src/HOL/Integ/IntDiv.ML
author wenzelm
Mon, 29 Nov 1999 15:52:49 +0100
changeset 8039 a901bafe4578
parent 7549 1dcf2a7a2b5b
child 8257 fe9bf28e8a58
permissions -rw-r--r--
Goal: tuned pris;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     1
(*  Title:      HOL/IntDiv.ML
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     2
    ID:         $Id$
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     4
    Copyright   1999  University of Cambridge
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     5
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
     6
The division operators div, mod and the divides relation "dvd"
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
     7
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
     8
Here is the division algorithm in ML:
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
     9
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    10
    fun posDivAlg (a,b) =
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    11
      if a<b then (0,a)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    12
      else let val (q,r) = posDivAlg(a, 2*b)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    13
	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    14
	   end;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    15
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    16
    fun negDivAlg (a,b) =
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    17
      if 0<=a+b then (~1,a+b)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    18
      else let val (q,r) = negDivAlg(a, 2*b)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    19
	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    20
	   end;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    21
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    22
    fun negateSnd (q,r:int) = (q,~r);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    23
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    24
    fun divAlg (a,b) = if 0<=a then 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    25
			  if b>0 then posDivAlg (a,b) 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    26
			   else if a=0 then (0,0)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    27
				else negateSnd (negDivAlg (~a,~b))
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    28
		       else 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    29
			  if 0<b then negDivAlg (a,b)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
    30
			  else        negateSnd (posDivAlg (~a,~b));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    31
*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    32
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    33
Addsimps [zless_nat_conj];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    34
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    35
(*** Uniqueness and monotonicity of quotients and remainders ***)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    36
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
    37
Goal "[| b*q' + r'  <= b*q + r;  #0 <= r';  #0 < b;  r < b |] \
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    38
\     ==> q' <= (q::int)";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    39
by (subgoal_tac "r' + b * (q'-q) <= r" 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    40
by (simp_tac (simpset() addsimps zcompare_rls@[zdiff_zmult_distrib2]) 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    41
by (subgoal_tac "#0 < b * (#1 + q - q')" 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    42
by (etac order_le_less_trans 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    43
by (full_simp_tac (simpset() addsimps zcompare_rls@[zdiff_zmult_distrib2,
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    44
						    zadd_zmult_distrib2]) 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    45
by (subgoal_tac "b * q' < b * (#1 + q)" 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    46
by (full_simp_tac (simpset() addsimps zcompare_rls@[zdiff_zmult_distrib2,
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    47
						    zadd_zmult_distrib2]) 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    48
by (Asm_full_simp_tac 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    49
qed "unique_quotient_lemma";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    50
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
    51
Goal "[| b*q' + r' <= b*q + r;  r <= #0;  b < #0;  b < r' |] \
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    52
\     ==> q <= (q'::int)";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    53
by (res_inst_tac [("b", "-b"), ("r", "-r'"), ("r'", "-r")] 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    54
    unique_quotient_lemma 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    55
by (auto_tac (claset(), 
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
    56
	      simpset() addsimps zcompare_rls@
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
    57
                                 [zmult_zminus, zmult_zminus_right])); 
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    58
qed "unique_quotient_lemma_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    59
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    60
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    61
Goal "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  b ~= #0 |] \
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    62
\     ==> q = q'";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    63
by (asm_full_simp_tac 
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
    64
    (simpset() addsimps split_ifs@
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
    65
                        [quorem_def, linorder_neq_iff]) 1);
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    66
by Safe_tac; 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    67
by (ALLGOALS Asm_full_simp_tac);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    68
by (REPEAT 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    69
    (blast_tac (claset() addIs [order_antisym]
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    70
			 addDs [order_eq_refl RS unique_quotient_lemma, 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    71
				order_eq_refl RS unique_quotient_lemma_neg,
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    72
				sym]) 1));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    73
qed "unique_quotient";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    74
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    75
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    76
Goal "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  b ~= #0 |] \
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    77
\     ==> r = r'";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    78
by (subgoal_tac "q = q'" 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    79
by (blast_tac (claset() addIs [unique_quotient]) 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    80
