818 | 617 |
text{*Cut; Lemma 2 of Lowe*} |
13926 | 618 |
lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" |
619 |
by (erule synth_trans, blast) |
|
620 |
||
621 |
lemma Agent_synth [simp]: "Agent A \<in> synth H" |
|
622 |
by blast |
|
623 |
||
624 |
lemma Number_synth [simp]: "Number n \<in> synth H" |
|
625 |
by blast |
|
626 |
||
627 |
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)" |
|
628 |
by blast |
|
629 |
||
630 |
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)" |
|
631 |
by blast |
|
632 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
633 |
lemma Crypt_synth_eq [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
634 |
"Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" |
13926 | 635 |
by blast |
636 |
||
637 |
||
638 |
lemma keysFor_synth [simp]: |
|
639 |
"keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
640 |
by (unfold keysFor_def, blast) |
13926 | 641 |
|
642 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
643 |
subsubsection{*Combinations of parts, analz and synth *} |
13926 | 644 |
|
645 |
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" |
|
646 |
apply (rule equalityI) |
|
647 |
apply (rule subsetI) |
|
648 |
apply (erule parts.induct) |
|
649 |
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] |
|
650 |
parts.Fst parts.Snd parts.Body)+ |
|
651 |
done |
|
652 |
||
653 |
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" |
|
654 |
apply (intro equalityI analz_subset_cong)+ |
|
655 |
apply simp_all |
|
656 |
done |
|
657 |
||
658 |
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" |
|
659 |
apply (rule equalityI) |
|
660 |
apply (rule subsetI) |
|
661 |
apply (erule analz.induct) |
|
662 |
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
663 |
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ |
|
664 |
done |
|
665 |
||
666 |
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" |
|
34185 | 667 |
by (metis Un_empty_right analz_synth_Un) |
13926 | 668 |
|
669 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
670 |
subsubsection{*For reasoning about the Fake rule in traces *} |
13926 | 671 |
|
672 |
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" |
|
34185 | 673 |
by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) |
13926 | 674 |
|
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
675 |
text{*More specifically for Fake. See also @{text Fake_parts_sing} below *} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
676 |
lemma Fake_parts_insert: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
677 |
"X \<in> synth (analz H) ==> |
13926 | 678 |
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" |
34185 | 679 |
by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono |
680 |
parts_synth synth_mono synth_subset_iff) |
|
13926 | 681 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
682 |
lemma Fake_parts_insert_in_Un: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
683 |
"[|Z \<in> parts (insert X H); X: synth (analz H)|] |
34185 | 684 |
==> Z \<in> synth (analz H) \<union> parts H" |
685 |
by (metis Fake_parts_insert set_mp) |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
686 |
|
16818 | 687 |
text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put |
688 |
@{term "G=H"}.*} |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
689 |
lemma Fake_analz_insert: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
690 |
"X\<in> synth (analz G) ==> |
13926 | 691 |
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" |
692 |
apply (rule subsetI) |
|
34185 | 693 |
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H)", force) |
694 |
apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) |
|
13926 | 695 |
done |
696 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
697 |
lemma analz_conj_parts [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
698 |
"(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" |
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
699 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
13926 | 700 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
701 |
lemma analz_disj_parts [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
702 |
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" |
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
703 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
13926 | 704 |
|
16818 | 705 |
text{*Without this equation, other rules for synth and analz would yield |
706 |
redundant cases*} |
|
13926 | 707 |
lemma MPair_synth_analz [iff]: |
708 |
"({|X,Y|} \<in> synth (analz H)) = |
|
709 |
(X \<in> synth (analz H) & Y \<in> synth (analz H))" |
|
710 |
by blast |
|
711 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
712 |
lemma Crypt_synth_analz: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
713 |
"[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] |
13926 | 714 |
==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" |
715 |
by blast |
|
716 |
||
717 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
718 |
lemma Hash_synth_analz [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
719 |
"X \<notin> synth (analz H) |
13926 | 720 |
==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)" |
721 |
by blast |
|
722 |
||
723 |
||
724 |
subsection{*HPair: a combination of Hash and MPair*} |
|
725 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
726 |
subsubsection{*Freeness *} |
13926 | 727 |
|
728 |
lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" |
|
729 |
by (unfold HPair_def, simp) |
|
730 |
||
731 |
lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" |
