| author | wenzelm | 
| Sun, 24 Jan 2021 17:39:29 +0100 | |
| changeset 73182 | a8a8bc42d552 | 
| parent 67020 | c32254ab1901 | 
| child 74806 | ba59c691b3ee | 
| permissions | -rw-r--r-- | 
| 59813 | 1  | 
(* Title: HOL/Library/Multiset_Order.thy  | 
2  | 
Author: Dmitriy Traytel, TU Muenchen  | 
|
3  | 
Author: Jasmin Blanchette, Inria, LORIA, MPII  | 
|
4  | 
*)  | 
|
5  | 
||
| 60500 | 6  | 
section \<open>More Theorems about the Multiset Order\<close>  | 
| 59813 | 7  | 
|
8  | 
theory Multiset_Order  | 
|
9  | 
imports Multiset  | 
|
10  | 
begin  | 
|
11  | 
||
| 65546 | 12  | 
subsection \<open>Alternative Characterizations\<close>  | 
| 59813 | 13  | 
|
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
14  | 
context preorder  | 
| 59813 | 15  | 
begin  | 
16  | 
||
17  | 
lemma order_mult: "class.order  | 
|
18  | 
  (\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)
 | 
|
19  | 
  (\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
 | 
|
20  | 
(is "class.order ?le ?less")  | 
|
21  | 
proof -  | 
|
22  | 
have irrefl: "\<And>M :: 'a multiset. \<not> ?less M M"  | 
|
23  | 
proof  | 
|
24  | 
fix M :: "'a multiset"  | 
|
25  | 
    have "trans {(x'::'a, x). x' < x}"
 | 
|
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
26  | 
by (rule transI) (blast intro: less_trans)  | 
| 59813 | 27  | 
moreover  | 
28  | 
    assume "(M, M) \<in> mult {(x, y). x < y}"
 | 
|
29  | 
ultimately have "\<exists>I J K. M = I + J \<and> M = I + K  | 
|
| 60495 | 30  | 
      \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})"
 | 
| 59813 | 31  | 
by (rule mult_implies_one_step)  | 
32  | 
then obtain I J K where "M = I + J" and "M = I + K"  | 
|
| 60495 | 33  | 
      and "J \<noteq> {#}" and "(\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" by blast
 | 
34  | 
    then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset K. k < j" by auto
 | 
|
35  | 
have "finite (set_mset K)" by simp  | 
|
| 59813 | 36  | 
moreover note aux2  | 
| 60495 | 37  | 
    ultimately have "set_mset K = {}"
 | 
| 59813 | 38  | 
by (induct rule: finite_induct)  | 
39  | 
(simp, metis (mono_tags) insert_absorb insert_iff insert_not_empty less_irrefl less_trans)  | 
|
40  | 
with aux1 show False by simp  | 
|
41  | 
qed  | 
|
42  | 
have trans: "\<And>K M N :: 'a multiset. ?less K M \<Longrightarrow> ?less M N \<Longrightarrow> ?less K N"  | 
|
43  | 
unfolding mult_def by (blast intro: trancl_trans)  | 
|
44  | 
show "class.order ?le ?less"  | 
|
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
45  | 
by standard (auto simp add: less_eq_multiset_def irrefl dest: trans)  | 
| 59813 | 46  | 
qed  | 
47  | 
||
| 60500 | 48  | 
text \<open>The Dershowitz--Manna ordering:\<close>  | 
| 59813 | 49  | 
|
50  | 
definition less_multiset\<^sub>D\<^sub>M where  | 
|
51  | 
"less_multiset\<^sub>D\<^sub>M M N \<longleftrightarrow>  | 
|
| 64587 | 52  | 
   (\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))"
 | 
| 59813 | 53  | 
|
54  | 
||
| 60500 | 55  | 
text \<open>The Huet--Oppen ordering:\<close>  | 
| 59813 | 56  | 
|
57  | 
definition less_multiset\<^sub>H\<^sub>O where  | 
|
58  | 
"less_multiset\<^sub>H\<^sub>O M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))"  | 
|
59  | 
||
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
60  | 
lemma mult_imp_less_multiset\<^sub>H\<^sub>O:  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
61  | 
  "(M, N) \<in> mult {(x, y). x < y} \<Longrightarrow> less_multiset\<^sub>H\<^sub>O M N"
 | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
62  | 
proof (unfold mult_def, induct rule: trancl_induct)  | 
| 59813 | 63  | 
case (base P)  | 
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
64  | 
then show ?case  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
65  | 
by (auto elim!: mult1_lessE simp add: count_eq_zero_iff less_multiset\<^sub>H\<^sub>O_def split: if_splits dest!: Suc_lessD)  | 
| 59813 | 66  | 
next  | 
67  | 
case (step N P)  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
68  | 
from step(3) have "M \<noteq> N" and  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
69  | 
**: "\<And>y. count N y < count M y \<Longrightarrow> (\<exists>x>y. count M x < count N x)"  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
70  | 
by (simp_all add: less_multiset\<^sub>H\<^sub>O_def)  | 
| 59813 | 71  | 
from step(2) obtain M0 a K where  | 
| 
63793
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
72  | 
*: "P = add_mset a M0" "N = M0 + K" "a \<notin># K" "\<And>b. b \<in># K \<Longrightarrow> b < a"  | 
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
73  | 
by (blast elim: mult1_lessE)  | 
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
74  | 
from \<open>M \<noteq> N\<close> ** *(1,2,3) have "M \<noteq> P" by (force dest: *(4) elim!: less_asym split: if_splits )  | 
