68630
|
1 |
section \<open>Asymptotic real interval arithmetic\<close>
|
|
2 |
(*
|
|
3 |
File: Multiseries_Expansion_Bounds.thy
|
|
4 |
Author: Manuel Eberl, TU München
|
|
5 |
|
|
6 |
Automatic computation of upper and lower expansions for real-valued functions.
|
|
7 |
Allows limited handling of functions involving oscillating functions like sin, cos, floor, etc.
|
|
8 |
*)
|
|
9 |
theory Multiseries_Expansion_Bounds
|
|
10 |
imports
|
|
11 |
Multiseries_Expansion
|
|
12 |
begin
|
|
13 |
|
|
14 |
lemma expands_to_cong_reverse:
|
|
15 |
"eventually (\<lambda>x. f x = g x) at_top \<Longrightarrow> (g expands_to F) bs \<Longrightarrow> (f expands_to F) bs"
|
|
16 |
using expands_to_cong[of g F bs f] by (simp add: eq_commute)
|
|
17 |
|
|
18 |
lemma expands_to_trivial_bounds: "(f expands_to F) bs \<Longrightarrow> eventually (\<lambda>x. f x \<in> {f x..f x}) at_top"
|
|
19 |
by simp
|
|
20 |
|
|
21 |
lemma eventually_in_atLeastAtMostI:
|
|
22 |
assumes "eventually (\<lambda>x. f x \<ge> l x) at_top" "eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
23 |
shows "eventually (\<lambda>x. f x \<in> {l x..u x}) at_top"
|
|
24 |
using assms by eventually_elim simp_all
|
|
25 |
|
|
26 |
lemma tendsto_sandwich':
|
|
27 |
fixes l f u :: "'a \<Rightarrow> 'b :: order_topology"
|
|
28 |
shows "eventually (\<lambda>x. l x \<le> f x) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> u x) F \<Longrightarrow>
|
|
29 |
(l \<longlongrightarrow> L1) F \<Longrightarrow> (u \<longlongrightarrow> L2) F \<Longrightarrow> L1 = L2 \<Longrightarrow> (f \<longlongrightarrow> L1) F"
|
|
30 |
using tendsto_sandwich[of l f F u L1] by simp
|
|
31 |
|
|
32 |
(* TODO: Move? *)
|
|
33 |
lemma filterlim_at_bot_mono:
|
|
34 |
fixes l f u :: "'a \<Rightarrow> 'b :: linorder_topology"
|
|
35 |
assumes "filterlim u at_bot F" and "eventually (\<lambda>x. f x \<le> u x) F"
|
|
36 |
shows "filterlim f at_bot F"
|
|
37 |
unfolding filterlim_at_bot
|
|
38 |
proof
|
|
39 |
fix Z :: 'b
|
|
40 |
from assms(1) have "eventually (\<lambda>x. u x \<le> Z) F" by (auto simp: filterlim_at_bot)
|
|
41 |
with assms(2) show "eventually (\<lambda>x. f x \<le> Z) F" by eventually_elim simp
|
|
42 |
qed
|
|
43 |
|
|
44 |
context
|
|
45 |
begin
|
|
46 |
|
|
47 |
qualified lemma eq_zero_imp_nonneg: "x = (0::real) \<Longrightarrow> x \<ge> 0"
|
|
48 |
by simp
|
|
49 |
|
|
50 |
qualified lemma exact_to_bound: "(f expands_to F) bs \<Longrightarrow> eventually (\<lambda>x. f x \<le> f x) at_top"
|
|
51 |
by simp
|
|
52 |
|
|
53 |
qualified lemma expands_to_abs_nonneg: "(f expands_to F) bs \<Longrightarrow> eventually (\<lambda>x. abs (f x) \<ge> 0) at_top"
|
|
54 |
by simp
|
|
55 |
|
|
56 |
qualified lemma eventually_nonpos_flip: "eventually (\<lambda>x. f x \<le> (0::real)) F \<Longrightarrow> eventually (\<lambda>x. -f x \<ge> 0) F"
|
|
57 |
by simp
|
|
58 |
|
|
59 |
qualified lemma bounds_uminus:
|
|
60 |
fixes a b :: "real \<Rightarrow> real"
|
|
61 |
assumes "eventually (\<lambda>x. a x \<le> b x) at_top"
|
|
62 |
shows "eventually (\<lambda>x. -b x \<le> -a x) at_top"
|
|
63 |
using assms by eventually_elim simp
|
|
64 |
|
|
65 |
qualified lemma
|
|
66 |
fixes a b c d :: "real \<Rightarrow> real"
|
|
67 |
assumes "eventually (\<lambda>x. a x \<le> b x) at_top" "eventually (\<lambda>x. c x \<le> d x) at_top"
|
|
68 |
shows combine_bounds_add: "eventually (\<lambda>x. a x + c x \<le> b x + d x) at_top"
|
|
69 |
and combine_bounds_diff: "eventually (\<lambda>x. a x - d x \<le> b x - c x) at_top"
|
|
70 |
by (use assms in eventually_elim; simp add: add_mono diff_mono)+
|
|
71 |
|
|
72 |
qualified lemma
|
|
73 |
fixes a b c d :: "real \<Rightarrow> real"
|
|
74 |
assumes "eventually (\<lambda>x. a x \<le> b x) at_top" "eventually (\<lambda>x. c x \<le> d x) at_top"
|
|
75 |
shows combine_bounds_min: "eventually (\<lambda>x. min (a x) (c x) \<le> min (b x) (d x)) at_top"
|
|
76 |
and combine_bounds_max: "eventually (\<lambda>x. max (a x) (c x) \<le> max (b x) (d x)) at_top"
|
|
77 |
by (blast intro: eventually_elim2[OF assms] min.mono max.mono)+
|
|
78 |
|
|
79 |
|
|
80 |
qualified lemma trivial_bounds_sin: "\<forall>x::real. sin x \<in> {-1..1}"
|
|
81 |
and trivial_bounds_cos: "\<forall>x::real. cos x \<in> {-1..1}"
|
|
82 |
and trivial_bounds_frac: "\<forall>x::real. frac x \<in> {0..1}"
|
|
83 |
by (auto simp: less_imp_le[OF frac_lt_1])
|
|
84 |
|
|
85 |
qualified lemma trivial_boundsI:
|
|
86 |
fixes f g:: "real \<Rightarrow> real"
|
|
87 |
assumes "\<forall>x. f x \<in> {l..u}" and "g \<equiv> g"
|
|
88 |
shows "eventually (\<lambda>x. f (g x) \<ge> l) at_top" "eventually (\<lambda>x. f (g x) \<le> u) at_top"
|
|
89 |
using assms by auto
|
|
90 |
|
|
91 |
qualified lemma
|
|
92 |
fixes f f' :: "real \<Rightarrow> real"
|
|
93 |
shows transfer_lower_bound:
|
|
94 |
"eventually (\<lambda>x. g x \<ge> l x) at_top \<Longrightarrow> f \<equiv> g \<Longrightarrow> eventually (\<lambda>x. f x \<ge> l x) at_top"
|
|
95 |
and transfer_upper_bound:
|
|
96 |
"eventually (\<lambda>x. g x \<le> u x) at_top \<Longrightarrow> f \<equiv> g \<Longrightarrow> eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
97 |
by simp_all
|
|
98 |
|
|
99 |
qualified lemma mono_bound:
|
|
100 |
fixes f g h :: "real \<Rightarrow> real"
|
|
101 |
assumes "mono h" "eventually (\<lambda>x. f x \<le> g x) at_top"
|
|
102 |
shows "eventually (\<lambda>x. h (f x) \<le> h (g x)) at_top"
|
|
103 |
by (intro eventually_mono[OF assms(2)] monoD[OF assms(1)])
|
|
104 |
|
|
105 |
qualified lemma
|
|
106 |
fixes f l :: "real \<Rightarrow> real"
|
|
107 |
assumes "(l expands_to L) bs" "trimmed_pos L" "basis_wf bs" "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
108 |
shows expands_to_lb_ln: "eventually (\<lambda>x. ln (l x) \<le> ln (f x)) at_top"
|
|
109 |
and expands_to_ub_ln:
|
|
110 |
"eventually (\<lambda>x. f x \<le> u x) at_top \<Longrightarrow> eventually (\<lambda>x. ln (f x) \<le> ln (u x)) at_top"
|
|
111 |
proof -
|
|
112 |