by (asm_full_simp_tac (simpset() addsimps [quorem_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    81
qed "unique_remainder";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    82
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    83
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    84
(*** Correctness of posDivAlg, the division algorithm for a>=0 and b>0 ***)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    85
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    86
(*Unfold all "let"s involving constants*)
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    87
Addsimps [read_instantiate_sg (sign_of IntDiv.thy)
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    88
	          [("s", "number_of ?v")] Let_def];
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    89
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    90
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    91
Goal "adjust a b (q,r) = (let diff = r-b in \
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    92
\                         if #0 <= diff then (#2*q + #1, diff)  \
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    93
\                                       else (#2*q, r))";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
    94
by (simp_tac (simpset() addsimps [Let_def,adjust_def]) 1);
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    95
qed "adjust_eq";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    96
Addsimps [adjust_eq];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    97
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    98
(*Proving posDivAlg's termination condition*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
    99
val [tc] = posDivAlg.tcs;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   100
goalw_cterm [] (cterm_of (sign_of thy) (HOLogic.mk_Trueprop tc));
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   101
by (auto_tac (claset(), simpset() addsimps [zmult_2]));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   102
val lemma = result();
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   103
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   104
(* removing the termination condition from the generated theorems *)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   105
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   106
bind_thm ("posDivAlg_raw_eqn", lemma RS hd posDivAlg.rules);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   107
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   108
(**use with simproc to avoid re-proving the premise*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   109
Goal "#0 < b ==> \
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   110
\     posDivAlg (a,b) =      \
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   111
\      (if a<b then (#0,a) else adjust a b (posDivAlg(a, #2*b)))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   112
by (rtac (posDivAlg_raw_eqn RS trans) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   113
by (Asm_simp_tac 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   114
qed "posDivAlg_eqn";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   115
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   116
val posDivAlg_induct = lemma RS posDivAlg.induct;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   117
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   118
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   119
(*Correctness of posDivAlg: it computes quotients correctly*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   120
Goal "#0 <= a --> #0 < b --> quorem ((a, b), posDivAlg (a, b))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   121
by (res_inst_tac [("u", "a"), ("v", "b")] posDivAlg_induct 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   122
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   123
by (ALLGOALS 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   124
    (asm_full_simp_tac (simpset() addsimps [quorem_def,
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   125
					    pos_imp_zmult_pos_iff])));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   126
(*base case: a<b*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   127
by (asm_full_simp_tac (simpset() addsimps [posDivAlg_eqn]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   128
(*main argument*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   129
by (stac posDivAlg_eqn 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   130
by (ALLGOALS Asm_simp_tac);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   131
by (etac splitE 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   132
by (auto_tac (claset(), 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   133
	      simpset() addsimps zmult_ac@[zadd_zmult_distrib2, Let_def]));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   134
qed_spec_mp "posDivAlg_correct";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   135
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   136
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   137
(*** Correctness of negDivAlg, the division algorithm for a<0 and b>0 ***)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   138
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   139
(*Proving negDivAlg's termination condition*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   140
val [tc] = negDivAlg.tcs;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   141
goalw_cterm [] (cterm_of (sign_of thy) (HOLogic.mk_Trueprop tc));
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   142
by (auto_tac (claset(), simpset() addsimps [zmult_2]));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   143
val lemma = result();
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   144
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   145
(* removing the termination condition from the generated theorems *)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   146
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   147
bind_thm ("negDivAlg_raw_eqn", lemma RS hd negDivAlg.rules);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   148
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   149
(**use with simproc to avoid re-proving the premise*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   150
Goal "#0 < b ==> \
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   151
\     negDivAlg (a,b) =      \
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   152
\      (if #0<=a+b then (#-1,a+b) else adjust a b (negDivAlg(a, #2*b)))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   153
by (rtac (negDivAlg_raw_eqn RS trans) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   154
by (Asm_simp_tac 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   155
qed "negDivAlg_eqn";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   156
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   157
val negDivAlg_induct = lemma RS negDivAlg.induct;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   158
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   159