| 59813 | 75  | 
moreover  | 
76  | 
  { assume "count P a \<le> count M a"
 | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
77  | 
with \<open>a \<notin># K\<close> have "count N a < count M a" unfolding *(1,2)  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
78  | 
by (auto simp add: not_in_iff)  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
79  | 
with ** obtain z where z: "z > a" "count M z < count N z"  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
80  | 
by blast  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
81  | 
with * have "count N z \<le> count P z"  | 
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
82  | 
by (auto elim: less_asym intro: count_inI)  | 
| 59813 | 83  | 
with z have "\<exists>z > a. count M z < count P z" by auto  | 
84  | 
} note count_a = this  | 
|
85  | 
  { fix y
 | 
|
86  | 
assume count_y: "count P y < count M y"  | 
|
87  | 
have "\<exists>x>y. count M x < count P x"  | 
|
88  | 
proof (cases "y = a")  | 
|
89  | 
case True  | 
|
90  | 
with count_y count_a show ?thesis by auto  | 
|
91  | 
next  | 
|
92  | 
case False  | 
|
93  | 
show ?thesis  | 
|
94  | 
proof (cases "y \<in># K")  | 
|
95  | 
case True  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
96  | 
with *(4) have "y < a" by simp  | 
| 59813 | 97  | 
then show ?thesis by (cases "count P a \<le> count M a") (auto dest: count_a intro: less_trans)  | 
98  | 
next  | 
|
99  | 
case False  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
100  | 
with \<open>y \<noteq> a\<close> have "count P y = count N y" unfolding *(1,2)  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
101  | 
by (simp add: not_in_iff)  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
102  | 
with count_y ** obtain z where z: "z > y" "count M z < count N z" by auto  | 
| 59813 | 103  | 
show ?thesis  | 
104  | 
proof (cases "z \<in># K")  | 
|
105  | 
case True  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
106  | 
with *(4) have "z < a" by simp  | 
| 59813 | 107  | 
with z(1) show ?thesis  | 
108  | 
by (cases "count P a \<le> count M a") (auto dest!: count_a intro: less_trans)  | 
|
109  | 
next  | 
|
110  | 
case False  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
111  | 
with \<open>a \<notin># K\<close> have "count N z \<le> count P z" unfolding *  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
112  | 
by (auto simp add: not_in_iff)  | 
| 59813 | 113  | 
with z show ?thesis by auto  | 
114  | 
qed  | 
|
115  | 
qed  | 
|
116  | 
qed  | 
|
117  | 
}  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
118  | 
ultimately show ?case unfolding less_multiset\<^sub>H\<^sub>O_def by blast  | 
| 59813 | 119  | 
qed  | 
120  | 
||
121  | 
lemma less_multiset\<^sub>D\<^sub>M_imp_mult:  | 
|
122  | 
  "less_multiset\<^sub>D\<^sub>M M N \<Longrightarrow> (M, N) \<in> mult {(x, y). x < y}"
 | 
|
123  | 
proof -  | 
|
124  | 
assume "less_multiset\<^sub>D\<^sub>M M N"  | 
|
125  | 
then obtain X Y where  | 
|
| 64587 | 126  | 
    "X \<noteq> {#}" and "X \<subseteq># N" and "M = N - X + Y" and "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)"
 | 
| 59813 | 127  | 
unfolding less_multiset\<^sub>D\<^sub>M_def by blast  | 
128  | 
  then have "(N - X + Y, N - X + X) \<in> mult {(x, y). x < y}"
 | 
|
129  | 
by (intro one_step_implies_mult) (auto simp: Bex_def trans_def)  | 
|
| 64587 | 130  | 
  with \<open>M = N - X + Y\<close> \<open>X \<subseteq># N\<close> show "(M, N) \<in> mult {(x, y). x < y}"
 | 
| 
60397
 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
59958 
diff
changeset
 | 
131  | 
by (metis subset_mset.diff_add)  | 
| 59813 | 132  | 
qed  | 
133  | 
||
134  | 
lemma less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M: "less_multiset\<^sub>H\<^sub>O M N \<Longrightarrow> less_multiset\<^sub>D\<^sub>M M N"  | 
|
135  | 
unfolding less_multiset\<^sub>D\<^sub>M_def  | 
|
136  | 
proof (intro iffI exI conjI)  | 
|
137  | 
assume "less_multiset\<^sub>H\<^sub>O M N"  | 
|
138  | 
then obtain z where z: "count M z < count N z"  | 
|
139  | 
unfolding less_multiset\<^sub>H\<^sub>O_def by (auto simp: multiset_eq_iff nat_neq_iff)  | 
|
| 63040 | 140  | 
define X where "X = N - M"  | 
141  | 
define Y where "Y = M - N"  | 
|
| 59813 | 142  | 
  from z show "X \<noteq> {#}" unfolding X_def by (auto simp: multiset_eq_iff not_less_eq_eq Suc_le_eq)
 | 
| 64587 | 143  | 
from z show "X \<subseteq># N" unfolding X_def by auto  | 
| 59813 | 144  | 
show "M = (N - X) + Y" unfolding X_def Y_def multiset_eq_iff count_union count_diff by force  | 
145  | 
show "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)"  | 
|
146  | 
proof (intro allI impI)  | 
|
147  | 
fix k  | 
|
148  | 
assume "k \<in># Y"  | 
|