from assms(3,1,2) have pos: "eventually (\<lambda>x. l x > 0) at_top"
|
|
113 |
by (rule expands_to_imp_eventually_pos)
|
|
114 |
from pos and assms(4)
|
|
115 |
show "eventually (\<lambda>x. ln (l x) \<le> ln (f x)) at_top" by eventually_elim simp
|
|
116 |
assume "eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
117 |
with pos and assms(4) show "eventually (\<lambda>x. ln (f x) \<le> ln (u x)) at_top"
|
|
118 |
by eventually_elim simp
|
|
119 |
qed
|
|
120 |
|
|
121 |
qualified lemma eventually_sgn_ge_1D:
|
|
122 |
assumes "eventually (\<lambda>x::real. sgn (f x) \<ge> l x) at_top"
|
|
123 |
"(l expands_to (const_expansion 1 :: 'a :: multiseries)) bs"
|
|
124 |
shows "((\<lambda>x. sgn (f x)) expands_to (const_expansion 1 :: 'a)) bs"
|
|
125 |
proof (rule expands_to_cong)
|
|
126 |
from assms(2) have "eventually (\<lambda>x. l x = 1) at_top"
|
|
127 |
by (simp add: expands_to.simps)
|
|
128 |
with assms(1) show "eventually (\<lambda>x. 1 = sgn (f x)) at_top"
|
|
129 |
by eventually_elim (auto simp: sgn_if split: if_splits)
|
|
130 |
qed (insert assms, auto simp: expands_to.simps)
|
|
131 |
|
|
132 |
qualified lemma eventually_sgn_le_neg1D:
|
|
133 |
assumes "eventually (\<lambda>x::real. sgn (f x) \<le> u x) at_top"
|
|
134 |
"(u expands_to (const_expansion (-1) :: 'a :: multiseries)) bs"
|
|
135 |
shows "((\<lambda>x. sgn (f x)) expands_to (const_expansion (-1) :: 'a)) bs"
|
|
136 |
proof (rule expands_to_cong)
|
|
137 |
from assms(2) have "eventually (\<lambda>x. u x = -1) at_top"
|
|
138 |
by (simp add: expands_to.simps eq_commute)
|
|
139 |
with assms(1) show "eventually (\<lambda>x. -1 = sgn (f x)) at_top"
|
|
140 |
by eventually_elim (auto simp: sgn_if split: if_splits)
|
|
141 |
qed (insert assms, auto simp: expands_to.simps)
|
|
142 |
|
|
143 |
|
|
144 |
qualified lemma expands_to_squeeze:
|
|
145 |
assumes "eventually (\<lambda>x. l x \<le> f x) at_top" "eventually (\<lambda>x. f x \<le> g x) at_top"
|
|
146 |
"(l expands_to L) bs" "(g expands_to L) bs"
|
|
147 |
shows "(f expands_to L) bs"
|
|
148 |
proof (rule expands_to_cong[OF assms(3)])
|
|
149 |
from assms have "eventually (\<lambda>x. eval L x = l x) at_top" "eventually (\<lambda>x. eval L x = g x) at_top"
|
|
150 |
by (simp_all add: expands_to.simps)
|
|
151 |
with assms(1,2) show "eventually (\<lambda>x. l x = f x) at_top"
|
|
152 |
by eventually_elim simp
|
|
153 |
qed
|
|
154 |
|
|
155 |
|
|
156 |
qualified lemma mono_exp_real: "mono (exp :: real \<Rightarrow> real)"
|
|
157 |
by (auto intro!: monoI)
|
|
158 |
|
|
159 |
qualified lemma mono_sgn_real: "mono (sgn :: real \<Rightarrow> real)"
|
|
160 |
by (auto intro!: monoI simp: sgn_if)
|
|
161 |
|
|
162 |
qualified lemma mono_arctan_real: "mono (arctan :: real \<Rightarrow> real)"
|
|
163 |
by (auto intro!: monoI arctan_monotone')
|
|
164 |
|
|
165 |
qualified lemma mono_root_real: "n \<equiv> n \<Longrightarrow> mono (root n :: real \<Rightarrow> real)"
|
|
166 |
by (cases n) (auto simp: mono_def)
|
|
167 |
|
|
168 |
qualified lemma mono_rfloor: "mono rfloor" and mono_rceil: "mono rceil"
|
|
169 |
by (auto intro!: monoI simp: rfloor_def floor_mono rceil_def ceiling_mono)
|
|
170 |
|
|
171 |
qualified lemma lower_bound_cong:
|
|
172 |
"eventually (\<lambda>x. f x = g x) at_top \<Longrightarrow> eventually (\<lambda>x. l x \<le> g x) at_top \<Longrightarrow>
|
|
173 |
eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
174 |
by (erule (1) eventually_elim2) simp
|
|
175 |
|
|
176 |
qualified lemma upper_bound_cong:
|
|
177 |
"eventually (\<lambda>x. f x = g x) at_top \<Longrightarrow> eventually (\<lambda>x. g x \<le> u x) at_top \<Longrightarrow>
|
|
178 |
eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
179 |
by (erule (1) eventually_elim2) simp
|
|
180 |
|
|
181 |
qualified lemma
|
|
182 |
assumes "eventually (\<lambda>x. f x = (g x :: real)) at_top"
|
|
183 |
shows eventually_eq_min: "eventually (\<lambda>x. min (f x) (g x) = f x) at_top"
|
|
184 |
and eventually_eq_max: "eventually (\<lambda>x. max (f x) (g x) = f x) at_top"
|
|
185 |
by (rule eventually_mono[OF assms]; simp)+
|
|
186 |
|
|
187 |
qualified lemma rfloor_bound:
|
|
188 |
"eventually (\<lambda>x. l x \<le> f x) at_top \<Longrightarrow> eventually (\<lambda>x. l x - 1 \<le> rfloor (f x)) at_top"
|
|
189 |
"eventually (\<lambda>x. f x \<le> u x) at_top \<Longrightarrow> eventually (\<lambda>x. rfloor (f x) \<le> u x) at_top"
|
|
190 |
and rceil_bound:
|
|
191 |
"eventually (\<lambda>x. l x \<le> f x) at_top \<Longrightarrow> eventually (\<lambda>x. l x \<le> rceil (f x)) at_top"
|
|
192 |
"eventually (\<lambda>x. f x \<le> u x) at_top \<Longrightarrow> eventually (\<lambda>x. rceil (f x) \<le> u x + 1) at_top"
|
|
193 |
unfolding rfloor_def rceil_def by (erule eventually_mono, linarith)+
|
|
194 |
|
|
195 |
qualified lemma natmod_trivial_lower_bound:
|
|
196 |
fixes f g :: "real \<Rightarrow> real"
|
|
197 |
assumes "f \<equiv> f" "g \<equiv> g"
|
|
198 |
shows "eventually (\<lambda>x. rnatmod (f x) (g x) \<ge> 0) at_top"
|
|
199 |
by (simp add: rnatmod_def)
|
|
200 |
|
|
201 |
qualified lemma natmod_upper_bound:
|
|
202 |
fixes f g :: "real \<Rightarrow> real"
|
|
203 |
assumes "f \<equiv> f" and "eventually (\<lambda>x. l2 x \<le> g x) at_top" and "eventually (\<lambda>x. g x \<le> u2 x) at_top"
|
|
204 |
assumes "eventually (\<lambda>x. l2 x - 1 \<ge> 0) at_top"
|
|
205 |
shows "eventually (\<lambda>x. rnatmod (f x) (g x) \<le> u2 x - 1) at_top"
|
|
206 |
using assms(2-)
|
|
207 |
proof eventually_elim
|
|
208 |
case (elim x)
|
|
209 |
have "rnatmod (f x) (g x) = real (nat \<lfloor>f x\<rfloor> mod nat \<lfloor>g x\<rfloor>)"
|
|
210 |
by (simp add: rnatmod_def)
|
|
211 |
also have "nat \<lfloor>f x\<rfloor> mod nat \<lfloor>g x\<rfloor> < nat \<lfloor>g x\<rfloor>"
|
|
212 |
using elim by (intro mod_less_divisor) auto
|
|
213 |
hence "real (nat \<lfloor>f x\<rfloor> mod nat \<lfloor>g x\<rfloor>) \<le> u2 x - 1"
|
|
214 |
using elim by linarith
|
|
215 |
finally show ?case .