|
732 |
by (unfold HPair_def, simp) |
|
733 |
||
734 |
lemma Number_neq_HPair: "Number N ~= Hash[X] Y" |
|
735 |
by (unfold HPair_def, simp) |
|
736 |
||
737 |
lemma Key_neq_HPair: "Key K ~= Hash[X] Y" |
|
738 |
by (unfold HPair_def, simp) |
|
739 |
||
740 |
lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" |
|
741 |
by (unfold HPair_def, simp) |
|
742 |
||
743 |
lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" |
|
744 |
by (unfold HPair_def, simp) |
|
745 |
||
746 |
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair |
|
747 |
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair |
|
748 |
||
749 |
declare HPair_neqs [iff] |
|
750 |
declare HPair_neqs [symmetric, iff] |
|
751 |
||
752 |
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" |
|
753 |
by (simp add: HPair_def) |
|
754 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
755 |
lemma MPair_eq_HPair [iff]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
756 |
"({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)" |
13926 | 757 |
by (simp add: HPair_def) |
758 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
759 |
lemma HPair_eq_MPair [iff]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
760 |
"(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)" |
13926 | 761 |
by (auto simp add: HPair_def) |
762 |
||
763 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
764 |
subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *} |
13926 | 765 |
|
766 |
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" |
|
767 |
by (simp add: HPair_def) |
|
768 |
||
769 |
lemma parts_insert_HPair [simp]: |
|
770 |
"parts (insert (Hash[X] Y) H) = |
|
771 |
insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))" |
|
772 |
by (simp add: HPair_def) |
|
773 |
||
774 |
lemma analz_insert_HPair [simp]: |
|
775 |
"analz (insert (Hash[X] Y) H) = |
|
776 |
insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))" |
|
777 |
by (simp add: HPair_def) |
|
778 |
||
779 |
lemma HPair_synth_analz [simp]: |
|
780 |
"X \<notin> synth (analz H) |
|
781 |
==> (Hash[X] Y \<in> synth (analz H)) = |
|
782 |
(Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))" |
|
39216 | 783 |
by (auto simp add: HPair_def) |
13926 | 784 |
|
785 |
||
16818 | 786 |
text{*We do NOT want Crypt... messages broken up in protocols!!*} |
13926 | 787 |
declare parts.Body [rule del] |
788 |
||
789 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
790 |
text{*Rewrites to push in Key and Crypt messages, so that other messages can |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
791 |
be pulled out using the @{text analz_insert} rules*} |
13926 | 792 |
|
45605 | 793 |
lemmas pushKeys = |
27225 | 794 |
insert_commute [of "Key K" "Agent C"] |
795 |
insert_commute [of "Key K" "Nonce N"] |
|
796 |
insert_commute [of "Key K" "Number N"] |
|
797 |
insert_commute [of "Key K" "Hash X"] |
|
798 |
insert_commute [of "Key K" "MPair X Y"] |
|
799 |
insert_commute [of "Key K" "Crypt X K'"] |
|
45605 | 800 |
for K C N X Y K' |
13926 | 801 |
|
45605 | 802 |
lemmas pushCrypts = |
27225 | 803 |
insert_commute [of "Crypt X K" "Agent C"] |
804 |
insert_commute [of "Crypt X K" "Agent C"] |
|
805 |
insert_commute [of "Crypt X K" "Nonce N"] |
|
806 |
insert_commute [of "Crypt X K" "Number N"] |
|
807 |
insert_commute [of "Crypt X K" "Hash X'"] |
|
808 |
insert_commute [of "Crypt X K" "MPair X' Y"] |
|
45605 | 809 |
for X K C N X' Y |
13926 | 810 |
|
811 |
text{*Cannot be added with @{text "[simp]"} -- messages should not always be |
|
812 |
re-ordered. *} |
|
813 |
lemmas pushes = pushKeys pushCrypts |
|
814 |
||
815 |
||
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
816 |
subsection{*The set of key-free messages*} |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
817 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
818 |
(*Note that even the encryption of a key-free message remains key-free. |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
819 |
This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
820 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
821 |
inductive_set |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
822 |
keyfree :: "msg set" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
823 |
where |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
824 |
Agent: "Agent A \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
825 |
| Number: "Number N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
826 |
| Nonce: "Nonce N \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
827 |
| Hash: "Hash X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
828 |
| MPair: "[|X \<in> keyfree; Y \<in> keyfree|] ==> {|X,Y|} \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
829 |
| Crypt: "[|X \<in> keyfree|] ==> Crypt K X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
830 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
831 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
832 |
declare keyfree.intros [intro] |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
833 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
834 |
inductive_cases keyfree_KeyE: "Key K \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
835 |
inductive_cases keyfree_MPairE: "{|X,Y|} \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
836 |
inductive_cases keyfree_CryptE: "Crypt K X \<in> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
837 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
838 |
lemma parts_keyfree: "parts (keyfree) \<subseteq> keyfree" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