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
149  | 
then have "count N k < count M k" unfolding Y_def  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
150  | 
by (auto simp add: in_diff_count)  | 
| 60500 | 151  | 
with \<open>less_multiset\<^sub>H\<^sub>O M N\<close> obtain a where "k < a" and "count M a < count N a"  | 
| 59813 | 152  | 
unfolding less_multiset\<^sub>H\<^sub>O_def by blast  | 
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
153  | 
then show "\<exists>a. a \<in># X \<and> k < a" unfolding X_def  | 
| 
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
154  | 
by (auto simp add: in_diff_count)  | 
| 59813 | 155  | 
qed  | 
156  | 
qed  | 
|
157  | 
||
158  | 
lemma mult_less_multiset\<^sub>D\<^sub>M: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>D\<^sub>M M N"
 | 
|
159  | 
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O)  | 
|
160  | 
||
161  | 
lemma mult_less_multiset\<^sub>H\<^sub>O: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
 | 
|
162  | 
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O)  | 
|
163  | 
||
164  | 
lemmas mult\<^sub>D\<^sub>M = mult_less_multiset\<^sub>D\<^sub>M[unfolded less_multiset\<^sub>D\<^sub>M_def]  | 
|
165  | 
lemmas mult\<^sub>H\<^sub>O = mult_less_multiset\<^sub>H\<^sub>O[unfolded less_multiset\<^sub>H\<^sub>O_def]  | 
|
166  | 
||
167  | 
end  | 
|
168  | 
||
| 67020 | 169  | 
lemma less_multiset_less_multiset\<^sub>H\<^sub>O: "M < N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"  | 
| 59813 | 170  | 
unfolding less_multiset_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def ..  | 
171  | 
||
172  | 
lemmas less_multiset\<^sub>D\<^sub>M = mult\<^sub>D\<^sub>M[folded less_multiset_def]  | 
|
173  | 
lemmas less_multiset\<^sub>H\<^sub>O = mult\<^sub>H\<^sub>O[folded less_multiset_def]  | 
|
174  | 
||
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
175  | 
lemma subset_eq_imp_le_multiset:  | 
| 64587 | 176  | 
shows "M \<subseteq># N \<Longrightarrow> M \<le> N"  | 
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
177  | 
unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O  | 
| 
60397
 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
59958 
diff
changeset
 | 
178  | 
by (simp add: less_le_not_le subseteq_mset_def)  | 
| 59813 | 179  | 
|
| 67020 | 180  | 
(* FIXME: "le" should be "less" in this and other names *)  | 
181  | 
lemma le_multiset_right_total: "M < add_mset x M"  | 
|
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
182  | 
unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O by simp  | 
| 
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
183  | 
|
| 
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
184  | 
lemma less_eq_multiset_empty_left[simp]:  | 
| 
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
185  | 
  shows "{#} \<le> M"
 | 
| 
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
186  | 
by (simp add: subset_eq_imp_le_multiset)  | 
| 
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
187  | 
|
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
188  | 
lemma ex_gt_imp_less_multiset: "(\<exists>y. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M < N"  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
189  | 
unfolding less_multiset\<^sub>H\<^sub>O  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
190  | 
by (metis count_eq_zero_iff count_greater_zero_iff less_le_not_le)  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
191  | 
|
| 67020 | 192  | 
lemma less_eq_multiset_empty_right[simp]: "M \<noteq> {#} \<Longrightarrow> \<not> M \<le> {#}"
 | 
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
193  | 
by (metis less_eq_multiset_empty_left antisym)  | 
| 59813 | 194  | 
|
| 67020 | 195  | 
(* FIXME: "le" should be "less" in this and other names *)  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
196  | 
lemma le_multiset_empty_left[simp]: "M \<noteq> {#} \<Longrightarrow> {#} < M"
 | 
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
197  | 
by (simp add: less_multiset\<^sub>H\<^sub>O)  | 
| 59813 | 198  | 
|
| 67020 | 199  | 
(* FIXME: "le" should be "less" in this and other names *)  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
200  | 
lemma le_multiset_empty_right[simp]: "\<not> M < {#}"
 | 
| 64076 | 201  | 
using subset_mset.le_zero_eq less_multiset\<^sub>D\<^sub>M by blast  | 
| 59813 | 202  | 
|
| 67020 | 203  | 
(* FIXME: "le" should be "less" in this and other names *)  | 
| 64587 | 204  | 
lemma union_le_diff_plus: "P \<subseteq># M \<Longrightarrow> N < P \<Longrightarrow> M - P + N < M"  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
205  | 
by (drule subset_mset.diff_add[symmetric]) (metis union_le_mono2)  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
206  | 
|
| 
63525
 