|
|
216 |
qed
|
|
217 |
|
|
218 |
qualified lemma natmod_upper_bound':
|
|
219 |
fixes f g :: "real \<Rightarrow> real"
|
|
220 |
assumes "g \<equiv> g" "eventually (\<lambda>x. u1 x \<ge> 0) at_top" and "eventually (\<lambda>x. f x \<le> u1 x) at_top"
|
|
221 |
shows "eventually (\<lambda>x. rnatmod (f x) (g x) \<le> u1 x) at_top"
|
|
222 |
using assms(2-)
|
|
223 |
proof eventually_elim
|
|
224 |
case (elim x)
|
|
225 |
have "rnatmod (f x) (g x) = real (nat \<lfloor>f x\<rfloor> mod nat \<lfloor>g x\<rfloor>)"
|
|
226 |
by (simp add: rnatmod_def)
|
|
227 |
also have "nat \<lfloor>f x\<rfloor> mod nat \<lfloor>g x\<rfloor> \<le> nat \<lfloor>f x\<rfloor>"
|
|
228 |
by auto
|
|
229 |
hence "real (nat \<lfloor>f x\<rfloor> mod nat \<lfloor>g x\<rfloor>) \<le> real (nat \<lfloor>f x\<rfloor>)"
|
|
230 |
by simp
|
|
231 |
also have "\<dots> \<le> u1 x" using elim by linarith
|
|
232 |
finally show "rnatmod (f x) (g x) \<le> \<dots>" .
|
|
233 |
qed
|
|
234 |
|
|
235 |
qualified lemma expands_to_natmod_nonpos:
|
|
236 |
fixes f g :: "real \<Rightarrow> real"
|
|
237 |
assumes "g \<equiv> g" "eventually (\<lambda>x. u1 x \<le> 0) at_top" "eventually (\<lambda>x. f x \<le> u1 x) at_top"
|
|
238 |
"((\<lambda>_. 0) expands_to C) bs"
|
|
239 |
shows "((\<lambda>x. rnatmod (f x) (g x)) expands_to C) bs"
|
|
240 |
by (rule expands_to_cong[OF assms(4)])
|
|
241 |
(insert assms, auto elim: eventually_elim2 simp: rnatmod_def)
|
|
242 |
|
|
243 |
|
|
244 |
qualified lemma eventually_atLeastAtMostI:
|
|
245 |
fixes f l r :: "real \<Rightarrow> real"
|
|
246 |
assumes "eventually (\<lambda>x. l x \<le> f x) at_top" "eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
247 |
shows "eventually (\<lambda>x. f x \<in> {l x..u x}) at_top"
|
|
248 |
using assms by eventually_elim simp
|
|
249 |
|
|
250 |
qualified lemma eventually_atLeastAtMostD:
|
|
251 |
fixes f l r :: "real \<Rightarrow> real"
|
|
252 |
assumes "eventually (\<lambda>x. f x \<in> {l x..u x}) at_top"
|
|
253 |
shows "eventually (\<lambda>x. l x \<le> f x) at_top" "eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
254 |
using assms by (simp_all add: eventually_conj_iff)
|
|
255 |
|
|
256 |
qualified lemma eventually_0_imp_prod_zero:
|
|
257 |
fixes f g :: "real \<Rightarrow> real"
|
|
258 |
assumes "eventually (\<lambda>x. f x = 0) at_top"
|
|
259 |
shows "eventually (\<lambda>x. f x * g x = 0) at_top" "eventually (\<lambda>x. g x * f x = 0) at_top"
|
|
260 |
by (use assms in eventually_elim; simp)+
|
|
261 |
|
|
262 |
qualified lemma mult_right_bounds:
|
|
263 |
fixes f g :: "real \<Rightarrow> real"
|
|
264 |
shows "\<forall>x. f x \<in> {l x..u x} \<longrightarrow> g x \<ge> 0 \<longrightarrow> f x * g x \<in> {l x * g x..u x * g x}"
|
|
265 |
and "\<forall>x. f x \<in> {l x..u x} \<longrightarrow> g x \<le> 0 \<longrightarrow> f x * g x \<in> {u x * g x..l x * g x}"
|
|
266 |
by (auto intro: mult_right_mono mult_right_mono_neg)
|
|
267 |
|
|
268 |
qualified lemma mult_left_bounds:
|
|
269 |
fixes f g :: "real \<Rightarrow> real"
|
|
270 |
shows "\<forall>x. g x \<in> {l x..u x} \<longrightarrow> f x \<ge> 0 \<longrightarrow> f x * g x \<in> {f x * l x..f x * u x}"
|
|
271 |
and "\<forall>x. g x \<in> {l x..u x} \<longrightarrow> f x \<le> 0 \<longrightarrow> f x * g x \<in> {f x * u x..f x * l x}"
|
|
272 |
by (auto intro: mult_left_mono mult_left_mono_neg)
|
|
273 |
|
|
274 |
qualified lemma mult_mono_nonpos_nonneg:
|
|
275 |
"a \<le> c \<Longrightarrow> d \<le> b \<Longrightarrow> a \<le> 0 \<Longrightarrow> d \<ge> 0 \<Longrightarrow> a * b \<le> c * (d :: 'a :: linordered_ring)"
|
|
276 |
using mult_mono[of "-c" "-a" d b] by simp
|
|
277 |
|
|
278 |
qualified lemma mult_mono_nonneg_nonpos:
|
|
279 |
"c \<le> a \<Longrightarrow> b \<le> d \<Longrightarrow> a \<ge> 0 \<Longrightarrow> d \<le> 0 \<Longrightarrow> a * b \<le> c * (d :: 'a :: {comm_ring, linordered_ring})"
|
|
280 |
using mult_mono[of c a "-d" "-b"] by (simp add: mult.commute)
|
|
281 |
|
|
282 |
qualified lemma mult_mono_nonpos_nonpos:
|
|
283 |
"c \<le> a \<Longrightarrow> d \<le> b \<Longrightarrow> c \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> c * (d :: 'a :: linordered_ring)"
|
|
284 |
using mult_mono[of "-a" "-c" "-b" "-d"] by simp
|
|
285 |
|
|
286 |
qualified lemmas mult_monos =
|
|
287 |
mult_mono mult_mono_nonpos_nonneg mult_mono_nonneg_nonpos mult_mono_nonpos_nonpos
|
|
288 |
|
|
289 |
|
|
290 |
qualified lemma mult_bounds_real:
|
|
291 |
fixes f g l1 u1 l2 u2 l u :: "real \<Rightarrow> real"
|
|
292 |
defines "P \<equiv> \<lambda>l u x. f x \<in> {l1 x..u1 x} \<longrightarrow> g x \<in> {l2 x..u2 x} \<longrightarrow> f x * g x \<in> {l..u}"
|
|
293 |
shows "\<forall>x. l1 x \<ge> 0 \<longrightarrow> l2 x \<ge> 0 \<longrightarrow> P (l1 x * l2 x) (u1 x * u2 x) x"