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   160
(*Correctness of negDivAlg: it computes quotients correctly
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   161
  It doesn't work if a=0 because the 0/b=0 rather than -1*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   162
Goal "a < #0 --> #0 < b --> quorem ((a, b), negDivAlg (a, b))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   163
by (res_inst_tac [("u", "a"), ("v", "b")] negDivAlg_induct 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   164
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   165
by (ALLGOALS 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   166
    (asm_full_simp_tac (simpset() addsimps [quorem_def,
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   167
					    pos_imp_zmult_pos_iff])));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   168
(*base case: 0<=a+b*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   169
by (asm_full_simp_tac (simpset() addsimps [negDivAlg_eqn]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   170
(*main argument*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   171
by (stac negDivAlg_eqn 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   172
by (ALLGOALS Asm_simp_tac);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   173
by (etac splitE 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   174
by (auto_tac (claset(), 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   175
	      simpset() addsimps zmult_ac@[zadd_zmult_distrib2, Let_def]));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   176
qed_spec_mp "negDivAlg_correct";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   177
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   178
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   179
(*** Existence shown by proving the division algorithm to be correct ***)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   180
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   181
(*the case a=0*)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   182
Goal "b ~= #0 ==> quorem ((#0,b), (#0,#0))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   183
by (auto_tac (claset(), 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   184
	      simpset() addsimps [quorem_def, linorder_neq_iff]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   185
qed "quorem_0";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   186
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   187
Goal "posDivAlg (#0, b) = (#0, #0)";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   188
by (stac posDivAlg_raw_eqn 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   189
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   190
qed "posDivAlg_0";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   191
Addsimps [posDivAlg_0];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   192
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   193
Goal "negDivAlg (#-1, b) = (#-1, b-#1)";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   194
by (stac negDivAlg_raw_eqn 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   195
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   196
qed "negDivAlg_minus1";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   197
Addsimps [negDivAlg_minus1];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   198
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   199
Goalw [negateSnd_def] "negateSnd(q,r) = (q,-r)";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   200
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   201
qed "negateSnd_eq";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   202
Addsimps [negateSnd_eq];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   203
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   204
Goal "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)";
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   205
by (auto_tac (claset(),
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   206
	      simpset() addsimps split_ifs@[zmult_zminus, quorem_def]));
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   207
qed "quorem_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   208
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   209
Goal "b ~= #0 ==> quorem ((a,b), divAlg(a,b))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   210
by (auto_tac (claset(), 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   211
	      simpset() addsimps [quorem_0, divAlg_def]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   212
by (REPEAT_FIRST (resolve_tac [quorem_neg, posDivAlg_correct,
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   213
			       negDivAlg_correct]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   214
by (auto_tac (claset(), 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   215
	      simpset() addsimps [quorem_def, linorder_neq_iff]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   216
qed "divAlg_correct";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   217
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   218
(** Aribtrary definitions for division by zero.  Useful to simplify 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   219
    certain equations **)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   220
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   221
Goal "a div (#0::int) = #0";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   222
by (simp_tac (simpset() addsimps [div_def, divAlg_def, posDivAlg_raw_eqn]) 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   223
qed "DIVISION_BY_ZERO_ZDIV";  (*NOT for adding to default simpset*)
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   224
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   225
Goal "a mod (#0::int) = a";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   226
by (simp_tac (simpset() addsimps [mod_def, divAlg_def, posDivAlg_raw_eqn]) 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   227
qed "DIVISION_BY_ZERO_ZMOD";  (*NOT for adding to default simpset*)
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   228
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   229
fun zdiv_undefined_case_tac s i =
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   230
  case_tac s i THEN 
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   231
  asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_ZDIV, 
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   232
				    DIVISION_BY_ZERO_ZMOD]) i;
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   233
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   234
(** Basic laws about division and remainder **)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   235
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   236
Goal "(a::int) = b * (a div b) + (a mod b)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   237
by (zdiv_undefined_case_tac "b = #0" 1);
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   238
by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   239
by (auto_tac (claset(), 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   240