f01d1e393f3f
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63410 
diff
changeset
 | 
207  | 
instantiation multiset :: (preorder) ordered_ab_semigroup_monoid_add_imp_le  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
208  | 
begin  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
209  | 
|
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
210  | 
lemma less_eq_multiset\<^sub>H\<^sub>O:  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
211  | 
"M \<le> N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))"  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
212  | 
by (auto simp: less_eq_multiset_def less_multiset\<^sub>H\<^sub>O)  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
213  | 
|
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
214  | 
instance by standard (auto simp: less_eq_multiset\<^sub>H\<^sub>O)  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
215  | 
|
| 59813 | 216  | 
lemma  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
217  | 
fixes M N :: "'a multiset"  | 
| 59813 | 218  | 
shows  | 
| 
63525
 
f01d1e393f3f
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63410 
diff
changeset
 | 
219  | 
less_eq_multiset_plus_left: "N \<le> (M + N)" and  | 
| 
 
f01d1e393f3f
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63410 
diff
changeset
 | 
220  | 
less_eq_multiset_plus_right: "M \<le> (M + N)"  | 
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
221  | 
by simp_all  | 
| 59813 | 222  | 
|
223  | 
lemma  | 
|
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
224  | 
fixes M N :: "'a multiset"  | 
| 59813 | 225  | 
shows  | 
| 
63525
 