|
|
294 |
and "\<forall>x. u1 x \<le> 0 \<longrightarrow> l2 x \<ge> 0 \<longrightarrow> P (l1 x * u2 x) (u1 x * l2 x) x"
|
|
295 |
and "\<forall>x. l1 x \<ge> 0 \<longrightarrow> u2 x \<le> 0 \<longrightarrow> P (u1 x * l2 x) (l1 x * u2 x) x"
|
|
296 |
and "\<forall>x. u1 x \<le> 0 \<longrightarrow> u2 x \<le> 0 \<longrightarrow> P (u1 x * u2 x) (l1 x * l2 x) x"
|
|
297 |
|
|
298 |
and "\<forall>x. l1 x \<le> 0 \<longrightarrow> u1 x \<ge> 0 \<longrightarrow> l2 x \<ge> 0 \<longrightarrow> P (l1 x * u2 x) (u1 x * u2 x) x"
|
|
299 |
and "\<forall>x. l1 x \<le> 0 \<longrightarrow> u1 x \<ge> 0 \<longrightarrow> u2 x \<le> 0 \<longrightarrow> P (u1 x * l2 x) (l1 x * l2 x) x"
|
|
300 |
and "\<forall>x. l1 x \<ge> 0 \<longrightarrow> l2 x \<le> 0 \<longrightarrow> u2 x \<ge> 0 \<longrightarrow> P (u1 x * l2 x) (u1 x * u2 x) x"
|
|
301 |
and "\<forall>x. u1 x \<le> 0 \<longrightarrow> l2 x \<le> 0 \<longrightarrow> u2 x \<ge> 0 \<longrightarrow> P (l1 x * u2 x) (l1 x * l2 x) x"
|
|
302 |
|
|
303 |
and "\<forall>x. l1 x \<le> 0 \<longrightarrow> u1 x \<ge> 0 \<longrightarrow> l2 x \<le> 0 \<longrightarrow> u2 x \<ge> 0 \<longrightarrow> l x \<le> l1 x * u2 x \<longrightarrow>
|
|
304 |
l x \<le> u1 x * l2 x \<longrightarrow> u x \<ge> l1 x* l2 x \<longrightarrow> u x \<ge> u1 x * u2 x \<longrightarrow> P (l x) (u x) x"
|
|
305 |
proof goal_cases
|
|
306 |
case 1
|
|
307 |
show ?case by (auto intro: mult_mono simp: P_def)
|
|
308 |
next
|
|
309 |
case 2
|
|
310 |
show ?case by (auto intro: mult_monos(2) simp: P_def)
|
|
311 |
next
|
|
312 |
case 3
|
|
313 |
show ?case unfolding P_def
|
|
314 |
by (subst (1 2 3) mult.commute) (auto intro: mult_monos(2) simp: P_def)
|
|
315 |
next
|
|
316 |
case 4
|
|
317 |
show ?case by (auto intro: mult_monos(4) simp: P_def)
|
|
318 |
next
|
|
319 |
case 5
|
|
320 |
show ?case by (auto intro: mult_monos(1,2) simp: P_def)
|
|
321 |
next
|
|
322 |
case 6
|
|
323 |
show ?case by (auto intro: mult_monos(3,4) simp: P_def)
|
|
324 |
next
|
|
325 |
case 7
|
|
326 |
show ?case unfolding P_def
|
|
327 |
by (subst (1 2 3) mult.commute) (auto intro: mult_monos(1,2))
|
|
328 |
next
|
|
329 |
case 8
|
|
330 |
show ?case unfolding P_def
|
|
331 |
by (subst (1 2 3) mult.commute) (auto intro: mult_monos(3,4))
|
|
332 |
next
|
|
333 |
case 9
|
|
334 |
show ?case
|
|
335 |
proof (safe, goal_cases)
|
|
336 |
case (1 x)
|
|
337 |
from 1(1-4) show ?case unfolding P_def
|
|
338 |
by (cases "f x \<ge> 0"; cases "g x \<ge> 0";
|
|
339 |
fastforce intro: mult_monos 1(5,6)[THEN order.trans] 1(7,8)[THEN order.trans[rotated]])
|
|
340 |
qed
|
|
341 |
qed
|
|
342 |
|
|
343 |
|
|
344 |
qualified lemma powr_bounds_real:
|
|
345 |
fixes f g l1 u1 l2 u2 l u :: "real \<Rightarrow> real"
|
|
346 |
defines "P \<equiv> \<lambda>l u x. f x \<in> {l1 x..u1 x} \<longrightarrow> g x \<in> {l2 x..u2 x} \<longrightarrow> f x powr g x \<in> {l..u}"
|
|
347 |
shows "\<forall>x. l1 x \<ge> 0 \<longrightarrow> l1 x \<ge> 1 \<longrightarrow> l2 x \<ge> 0 \<longrightarrow> P (l1 x powr l2 x) (u1 x powr u2 x) x"
|
|
348 |
and "\<forall>x. l1 x \<ge> 0 \<longrightarrow> u1 x \<le> 1 \<longrightarrow> l2 x \<ge> 0 \<longrightarrow> P (l1 x powr u2 x) (u1 x powr l2 x) x"
|
|
349 |
and "\<forall>x. l1 x \<ge> 0 \<longrightarrow> l1 x \<ge> 1 \<longrightarrow> u2 x \<le> 0 \<longrightarrow> P (u1 x powr l2 x) (l1 x powr u2 x) x"
|
|
350 |
and "\<forall>x. l1 x > 0 \<longrightarrow> u1 x \<le> 1 \<longrightarrow> u2 x \<le> 0 \<longrightarrow> P (u1 x powr u2 x) (l1 x powr l2 x) x"
|
|
351 |
|
|
352 |
and "\<forall>x. l1 x \<ge> 0 \<longrightarrow> l1 x \<le> 1 \<longrightarrow> u1 x \<ge> 1 \<longrightarrow> l2 x \<ge> 0 \<longrightarrow> P (l1 x powr u2 x) (u1 x powr u2 x) x"
|
|
353 |
and "\<forall>x. l1 x > 0 \<longrightarrow> l1 x \<le> 1 \<longrightarrow> u1 x \<ge> 1 \<longrightarrow> u2 x \<le> 0 \<longrightarrow> P (u1 x powr l2 x) (l1 x powr l2 x) x"
|
|
354 |
and "\<forall>x. l1 x \<ge> 0 \<longrightarrow> l1 x \<ge> 1 \<longrightarrow> l2 x \<le> 0 \<longrightarrow> u2 x \<ge> 0 \<longrightarrow> P (u1 x powr l2 x) (u1 x powr u2 x) x"
|
|
355 |
and "\<forall>x. l1 x > 0 \<longrightarrow> u1 x \<le> 1 \<longrightarrow> l2 x \<le> 0 \<longrightarrow> u2 x \<ge> 0 \<longrightarrow> P (l1 x powr u2 x) (l1 x powr l2 x) x"
|
|
356 |
|
|
357 |
and "\<forall>x. l1 x > 0 \<longrightarrow> l1 x \<le> 1 \<longrightarrow> u1 x \<ge> 1 \<longrightarrow> l2 x \<le> 0 \<longrightarrow> u2 x \<ge> 0 \<longrightarrow> l x \<le> l1 x powr u2 x \<longrightarrow>
|
|
358 |
l x \<le> u1 x powr l2 x \<longrightarrow> u x \<ge> l1 x powr l2 x \<longrightarrow> u x \<ge> u1 x powr u2 x \<longrightarrow> P (l x) (u x) x"
|
|
359 |
proof goal_cases
|
|
360 |
case 1
|
|
361 |
