7998
|
1 |
(*
|
|
2 |
Factorisation within a factorial domain
|
|
3 |
$Id$
|
|
4 |
Author: Clemens Ballarin, started 25 November 1997
|
|
5 |
*)
|
|
6 |
|
|
7 |
open Factor;
|
|
8 |
|
|
9 |
goalw Ring.thy [assoc_def] "!! c::'a::factorial. \
|
|
10 |
\ [| irred c; irred a; irred b; c dvd (a*b) |] ==> c assoc a | c assoc b";
|
|
11 |
by (ftac factorial_prime 1);
|
|
12 |
by (rewrite_goals_tac [irred_def, prime_def]);
|
|
13 |
by (Blast_tac 1);
|
|
14 |
qed "irred_dvd_lemma";
|
|
15 |
|
|
16 |
goalw Ring.thy [assoc_def] "!! c::'a::factorial. \
|
|
17 |
\ [| irred c; a dvd <1> |] ==> \
|
|
18 |
\ (ALL b : set factors. irred b) & c dvd foldr op* factors a --> \
|
|
19 |
\ (EX d. c assoc d & d : set factors)";
|
|
20 |
by (induct_tac "factors" 1);
|
|
21 |
(* Base case: c dvd a contradicts irred c *)
|
|
22 |
by (full_simp_tac (simpset() addsimps [irred_def]) 1);
|
|
23 |
by (blast_tac (claset() addIs [dvd_trans_ring]) 1);
|
|
24 |
(* Induction step *)
|
|
25 |
by (ftac factorial_prime 1);
|
|
26 |
by (full_simp_tac (simpset() addsimps [irred_def, prime_def]) 1);
|
|
27 |
by (Blast_tac 1);
|
|
28 |
qed "irred_dvd_list_lemma";
|
|
29 |
|
|
30 |
goal Ring.thy "!! c::'a::factorial. \
|
|
31 |
\ [| irred c; ALL b : set factors. irred b; a dvd <1>; \
|
|
32 |
\ c dvd foldr op* factors a |] ==> \
|
|
33 |
\ EX d. c assoc d & d : set factors";
|
|
34 |
by (rtac (irred_dvd_list_lemma RS mp) 1);
|
|
35 |
by (Auto_tac);
|
|
36 |
qed "irred_dvd_list";
|
|
37 |
|
|
38 |
Goalw [Factorisation_def] "!! c::'a::factorial. \
|
|
39 |
\ [| irred c; Factorisation x factors u; c dvd x |] ==> \
|
|
40 |
\ EX d. c assoc d & d : set factors";
|
|
41 |
by (rtac (irred_dvd_list_lemma RS mp) 1);
|
|
42 |
by (Auto_tac);
|
|
43 |
qed "Factorisation_dvd";
|
|
44 |
|
|
45 |
Goalw [Factorisation_def] "!! c::'a::factorial. \
|
|
46 |
\ [| Factorisation x factors u; a : set factors |] ==> irred a";
|
|
47 |
by (Blast_tac 1);
|
|
48 |
qed "Factorisation_irred";
|
|
49 |
|