f01d1e393f3f
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63410 
diff
changeset
 | 
226  | 
    le_multiset_plus_left_nonempty: "M \<noteq> {#} \<Longrightarrow> N < M + N" and
 | 
| 
 
f01d1e393f3f
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63410 
diff
changeset
 | 
227  | 
    le_multiset_plus_right_nonempty: "N \<noteq> {#} \<Longrightarrow> M < M + N"
 | 
| 
 
f01d1e393f3f
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63410 
diff
changeset
 | 
228  | 
by simp_all  | 
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
229  | 
|
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
230  | 
end  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
231  | 
|
| 65546 | 232  | 
lemma all_lt_Max_imp_lt_mset: "N \<noteq> {#} \<Longrightarrow> (\<forall>a \<in># M. a < Max (set_mset N)) \<Longrightarrow> M < N"
 | 
233  | 
by (meson Max_in[OF finite_set_mset] ex_gt_imp_less_multiset set_mset_eq_empty_iff)  | 
|
234  | 
||
235  | 
lemma lt_imp_ex_count_lt: "M < N \<Longrightarrow> \<exists>y. count M y < count N y"  | 
|
236  | 
by (meson less_eq_multiset\<^sub>H\<^sub>O less_le_not_le)  | 
|
237  | 
||
238  | 
lemma subset_imp_less_mset: "A \<subset># B \<Longrightarrow> A < B"  | 
|
239  | 
by (simp add: order.not_eq_order_implies_strict subset_eq_imp_le_multiset)  | 
|
240  | 
||
241  | 
lemma image_mset_strict_mono:  | 
|
242  | 
assumes  | 
|
243  | 
mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and  | 
|
244  | 
less: "M < N"  | 
|
245  | 
shows "image_mset f M < image_mset f N"  | 
|
246  | 
proof -  | 
|
247  | 
obtain Y X where  | 
|
248  | 
    y_nemp: "Y \<noteq> {#}" and y_sub_N: "Y \<subseteq># N" and M_eq: "M = N - Y + X" and
 | 
|
249  | 
ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> x < y)"  | 
|
250  | 
using less[unfolded less_multiset\<^sub>D\<^sub>M] by blast  | 
|
251  | 
||
252  | 
have x_sub_M: "X \<subseteq># M"  | 
|
253  | 
using M_eq by simp  | 
|
254  | 
||
255  | 
let ?fY = "image_mset f Y"  | 
|
256  | 
let ?fX = "image_mset f X"  | 
|
257  | 
||
258  | 
show ?thesis  | 
|
259  | 
unfolding less_multiset\<^sub>D\<^sub>M  | 
|
260  | 
proof (intro exI conjI)  | 
|
261  | 
show "image_mset f M = image_mset f N - ?fY + ?fX"  | 
|
262  | 
using M_eq[THEN arg_cong, of "image_mset f"] y_sub_N  | 
|
263  | 
by (metis image_mset_Diff image_mset_union)  | 
|
264  | 
next  | 
|
265  | 
obtain y where y: "\<forall>x. x \<in># X \<longrightarrow> y x \<in># Y \<and> x < y x"  | 
|
266  | 
using ex_y by moura  | 
|
267  | 
||
268  | 
show "\<forall>fx. fx \<in># ?fX \<longrightarrow> (\<exists>fy. fy \<in># ?fY \<and> fx < fy)"  | 
|
269  | 
proof (intro allI impI)  | 
|
270  | 
fix fx  | 
|
271  | 
assume "fx \<in># ?fX"  | 
|
272  | 
then obtain x where fx: "fx = f x" and x_in: "x \<in># X"  | 
|
273  | 
by auto  | 
|
274  | 
hence y_in: "y x \<in># Y" and y_gt: "x < y x"  | 
|
275  | 
using y[rule_format, OF x_in] by blast+  | 
|
276  | 
hence "f (y x) \<in># ?fY \<and> f x < f (y x)"  | 
|
277  | 
using mono_f y_sub_N x_sub_M x_in  | 
|
278  | 
by (metis image_eqI in_image_mset mset_subset_eqD)  | 
|
279  | 
thus "\<exists>fy. fy \<in># ?fY \<and> fx < fy"  | 
|
280  | 
unfolding fx by auto  | 
|
281  | 
qed  | 
|
282  | 
qed (auto simp: y_nemp y_sub_N image_mset_subseteq_mono)  | 
|
283  | 
qed  | 
|
284  | 
||
285  | 
lemma image_mset_mono:  | 
|
286  | 
assumes  | 
|
287  | 
mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and  | 
|
288  | 
less: "M \<le> N"  | 
|
289  | 
shows "image_mset f M \<le> image_mset f N"  | 
|
290  | 
by (metis eq_iff image_mset_strict_mono less less_imp_le mono_f order.not_eq_order_implies_strict)  | 