show ?case by (auto simp: P_def powr_def intro: mult_monos)
|
|
362 |
next
|
|
363 |
case 2
|
|
364 |
show ?case by (auto simp: P_def powr_def intro: mult_monos)
|
|
365 |
next
|
|
366 |
case 3
|
|
367 |
show ?case by (auto simp: P_def powr_def intro: mult_monos)
|
|
368 |
next
|
|
369 |
case 4
|
|
370 |
show ?case by (auto simp: P_def powr_def intro: mult_monos)
|
|
371 |
next
|
|
372 |
case 5
|
|
373 |
note comm = mult.commute[of _ "ln x" for x :: real]
|
|
374 |
show ?case by (auto simp: P_def powr_def comm intro: mult_monos)
|
|
375 |
next
|
|
376 |
case 6
|
|
377 |
note comm = mult.commute[of _ "ln x" for x :: real]
|
|
378 |
show ?case by (auto simp: P_def powr_def comm intro: mult_monos)
|
|
379 |
next
|
|
380 |
case 7
|
|
381 |
show ?case by (auto simp: P_def powr_def intro: mult_monos)
|
|
382 |
next
|
|
383 |
case 8
|
|
384 |
show ?case
|
|
385 |
by (auto simp: P_def powr_def intro: mult_monos)
|
|
386 |
next
|
|
387 |
case 9
|
|
388 |
show ?case unfolding P_def
|
|
389 |
proof (safe, goal_cases)
|
|
390 |
case (1 x)
|
|
391 |
define l' where "l' = (\<lambda>x. min (ln (l1 x) * u2 x) (ln (u1 x) * l2 x))"
|
|
392 |
define u' where "u' = (\<lambda>x. max (ln (l1 x) * l2 x) (ln (u1 x) * u2 x))"
|
|
393 |
from 1 spec[OF mult_bounds_real(9)[of "\<lambda>x. ln (l1 x)" "\<lambda>x. ln (u1 x)" l2 u2 l' u'
|
|
394 |
"\<lambda>x. ln (f x)" g], of x]
|
|
395 |
have "ln (f x) * g x \<in> {l' x..u' x}" by (auto simp: powr_def mult.commute l'_def u'_def)
|
|
396 |
with 1 have "f x powr g x \<in> {exp (l' x)..exp (u' x)}"
|
|
397 |
by (auto simp: powr_def mult.commute)
|
|
398 |
also from 1 have "exp (l' x) = min (l1 x powr u2 x) (u1 x powr l2 x)"
|
|
399 |
by (auto simp add: l'_def powr_def min_def mult.commute)
|
|
400 |
also from 1 have "exp (u' x) = max (l1 x powr l2 x) (u1 x powr u2 x)"
|
|
401 |
by (auto simp add: u'_def powr_def max_def mult.commute)
|
|
402 |
finally show ?case using 1(5-9) by auto
|
|
403 |
qed
|
|
404 |
qed
|
|
405 |
|
|
406 |
qualified lemma powr_right_bounds:
|
|
407 |
fixes f g :: "real \<Rightarrow> real"
|
|
408 |
shows "\<forall>x. l x \<ge> 0 \<longrightarrow> f x \<in> {l x..u x} \<longrightarrow> g x \<ge> 0 \<longrightarrow> f x powr g x \<in> {l x powr g x..u x powr g x}"
|
|
409 |
and "\<forall>x. l x > 0 \<longrightarrow> f x \<in> {l x..u x} \<longrightarrow> g x \<le> 0 \<longrightarrow> f x powr g x \<in> {u x powr g x..l x powr g x}"
|
|
410 |
by (auto intro: powr_mono2 powr_mono2')
|
|
411 |
|
|
412 |
(* TODO Move *)
|
|
413 |
lemma powr_mono': "a \<le> (b::real) \<Longrightarrow> x \<ge> 0 \<Longrightarrow> x \<le> 1 \<Longrightarrow> x powr b \<le> x powr a"
|
|
414 |
using powr_mono[of "-b" "-a" "inverse x"] by (auto simp: powr_def ln_inverse ln_div divide_simps)
|
|
415 |
|
|
416 |
qualified lemma powr_left_bounds:
|
|
417 |
fixes f g :: "real \<Rightarrow> real"
|
|
418 |
shows "\<forall>x. f x > 0 \<longrightarrow> g x \<in> {l x..u x} \<longrightarrow> f x \<ge> 1 \<longrightarrow> f x powr g x \<in> {f x powr l x..f x powr u x}"
|
|
419 |
and "\<forall>x. f x > 0 \<longrightarrow> g x \<in> {l x..u x} \<longrightarrow> f x \<le> 1 \<longrightarrow> f x powr g x \<in> {f x powr u x..f x powr l x}"
|
|
420 |
by (auto intro: powr_mono powr_mono')
|
|
421 |
|
|
422 |
qualified lemma powr_nat_bounds_transfer_ge:
|
|
423 |
"\<forall>x. l1 x \<ge> 0 \<longrightarrow> f x \<ge> l1 x \<longrightarrow> f x powr g x \<ge> l x \<longrightarrow> powr_nat (f x) (g x) \<ge> l x"
|
|
424 |
by (auto simp: powr_nat_def)
|
|
425 |
|
|
426 |
qualified lemma powr_nat_bounds_transfer_le:
|
|
427 |
"\<forall>x. l1 x > 0 \<longrightarrow> f x \<ge> l1 x \<longrightarrow> f x powr g x \<le> u x \<longrightarrow> powr_nat (f x) (g x) \<le> u x"
|
|
428 |
"\<forall>x. l1 x \<ge> 0 \<longrightarrow> l2 x > 0 \<longrightarrow> f x \<ge> l1 x \<longrightarrow> g x \<ge> l2 x \<longrightarrow>
|
|
429 |
f x powr g x \<le> u x \<longrightarrow> powr_nat (f x) (g x) \<le> u x"
|
|
430 |
"\<forall>x. l1 x \<ge> 0 \<longrightarrow> u2 x < 0 \<longrightarrow> f x \<ge> l1 x \<longrightarrow> g x \<le> u2 x \<longrightarrow>
|
|
431 |
f x powr g x \<le> u x \<longrightarrow> powr_nat (f x) (g x) \<le> u x"
|
|
432 |
"\<forall>x. l1 x \<ge> 0 \<longrightarrow> f x \<ge> l1 x \<longrightarrow> f x powr g x \<le> u x \<longrightarrow> u x \<le> u' x \<longrightarrow> 1 \<le> u' x \<longrightarrow>
|
|
433 |
powr_nat (f x) (g x) \<le> u' x"
|
|
434 |
by (auto simp: powr_nat_def)
|
|
435 |
|
|
436 |
lemma abs_powr_nat_le: "abs (powr_nat x y) \<le> powr_nat (abs x) y"
|
|
437 |
by (simp add: powr_nat_def abs_mult)
|
|
438 |
|
|
439 |
qualified lemma powr_nat_bounds_ge_neg:
|
|
440 |
assumes "powr_nat (abs x) y \<le> u"
|
|
441 |
shows "powr_nat x y \<ge> -u" "powr_nat x y \<le> u"
|
|
442 |
proof -