	      simpset() addsimps [quorem_def, div_def, mod_def]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   241
qed "zmod_zdiv_equality";  
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   242
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   243
Goal "(#0::int) < b ==> #0 <= a mod b & a mod b < b";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   244
by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   245
by (auto_tac (claset(), 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   246
	      simpset() addsimps [quorem_def, mod_def]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   247
bind_thm ("pos_mod_sign", result() RS conjunct1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   248
bind_thm ("pos_mod_bound", result() RS conjunct2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   249
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   250
Goal "b < (#0::int) ==> a mod b <= #0 & b < a mod b";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   251
by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   252
by (auto_tac (claset(), 
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   253
	      simpset() addsimps [quorem_def, div_def, mod_def]));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   254
bind_thm ("neg_mod_sign", result() RS conjunct1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   255
bind_thm ("neg_mod_bound", result() RS conjunct2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   256
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   257
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   258
(** proving general properties of div and mod **)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   259
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   260
Goal "b ~= #0 ==> quorem ((a, b), (a div b, a mod b))";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   261
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   262
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   263
    (claset(),
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   264
     simpset() addsimps [quorem_def, linorder_neq_iff, 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   265
			 pos_mod_sign,pos_mod_bound,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   266
			 neg_mod_sign, neg_mod_bound]));
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   267
qed "quorem_div_mod";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   268
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   269
Goal "[| quorem((a,b),(q,r));  b ~= #0 |] ==> a div b = q";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   270
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_quotient]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   271
qed "quorem_div";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   272
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   273
Goal "[| quorem((a,b),(q,r));  b ~= #0 |] ==> a mod b = r";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   274
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_remainder]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   275
qed "quorem_mod";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   276
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   277
Goal "[| (#0::int) <= a;  a < b |] ==> a div b = #0";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   278
by (rtac quorem_div 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   279
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   280
qed "div_pos_pos_trivial";
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   281
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   282
Goal "[| a <= (#0::int);  b < a |] ==> a div b = #0";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   283
by (rtac quorem_div 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   284
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   285
qed "div_neg_neg_trivial";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   286
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   287
Goal "[| (#0::int) < a;  a+b <= #0 |] ==> a div b = #-1";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   288
by (rtac quorem_div 1);
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   289
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   290
qed "div_pos_neg_trivial";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   291
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   292
(*There is no div_neg_pos_trivial because  #0 div b = #0 would supersede it*)
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   293
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   294
Goal "[| (#0::int) <= a;  a < b |] ==> a mod b = a";
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   295
by (res_inst_tac [("q","#0")] quorem_mod 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   296
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   297
qed "mod_pos_pos_trivial";
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   298
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   299
Goal "[| a <= (#0::int);  b < a |] ==> a mod b = a";
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   300
by (res_inst_tac [("q","#0")] quorem_mod 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   301
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   302
qed "mod_neg_neg_trivial";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   303
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   304
Goal "[| (#0::int) < a;  a+b <= #0 |] ==> a mod b = a+b";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   305
by (res_inst_tac [("q","#-1")] quorem_mod 1);
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   306
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   307
qed "mod_pos_neg_trivial";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   308
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   309
(*There is no mod_neg_pos_trivial...*)
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   310
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   311
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   312
(*Simpler laws such as -a div b = -(a div b) FAIL*)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   313
Goal "(-a) div (-b) = a div (b::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   314
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   315
by (stac ((simplify(simpset()) (quorem_div_mod RS quorem_neg)) 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   316
	  RS quorem_div) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   317
by Auto_tac;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   318
qed "zdiv_zminus_zminus";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   319
Addsimps [zdiv_zminus_zminus];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   320
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   321
(*Simpler laws such as -a mod b = -(a mod b) FAIL*)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   322
Goal "(-a) mod (-b) = - (a mod (b::int))";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   323