|
291  | 
||
292  | 
lemma mset_lt_single_right_iff[simp]: "M < {#y#} \<longleftrightarrow> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder"
 | 
|
293  | 
proof (rule iffI)  | 
|
294  | 
  assume M_lt_y: "M < {#y#}"
 | 
|
295  | 
show "\<forall>x \<in># M. x < y"  | 
|
296  | 
proof  | 
|
297  | 
fix x  | 
|
298  | 
assume x_in: "x \<in># M"  | 
|
299  | 
    hence M: "M - {#x#} + {#x#} = M"
 | 
|
300  | 
by (meson insert_DiffM2)  | 
|
301  | 
    hence "\<not> {#x#} < {#y#} \<Longrightarrow> x < y"
 | 
|
302  | 
using x_in M_lt_y  | 
|
303  | 
by (metis diff_single_eq_union le_multiset_empty_left less_add_same_cancel2 mset_le_trans)  | 
|
304  | 
    also have "\<not> {#y#} < M"
 | 
|
305  | 
using M_lt_y mset_le_not_sym by blast  | 
|
306  | 
ultimately show "x < y"  | 
|
307  | 
by (metis (no_types) Max_ge all_lt_Max_imp_lt_mset empty_iff finite_set_mset insertE  | 
|
308  | 
less_le_trans linorder_less_linear mset_le_not_sym set_mset_add_mset_insert  | 
|
309  | 
set_mset_eq_empty_iff x_in)  | 
|
310  | 
qed  | 
|
311  | 
next  | 
|
312  | 
assume y_max: "\<forall>x \<in># M. x < y"  | 
|
313  | 
  show "M < {#y#}"
 | 
|
314  | 
by (rule all_lt_Max_imp_lt_mset) (auto intro!: y_max)  | 
|
315  | 
qed  | 
|
316  | 
||
317  | 
lemma mset_le_single_right_iff[simp]:  | 
|
318  | 
  "M \<le> {#y#} \<longleftrightarrow> M = {#y#} \<or> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder"
 | 
|
319  | 
by (meson less_eq_multiset_def mset_lt_single_right_iff)  | 
|
320  | 
||
| 
63793
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
321  | 
|
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
322  | 
subsection \<open>Simprocs\<close>  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
323  | 
|
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
324  | 
lemma mset_le_add_iff1:  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
325  | 
"j \<le> (i::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (repeat_mset (i-j) u + m \<le> n)"  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
326  | 
proof -  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
327  | 
assume "j \<le> i"  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
328  | 
then have "j + (i - j) = i"  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
329  | 
using le_add_diff_inverse by blast  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
330  | 
then show ?thesis  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
331  | 
by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset)  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
332  | 
qed  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
333  | 
|
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
334  | 
lemma mset_le_add_iff2:  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
335  | 
"i \<le> (j::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (m \<le> repeat_mset (j-i) u + n)"  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
336  | 
proof -  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
337  | 
assume "i \<le> j"  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
338  | 
then have "i + (j - i) = j"  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
339  | 
using le_add_diff_inverse by blast  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
340  | 
then show ?thesis  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
341  | 
by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset)  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
342  | 
qed  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
343  | 
|
| 
65027
 