|
|
443 |
have "abs (powr_nat x y) \<le> powr_nat (abs x) y"
|
|
444 |
by (rule abs_powr_nat_le)
|
|
445 |
also have "\<dots> \<le> u" using assms by auto
|
|
446 |
finally show "powr_nat x y \<ge> -u" "powr_nat x y \<le> u" by auto
|
|
447 |
qed
|
|
448 |
|
|
449 |
qualified lemma powr_nat_bounds_transfer_abs [eventuallized]:
|
|
450 |
"\<forall>x. powr_nat (abs (f x)) (g x) \<le> u x \<longrightarrow> powr_nat (f x) (g x) \<ge> -u x"
|
|
451 |
"\<forall>x. powr_nat (abs (f x)) (g x) \<le> u x \<longrightarrow> powr_nat (f x) (g x) \<le> u x"
|
|
452 |
using powr_nat_bounds_ge_neg by blast+
|
|
453 |
|
|
454 |
qualified lemma eventually_powr_const_nonneg:
|
|
455 |
"f \<equiv> f \<Longrightarrow> p \<equiv> p \<Longrightarrow> eventually (\<lambda>x. f x powr p \<ge> (0::real)) at_top"
|
|
456 |
by simp
|
|
457 |
|
|
458 |
qualified lemma eventually_powr_const_mono_nonneg:
|
|
459 |
assumes "p \<ge> (0 :: real)" "eventually (\<lambda>x. l x \<ge> 0) at_top" "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
460 |
"eventually (\<lambda>x. f x \<le> g x) at_top"
|
|
461 |
shows "eventually (\<lambda>x. f x powr p \<le> g x powr p) at_top"
|
|
462 |
using assms(2-4) by eventually_elim (auto simp: assms(1) intro!: powr_mono2)
|
|
463 |
|
|
464 |
qualified lemma eventually_powr_const_mono_nonpos:
|
|
465 |
assumes "p \<le> (0 :: real)" "eventually (\<lambda>x. l x > 0) at_top" "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
466 |
"eventually (\<lambda>x. f x \<le> g x) at_top"
|
|
467 |
shows "eventually (\<lambda>x. f x powr p \<ge> g x powr p) at_top"
|
|
468 |
using assms(2-4) by eventually_elim (auto simp: assms(1) intro!: powr_mono2')
|
|
469 |
|
|
470 |
|
|
471 |
qualified lemma eventually_power_mono:
|
|
472 |
assumes "eventually (\<lambda>x. 0 \<le> l x) at_top" "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
473 |
"eventually (\<lambda>x. f x \<le> g x) at_top" "n \<equiv> n"
|
|
474 |
shows "eventually (\<lambda>x. f x ^ n \<le> (g x :: real) ^ n) at_top"
|
|
475 |
using assms(1-3) by eventually_elim (auto intro: power_mono)
|
|
476 |
|
|
477 |
qualified lemma eventually_mono_power_odd:
|
|
478 |
assumes "odd n" "eventually (\<lambda>x. f x \<le> (g x :: real)) at_top"
|
|
479 |
shows "eventually (\<lambda>x. f x ^ n \<le> g x ^ n) at_top"
|
|
480 |
using assms(2) by eventually_elim (insert assms(1), auto intro: power_mono_odd)
|
|
481 |
|
|
482 |
|
|
483 |
qualified lemma eventually_lower_bound_power_even_nonpos:
|
|
484 |
assumes "even n" "eventually (\<lambda>x. u x \<le> (0::real)) at_top"
|
|
485 |
"eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
486 |
shows "eventually (\<lambda>x. u x ^ n \<le> f x ^ n) at_top"
|
|
487 |
using assms(2-) by eventually_elim (rule power_mono_even, auto simp: assms(1))
|
|
488 |
|
|
489 |
qualified lemma eventually_upper_bound_power_even_nonpos:
|
|
490 |
assumes "even n" "eventually (\<lambda>x. u x \<le> (0::real)) at_top"
|
|
491 |
"eventually (\<lambda>x. l x \<le> f x) at_top" "eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
492 |
shows "eventually (\<lambda>x. f x ^ n \<le> l x ^ n) at_top"
|
|
493 |
using assms(2-) by eventually_elim (rule power_mono_even, auto simp: assms(1))
|
|
494 |
|
|
495 |
qualified lemma eventually_lower_bound_power_even_indet:
|
|
496 |
assumes "even n" "f \<equiv> f"
|
|
497 |
shows "eventually (\<lambda>x. (0::real) \<le> f x ^ n) at_top"
|
|
498 |
using assms by (simp add: zero_le_even_power)
|
|
499 |
|
|
500 |
|
|
501 |
qualified lemma eventually_lower_bound_power_indet:
|
|
502 |
assumes "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
503 |
assumes "eventually (\<lambda>x. l' x \<le> l x ^ n) at_top" "eventually (\<lambda>x. l' x \<le> 0) at_top"
|
|
504 |
shows "eventually (\<lambda>x. l' x \<le> (f x ^ n :: real)) at_top"
|
|
505 |
using assms
|
|
506 |
proof eventually_elim
|
|
507 |
case (elim x)
|
|
508 |
thus ?case
|
|
509 |
using power_mono_odd[of n "l x" "f x"] zero_le_even_power[of n "f x"]
|
|
510 |
by (cases "even n") auto
|
|
511 |
qed
|
|
512 |
|
|
513 |
qualified lemma eventually_upper_bound_power_indet:
|
|
514 |
assumes "eventually (\<lambda>x. l x \<le> f x) at_top" "eventually (\<lambda>x. f x \<le> u x) at_top"
|
|
515 |
"eventually (\<lambda>x. u' x \<ge> -l x) at_top" "eventually (\<lambda>x. u' x \<ge> u x) at_top" "n \<equiv> n"
|
|
516 |
shows "eventually (\<lambda>x. f x ^ n \<le> (u' x ^ n :: real)) at_top"
|
|
517 |
using assms(1-4)
|
|
518 |
proof eventually_elim
|
|
519 |
case (elim x)
|
|
520 |
have "f x ^ n \<le> \<bar>f x ^ n\<bar>" by simp
|
|
521 |
also have "\<dots> = \<bar>f x\<bar> ^ n" by (simp add: power_abs)
|
|
522 |
also from elim have "\<dots> \<le> u' x ^ n" by (intro power_mono) auto
|
|
523 |
finally show ?case .