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   324
by (stac ((simplify(simpset()) (quorem_div_mod RS quorem_neg)) 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   325
	  RS quorem_mod) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   326
by Auto_tac;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   327
qed "zmod_zminus_zminus";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   328
Addsimps [zmod_zminus_zminus];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   329
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   330
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   331
(*** division of a number by itself ***)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   332
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   333
Goal "[| (#0::int) < a; a = r + a*q; r < a |] ==> #1 <= q";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   334
by (subgoal_tac "#0 < a*q" 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   335
by (arith_tac 2);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   336
by (asm_full_simp_tac (simpset() addsimps [pos_imp_zmult_pos_iff]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   337
val lemma1 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   338
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   339
Goal "[| (#0::int) < a; a = r + a*q; #0 <= r |] ==> q <= #1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   340
by (subgoal_tac "#0 <= a*(#1-q)" 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   341
by (asm_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 2);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   342
by (asm_full_simp_tac (simpset() addsimps [pos_imp_zmult_nonneg_iff]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   343
val lemma2 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   344
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   345
Goal "[| quorem((a,a),(q,r));  a ~= (#0::int) |] ==> q = #1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   346
by (asm_full_simp_tac 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   347
    (simpset() addsimps split_ifs@[quorem_def, linorder_neq_iff]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   348
by (rtac order_antisym 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   349
by Safe_tac;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   350
by Auto_tac;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   351
by (res_inst_tac [("a", "-a"),("r", "-r")] lemma1 3);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   352
by (res_inst_tac [("a", "-a"),("r", "-r")] lemma2 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   353
by (REPEAT (force_tac  (claset() addIs [lemma1,lemma2], 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   354
	      simpset() addsimps [zadd_commute, zmult_zminus]) 1));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   355
qed "self_quotient";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   356
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   357
Goal "[| quorem((a,a),(q,r));  a ~= (#0::int) |] ==> r = #0";
7499
23e090051cb8 isatool expandshort;
wenzelm
parents: 7127
diff changeset
   358
by (ftac self_quotient 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   359
by (assume_tac 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   360
by (asm_full_simp_tac (simpset() addsimps [quorem_def]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   361
qed "self_remainder";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   362
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   363
Goal "a ~= #0 ==> a div a = (#1::int)";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   364
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS self_quotient]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   365
qed "zdiv_self";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   366
Addsimps [zdiv_self];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   367
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   368
(*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   369
Goal "a mod a = (#0::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   370
by (zdiv_undefined_case_tac "a = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   371
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS self_remainder]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   372
qed "zmod_self";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   373
Addsimps [zmod_self];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   374
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   375
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   376
(*** Computation of division and remainder ***)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   377
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   378
Goal "(#0::int) div b = #0";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   379
by (simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   380
qed "zdiv_zero";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   381
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   382
Goal "(#0::int) < b ==> #-1 div b = #-1";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   383
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   384
qed "div_eq_minus1";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   385
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   386
Goal "(#0::int) mod b = #0";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   387
by (simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   388
qed "zmod_zero";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   389
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   390
Addsimps [zdiv_zero, zmod_zero];
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   391
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   392
Goal "(#0::int) < b ==> #-1 div b = #-1";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   393
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   394
qed "zdiv_minus1";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   395
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   396
Goal "(#0::int) < b ==> #-1 mod b = b-#1";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   397
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   398
qed "zmod_minus1";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   399
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   400
(** a positive, b positive **)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   401
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   402
Goal "[| #0 < a;  #0 <= b |] ==> a div b = fst (posDivAlg(a,b))";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   403
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   404
qed "div_pos_pos";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   405
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   406
Goal "[| #0 < a;  #0 <= b |] ==> a mod b = snd (posDivAlg(a,b))";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   407
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   408
qed "mod_pos_pos";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   409