839 |
by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
840 |
|
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
841 |
(*The key-free part of a set of messages can be removed from the scope of the analz operator.*) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
842 |
lemma analz_keyfree_into_Un: "\<lbrakk>X \<in> analz (G \<union> H); G \<subseteq> keyfree\<rbrakk> \<Longrightarrow> X \<in> parts G \<union> analz H" |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
843 |
apply (erule analz.induct, auto) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
844 |
apply (blast dest:parts.Body) |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
845 |
apply (blast dest: parts.Body) |
44174
d1d79f0e1ea6
make more HOL theories work with separate set type
huffman
parents:
43582
diff
changeset
|
846 |
apply (metis Un_absorb2 keyfree_KeyE parts_Un parts_keyfree UnI2) |
43582
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
847 |
done |
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
paulson
parents:
42793
diff
changeset
|
848 |
|
13926 | 849 |
subsection{*Tactics useful for many protocol proofs*} |
850 |
ML |
|
851 |
{* |
|
852 |
(*Analysis of Fake cases. Also works for messages that forward unknown parts, |
|
853 |
but this application is no longer necessary if analz_insert_eq is used. |
|
854 |
Abstraction over i is ESSENTIAL: it delays the dereferencing of claset |
|
855 |
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) |
|
856 |
||
32117
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
857 |
fun impOfSubs th = th RSN (2, @{thm rev_subsetD}) |
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents:
30607
diff
changeset
|
858 |
|
13926 | 859 |
(*Apply rules to break down assumptions of the form |
860 |
Y \<in> parts(insert X H) and Y \<in> analz(insert X H) |
|
861 |
*) |
|
862 |
val Fake_insert_tac = |
|
24122 | 863 |
dresolve_tac [impOfSubs @{thm Fake_analz_insert}, |
864 |
impOfSubs @{thm Fake_parts_insert}] THEN' |
|
865 |
eresolve_tac [asm_rl, @{thm synth.Inj}]; |
|
13926 | 866 |
|
867 |
fun Fake_insert_simp_tac ss i = |
|
42793 | 868 |
REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i; |
13926 | 869 |
|
42474 | 870 |
fun atomic_spy_analz_tac ctxt = |
42793 | 871 |
SELECT_GOAL |
872 |
(Fake_insert_simp_tac (simpset_of ctxt) 1 THEN |
|
873 |
IF_UNSOLVED |
|
874 |
(Blast.depth_tac |
|
875 |
(ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1)); |
|
13926 | 876 |
|
42474 | 877 |
fun spy_analz_tac ctxt i = |
42793 | 878 |
DETERM |
879 |
(SELECT_GOAL |
|
880 |
(EVERY |
|
881 |
[ (*push in occurrences of X...*) |
|
882 |
(REPEAT o CHANGED) |
|
883 |
(res_inst_tac ctxt [(("x", 1), "X")] (insert_commute RS ssubst) 1), |
|
884 |
(*...allowing further simplifications*) |
|
885 |
simp_tac (simpset_of ctxt) 1, |
|
886 |
REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), |
|
887 |
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); |
|
13926 | 888 |
*} |
889 |
||
16818 | 890 |
text{*By default only @{text o_apply} is built-in. But in the presence of |
891 |
eta-expansion this means that some terms displayed as @{term "f o g"} will be |
|
892 |
rewritten, and others will not!*} |
|
13926 | 893 |
declare o_def [simp] |
894 |
||
11189 | 895 |
|
13922 | 896 |
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" |
897 |
by auto |
|
898 |
||
899 |
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" |
|
900 |
by auto |
|
901 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
902 |
lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
903 |
by (iprover intro: synth_mono analz_mono) |
13922 | 904 |
|
905 |
lemma Fake_analz_eq [simp]: |
|
906 |
"X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" |
|
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
907 |
by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute |
34185 | 908 |
subset_insertI synth_analz_mono synth_increasing synth_subset_iff) |
13922 | 909 |
|
910 |
text{*Two generalizations of @{text analz_insert_eq}*} |
|
911 |
lemma gen_analz_insert_eq [rule_format]: |
|
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
912 |
"X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G" |
13922 | 913 |
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) |
914 |
||
915 |
lemma synth_analz_insert_eq [rule_format]: |
|
916 |
"X \<in> synth (analz H) |
|
35566
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
paulson
parents:
35416
diff
changeset
|
917 |
==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)" |
13922 | 918 |
apply (erule synth.induct) |
919 |
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) |
|
920 |
done |
|
921 |
||
922 |
lemma Fake_parts_sing: |
|
34185 | 923 |
"X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H" |
924 |
by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) |
|
13922 | 925 |
|
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
926 |
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] |
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
927 |
|
11189 | 928 |
method_setup spy_analz = {* |
42474 | 929 |
Scan.succeed (SIMPLE_METHOD' o spy_analz_tac) *} |
11189 | 930 |
"for proving the Fake case when analz is involved" |
1839 | 931 |
|
11264 | 932 |
method_setup atomic_spy_analz = {* |
42474 | 933 |
Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac) *} |
11264 | 934 |
"for debugging spy_analz" |
935 |
||
936 |
method_setup Fake_insert_simp = {* |
|
42474 | 937 |
Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac o simpset_of) *} |
11264 | 938 |
"for debugging spy_analz" |
939 |
||
1839 | 940 |
end |