|
|
524 |
qed
|
|
525 |
|
|
526 |
qualified lemma expands_to_imp_exp_ln_eq:
|
|
527 |
assumes "(l expands_to L) bs" "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
528 |
"trimmed_pos L" "basis_wf bs"
|
|
529 |
shows "eventually (\<lambda>x. exp (ln (f x)) = f x) at_top"
|
|
530 |
proof -
|
|
531 |
from expands_to_imp_eventually_pos[of bs l L] assms
|
|
532 |
have "eventually (\<lambda>x. l x > 0) at_top" by simp
|
|
533 |
with assms(2) show ?thesis by eventually_elim simp
|
|
534 |
qed
|
|
535 |
|
|
536 |
qualified lemma expands_to_imp_ln_powr_eq:
|
|
537 |
assumes "(l expands_to L) bs" "eventually (\<lambda>x. l x \<le> f x) at_top"
|
|
538 |
"trimmed_pos L" "basis_wf bs"
|
|
539 |
shows "eventually (\<lambda>x. ln (f x powr g x) = ln (f x) * g x) at_top"
|
|
540 |
proof -
|
|
541 |
from expands_to_imp_eventually_pos[of bs l L] assms
|
|
542 |
have "eventually (\<lambda>x. l x > 0) at_top" by simp
|
|
543 |
with assms(2) show ?thesis by eventually_elim (simp add: powr_def)
|
|
544 |
qed
|
|
545 |
|
|
546 |
qualified lemma inverse_bounds_real:
|
|
547 |
fixes f l u :: "real \<Rightarrow> real"
|
|
548 |
shows "\<forall>x. l x > 0 \<longrightarrow> l x \<le> f x \<longrightarrow> f x \<le> u x \<longrightarrow> inverse (f x) \<in> {inverse (u x)..inverse (l x)}"
|
|
549 |
and "\<forall>x. u x < 0 \<longrightarrow> l x \<le> f x \<longrightarrow> f x \<le> u x \<longrightarrow> inverse (f x) \<in> {inverse (u x)..inverse (l x)}"
|
|
550 |
by (auto simp: field_simps)
|
|
551 |
|
|
552 |
qualified lemma pos_imp_inverse_pos: "\<forall>x::real. f x > 0 \<longrightarrow> inverse (f x) > (0::real)"
|
|
553 |
and neg_imp_inverse_neg: "\<forall>x::real. f x < 0 \<longrightarrow> inverse (f x) < (0::real)"
|
|
554 |
by auto
|
|
555 |
|
|
556 |
qualified lemma transfer_divide_bounds:
|
|
557 |
fixes f g :: "real \<Rightarrow> real"
|
|
558 |
shows "Trueprop (eventually (\<lambda>x. f x \<in> {h x * inverse (i x)..j x}) at_top) \<equiv>
|
|
559 |
Trueprop (eventually (\<lambda>x. f x \<in> {h x / i x..j x}) at_top)"
|
|
560 |
and "Trueprop (eventually (\<lambda>x. f x \<in> {j x..h x * inverse (i x)}) at_top) \<equiv>
|
|
561 |
Trueprop (eventually (\<lambda>x. f x \<in> {j x..h x / i x}) at_top)"
|
|
562 |
and "Trueprop (eventually (\<lambda>x. f x * inverse (g x) \<in> A x) at_top) \<equiv>
|
|
563 |
Trueprop (eventually (\<lambda>x. f x / g x \<in> A x) at_top)"
|
|
564 |
and "Trueprop (((\<lambda>x. f x * inverse (g x)) expands_to F) bs) \<equiv>
|
|
565 |
Trueprop (((\<lambda>x. f x / g x) expands_to F) bs)"
|
|
566 |
by (simp_all add: field_simps)
|
|
567 |
|
|
568 |
qualified lemma eventually_le_self: "eventually (\<lambda>x::real. f x \<le> (f x :: real)) at_top"
|
|
569 |
by simp
|
|
570 |
|
|
571 |
qualified lemma max_eventually_eq:
|
|
572 |
"eventually (\<lambda>x. f x = (g x :: real)) at_top \<Longrightarrow> eventually (\<lambda>x. max (f x) (g x) = f x) at_top"
|
|
573 |
by (erule eventually_mono) simp
|
|
574 |
|
|
575 |
qualified lemma min_eventually_eq:
|
|
576 |
"eventually (\<lambda>x. f x = (g x :: real)) at_top \<Longrightarrow> eventually (\<lambda>x. min (f x) (g x) = f x) at_top"
|
|
577 |
by (erule eventually_mono) simp
|
|
578 |
|
|
579 |
qualified lemma
|
|
580 |
assumes "eventually (\<lambda>x. f x = (g x :: 'a :: preorder)) F"
|
|
581 |
shows eventually_eq_imp_ge: "eventually (\<lambda>x. f x \<ge> g x) F"
|
|
582 |
and eventually_eq_imp_le: "eventually (\<lambda>x. f x \<le> g x) F"
|
|
583 |
by (use assms in eventually_elim; simp)+
|
|
584 |
|
|
585 |
qualified lemma eventually_less_imp_le:
|
|
586 |
assumes "eventually (\<lambda>x. f x < (g x :: 'a :: order)) F"
|
|
587 |
shows "eventually (\<lambda>x. f x \<le> g x) F"
|
|
588 |
using assms by eventually_elim auto
|
|
589 |
|
|
590 |
qualified lemma
|
|
591 |
fixes f :: "real \<Rightarrow> real"
|
|
592 |
shows eventually_abs_ge_0: "eventually (\<lambda>x. abs (f x) \<ge> 0) at_top"
|
|
593 |
and nonneg_abs_bounds: "\<forall>x. l x \<ge> 0 \<longrightarrow> f x \<in> {l x..u x} \<longrightarrow> abs (f x) \<in> {l x..u x}"
|
|
594 |
and nonpos_abs_bounds: "\<forall>x. u x \<le> 0 \<longrightarrow> f x \<in> {l x..u x} \<longrightarrow> abs (f x) \<in> {-u x..-l x}"
|
|
595 |
and indet_abs_bounds:
|
|
596 |
"\<forall>x. l x \<le> 0 \<longrightarrow> u x \<ge> 0 \<longrightarrow> f x \<in> {l x..u x} \<longrightarrow> -l x \<le> h x \<longrightarrow> u x \<le> h x \<longrightarrow>
|
|
597 |
abs (f x) \<in> {0..h x}"
|
|
598 |
by auto
|
|
599 |
|
|
600 |
qualified lemma eventually_le_abs_nonneg:
|
|
601 |
"eventually (\<lambda>x. l x \<ge> 0) at_top \<Longrightarrow> eventually (\<lambda>x. f x \<ge> l x) at_top \<Longrightarrow>
|
|
602 |
eventually (\<lambda>x::real. l x \<le> (\<bar>f x\<bar> :: real)) at_top"
|
|
603 |
by (auto elim: eventually_elim2)
|
|
604 |
|
|
605 |
qualified lemma eventually_le_abs_nonpos:
|
|
606 |
"eventually (\<lambda>x. u x \<le> 0) at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> u x) at_top \<Longrightarrow>
|
|
607 |
eventually (\<lambda>x::real. -u x \<le> (\<bar>f x\<bar> :: real)) at_top"
|
|
608 |
by (auto elim: eventually_elim2)
|
|
609 |
|
|
610 |
qualified lemma
|
|
611 |
fixes f g h :: "'a \<Rightarrow> 'b :: order"
|
|
612 |
shows eventually_le_less:"eventually (\<lambda>x. f x \<le> g x) F \<Longrightarrow> eventually (\<lambda>x. g x < h x) F \<Longrightarrow>
|
|
613 |
eventually (\<lambda>x. f x < h x) F"
|
|
614 |
and eventually_less_le:"eventually (\<lambda>x. f x < g x) F \<Longrightarrow> eventually (\<lambda>x. g x \<le> h x) F \<Longrightarrow>
|
|
615 |
eventually (\<lambda>x. f x < h x) F"
|
|
616 |
by (erule (1) eventually_elim2; erule (1) order.trans le_less_trans less_le_trans)+
|
|
617 |
|
|
618 |
qualified lemma eventually_pos_imp_nz [eventuallized]: "\<forall>x. f x > 0 \<longrightarrow> f x \<noteq> (0 :: 'a :: linordered_semiring)"
|
|
619 |
and eventually_neg_imp_nz [eventuallized]: "\<forall>x. f x < 0 \<longrightarrow> f x \<noteq> 0"
|
|
620 |
by auto
|
|
621 |
|
|
622 |
qualified lemma
|
|
623 |
fixes f g l1 l2 u1 :: "'a \<Rightarrow> real"
|
|
624 |
assumes "eventually (\<lambda>x. l1 x \<le> f x) F"
|
|
625 |
assumes "eventually (\<lambda>x. f x \<le> u1 x) F"
|
|
626 |
assumes "eventually (\<lambda>x. abs (g x) \<ge> l2 x) F"
|
|
627 |
assumes "eventually (\<lambda>x. l2 x \<ge> 0) F"
|
|
628 |
shows bounds_smallo_imp_smallo: "l1 \<in> o[F](l2) \<Longrightarrow> u1 \<in> o[F](l2) \<Longrightarrow> f \<in> o[F](g)"
|
|
629 |
and bounds_bigo_imp_bigo: "l1 \<in> O[F](l2) \<Longrightarrow> u1 \<in> O[F](l2) \<Longrightarrow> f \<in> O[F](g)"
|
|
630 |
proof -
|
|
631 |
assume *: "l1 \<in> o[F](l2)" "u1 \<in> o[F](l2)"
|
|
632 |
show "f \<in> o[F](g)"
|
|
633 |
proof (rule landau_o.smallI, goal_cases)
|
|
634 |
case (1 c)
|
|
635 |
from *[THEN landau_o.smallD[OF _ 1]] and assms show ?case
|
|
636 |
proof eventually_elim
|
|
637 |
case (elim x)
|
|
638 |
from elim have "norm (f x) \<le> c * l2 x" by simp
|
|
639 |
also have "\<dots> \<le> c * norm (g x)" using 1 elim by (intro mult_left_mono) auto
|
|
640 |
finally show ?case .
|
|
641 |
qed
|
|
642 |
qed
|
|
643 |
next
|
|
644 |
assume *: "l1 \<in> O[F](l2)" "u1 \<in> O[F](l2)"
|
|
645 |
then obtain C1 C2 where **: "C1 > 0" "C2 > 0" "eventually (\<lambda>x. norm (l1 x) \<le> C1 * norm (l2 x)) F"
|
|
646 |
"eventually (\<lambda>x. norm (u1 x) \<le> C2 * norm (l2 x)) F" by (auto elim!: landau_o.bigE)
|
|
647 |
from this(3,4) and assms have "eventually (\<lambda>x. norm (f x) \<le> max C1 C2 * norm (g x)) F"
|
|
648 |
proof eventually_elim
|
|
649 |
case (elim x)
|
|
650 |
from elim have "norm (f x) \<le> max C1 C2 * l2 x" by (subst max_mult_distrib_right) auto
|
|
651 |
also have "\<dots> \<le> max C1 C2 * norm (g x)" using elim ** by (intro mult_left_mono) auto
|
|
652 |
finally show ?case .
|
|
653 |
qed
|
|
654 |
thus "f \<in> O[F](g)" by (rule bigoI)
|
|
655 |
qed
|
|
656 |
|
|
657 |
qualified lemma real_root_mono: "mono (root n)"
|
|
658 |
by (cases n) (auto simp: mono_def)
|
|
659 |
|
|
660 |
(* TODO: support for rintmod *)
|
|
661 |
|
|
662 |
ML_file \<open>multiseries_expansion_bounds.ML\<close>
|
|
663 |
|
|
664 |
method_setup real_asymp = \<open>
|
|
665 |
let
|
|
666 |
type flags = {verbose : bool, fallback : bool}
|
|
667 |
fun join_flags
|
|
668 |
{verbose = verbose1, fallback = fallback1}
|
|
669 |
{verbose = verbose2, fallback = fallback2} =
|
|
670 |
{verbose = verbose1 orelse verbose2, fallback = fallback1 orelse fallback2}
|
|
671 |
val parse_flag =
|
|
672 |
(Args.$$$ "verbose" >> K {verbose = true, fallback = false}) ||
|
|
673 |
(Args.$$$ "fallback" >> K {verbose = false, fallback = true})
|
|
674 |
val default_flags = {verbose = false, fallback = false}
|
|
675 |
val parse_flags =
|
|
676 |
Scan.optional (Args.parens (Parse.list1 parse_flag)) [] >>
|
|
677 |
(fn xs => fold join_flags xs default_flags)
|
|
678 |
in
|
|
679 |
Scan.lift parse_flags --| Method.sections Simplifier.simp_modifiers >>
|
|
680 |
(fn flags => SIMPLE_METHOD' o
|
|
681 |
(if #fallback flags then Real_Asymp_Basic.tac else Real_Asymp_Bounds.tac) (#verbose flags))
|
|
682 |
end
|
|
683 |
\<close> "Semi-automatic decision procedure for asymptotics of exp-log functions"
|
|
684 |
|
|
685 |
end
|
|
686 |
|
|
687 |
lemma "filterlim (\<lambda>x::real. sin x / x) (nhds 0) at_top"
|
|
688 |
by real_asymp
|
|
689 |
|
|
690 |
lemma "(\<lambda>x::real. exp (sin x)) \<in> O(\<lambda>_. 1)"
|
|
691 |
by real_asymp
|
|
692 |
|
|
693 |
lemma "(\<lambda>x::real. exp (real_of_int (floor x))) \<in> \<Theta>(\<lambda>x. exp x)"
|
|
694 |
by real_asymp
|
|
695 |
|
|
696 |
lemma "(\<lambda>n::nat. n div 2 * ln (n div 2)) \<in> \<Theta>(\<lambda>n::nat. n * ln n)"
|
|
697 |
by real_asymp
|
|
698 |
|
|
699 |
end
|