2b8583507891
renaming multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
64978 
diff
changeset
 | 
344  | 
simproc_setup msetless_cancel  | 
| 
63793
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
345  | 
  ("(l::'a::preorder multiset) + m < n" | "(l::'a multiset) < m + n" |
 | 
| 
65028
 
87e003397834
adding simplification patterns to multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65027 
diff
changeset
 | 
346  | 
"add_mset a m < n" | "m < add_mset a n" |  | 
| 
 
87e003397834
adding simplification patterns to multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65027 
diff
changeset
 | 
347  | 
"replicate_mset p a < n" | "m < replicate_mset p a" |  | 
| 
 
87e003397834
adding simplification patterns to multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65027 
diff
changeset
 | 
348  | 
"repeat_mset p m < n" | "m < repeat_mset p n") =  | 
| 
65031
 
52e2c99f3711
use the cancellation simprocs directly
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65028 
diff
changeset
 | 
349  | 
\<open>fn phi => Cancel_Simprocs.less_cancel\<close>  | 
| 
63793
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
350  | 
|
| 
65027
 
2b8583507891
renaming multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
64978 
diff
changeset
 | 
351  | 
simproc_setup msetle_cancel  | 
| 
63793
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
352  | 
  ("(l::'a::preorder multiset) + m \<le> n" | "(l::'a multiset) \<le> m + n" |
 | 
| 
65028
 
87e003397834
adding simplification patterns to multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65027 
diff
changeset
 | 
353  | 
"add_mset a m \<le> n" | "m \<le> add_mset a n" |  | 
| 
 
87e003397834
adding simplification patterns to multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65027 
diff
changeset
 | 
354  | 
"replicate_mset p a \<le> n" | "m \<le> replicate_mset p a" |  | 
| 
 
87e003397834
adding simplification patterns to multiset simprocs
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65027 
diff
changeset
 | 
355  | 
"repeat_mset p m \<le> n" | "m \<le> repeat_mset p n") =  | 
| 
65031
 
52e2c99f3711
use the cancellation simprocs directly
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
65028 
diff
changeset
 | 
356  | 
\<open>fn phi => Cancel_Simprocs.less_eq_cancel\<close>  | 
| 
63793
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
357  | 
|
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
358  | 
|
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
359  | 
subsection \<open>Additional facts and instantiations\<close>  | 
| 
 
e68a0b651eb5
add_mset constructor in multisets
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63525 
diff
changeset
 | 
360  | 
|
| 
63388
 
a095acd4cfbf
instantiate multiset with multiset ordering
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63310 
diff
changeset
 | 
361  | 
lemma ex_gt_count_imp_le_multiset:  | 
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
362  | 
"(\<forall>y :: 'a :: order. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M < N"  | 
| 
62430
 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 
haftmann 
parents: 
61424 
diff
changeset
 | 
363  | 
unfolding less_multiset\<^sub>H\<^sub>O  | 
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
364  | 
by (metis count_greater_zero_iff le_imp_less_or_eq less_imp_not_less not_gr_zero union_iff)  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
365  | 
|
| 64418 | 366  | 
lemma mset_lt_single_iff[iff]: "{#x#} < {#y#} \<longleftrightarrow> x < y"
 | 
367  | 
unfolding less_multiset\<^sub>H\<^sub>O by simp  | 
|
368  | 
||
369  | 
lemma mset_le_single_iff[iff]: "{#x#} \<le> {#y#} \<longleftrightarrow> x \<le> y" for x y :: "'a::order"
 | 
|
370  | 
unfolding less_eq_multiset\<^sub>H\<^sub>O by force  | 
|
371  | 
||
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
372  | 
instance multiset :: (linorder) linordered_cancel_ab_semigroup_add  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
373  | 
by standard (metis less_eq_multiset\<^sub>H\<^sub>O not_less_iff_gr_or_eq)  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
374  | 
|
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
375  | 
lemma less_eq_multiset_total:  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
376  | 
fixes M N :: "'a :: linorder multiset"  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
377  | 
shows "\<not> M \<le> N \<Longrightarrow> N \<le> M"  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
378  | 
by simp  | 
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
379  | 
|
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
380  | 
instantiation multiset :: (wellorder) wellorder  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
381  | 
begin  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
382  | 
|
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
383  | 
lemma wf_less_multiset: "wf {(M :: 'a multiset, N). M < N}"
 | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
384  | 
unfolding less_multiset_def by (auto intro: wf_mult wf)  | 
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
385  | 
|
| 
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
386  | 
instance by standard (metis less_multiset_def wf wf_def wf_mult)  | 
| 59813 | 387  | 
|
388  | 
end  | 
|
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
389  | 
|
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
390  | 
instantiation multiset :: (preorder) order_bot  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
391  | 
begin  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
392  | 
|
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
393  | 
definition bot_multiset :: "'a multiset" where "bot_multiset = {#}"
 | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
394  | 
|
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
395  | 
instance by standard (simp add: bot_multiset_def)  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
396  | 
|
| 
63409
 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 
blanchet 
parents: 
63407 
diff
changeset
 | 
397  | 
end  | 
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
398  | 
|
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
399  | 
instance multiset :: (preorder) no_top  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
400  | 
proof standard  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
401  | 
fix x :: "'a multiset"  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
402  | 
obtain a :: 'a where True by simp  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
403  | 
  have "x < x + (x + {#a#})"
 | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
404  | 
by simp  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
405  | 
then show "\<exists>y. x < y"  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
406  | 
by blast  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
407  | 
qed  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
408  | 
|
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
409  | 
instance multiset :: (preorder) ordered_cancel_comm_monoid_add  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
410  | 
by standard  | 
| 
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
411  | 
|
| 65546 | 412  | 
instantiation multiset :: (linorder) distrib_lattice  | 
413  | 
begin  | 
|
414  | 
||
415  | 
definition inf_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where  | 
|
416  | 
"inf_multiset A B = (if A < B then A else B)"  | 
|
417  | 
||
418  | 
definition sup_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where  | 
|
419  | 
"sup_multiset A B = (if B > A then B else A)"  | 
|
420  | 
||
421  | 
instance  | 
|
422  | 
by intro_classes (auto simp: inf_multiset_def sup_multiset_def)  | 
|
423  | 
||
| 
63410
 
9789ccc2a477
more instantiations for multiset
 
fleury <Mathias.Fleury@mpi-inf.mpg.de> 
parents: 
63409 
diff
changeset
 | 
424  | 
end  | 
| 65546 | 425  | 
|
426  | 
end  |