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   410
(** a negative, b positive **)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   411
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   412
Goal "[| a < #0;  #0 < b |] ==> a div b = fst (negDivAlg(a,b))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   413
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   414
qed "div_neg_pos";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   415
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   416
Goal "[| a < #0;  #0 < b |] ==> a mod b = snd (negDivAlg(a,b))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   417
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   418
qed "mod_neg_pos";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   419
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   420
(** a positive, b negative **)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   421
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   422
Goal "[| #0 < a;  b < #0 |] ==> a div b = fst (negateSnd(negDivAlg(-a,-b)))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   423
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   424
qed "div_pos_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   425
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   426
Goal "[| #0 < a;  b < #0 |] ==> a mod b = snd (negateSnd(negDivAlg(-a,-b)))";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   427
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   428
qed "mod_pos_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   429
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   430
(** a negative, b negative **)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   431
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   432
Goal "[| a < #0;  b <= #0 |] ==> a div b = fst (negateSnd(posDivAlg(-a,-b)))";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   433
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   434
qed "div_neg_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   435
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   436
Goal "[| a < #0;  b <= #0 |] ==> a mod b = snd (negateSnd(posDivAlg(-a,-b)))";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   437
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   438
qed "mod_neg_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   439
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   440
Addsimps (map (read_instantiate_sg (sign_of IntDiv.thy)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   441
	       [("a", "number_of ?v"), ("b", "number_of ?w")])
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   442
	  [div_pos_pos, div_neg_pos, div_pos_neg, div_neg_neg,
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   443
	   mod_pos_pos, mod_neg_pos, mod_pos_neg, mod_neg_neg,
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   444
	   posDivAlg_eqn, negDivAlg_eqn]);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   445
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   446
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   447
(** Special-case simplification **)
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   448
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   449
Goal "a mod (#1::int) = #0";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   450
by (cut_inst_tac [("a","a"),("b","#1")] pos_mod_sign 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   451
by (cut_inst_tac [("a","a"),("b","#1")] pos_mod_bound 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   452
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   453
qed "zmod_1";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   454
Addsimps [zmod_1];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   455
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   456
Goal "a div (#1::int) = a";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   457
by (cut_inst_tac [("a","a"),("b","#1")] zmod_zdiv_equality 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   458
by Auto_tac;
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   459
qed "zdiv_1";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   460
Addsimps [zdiv_1];
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   461
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   462
Goal "a mod (#-1::int) = #0";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   463
by (cut_inst_tac [("a","a"),("b","#-1")] neg_mod_sign 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   464
by (cut_inst_tac [("a","a"),("b","#-1")] neg_mod_bound 2);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   465
by Auto_tac;
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   466
qed "zmod_minus1_right";
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   467
Addsimps [zmod_minus1_right];
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   468
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   469
Goal "a div (#-1::int) = -a";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   470
by (cut_inst_tac [("a","a"),("b","#-1")] zmod_zdiv_equality 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   471
by Auto_tac;
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   472
qed "zdiv_minus1_right";
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   473
Addsimps [zdiv_minus1_right];
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   474
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   475
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   476
(*** Monotonicity in the first argument (divisor) ***)
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   477
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   478
Goal "[| a <= a';  #0 < (b::int) |] ==> a div b <= a' div b";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   479
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   480
by (cut_inst_tac [("a","a'"),("b","b")] zmod_zdiv_equality 1);
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   481
by (rtac unique_quotient_lemma 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   482
by (etac subst 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   483
by (etac subst 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   484
by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   485
qed "zdiv_mono1";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   486
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   487
Goal "[| a <= a';  (b::int) < #0 |] ==> a' div b <= a div b";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   488
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   489
by (cut_inst_tac [("a","a'"),("b","b")] zmod_zdiv_equality 1);
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   490
by (rtac unique_quotient_lemma_neg 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   491
by (etac subst 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   492
by (etac subst 1);
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   493
by (ALLGOALS (asm_simp_tac (simpset() addsimps [neg_mod_sign,neg_mod_bound])));
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   494
qed "zdiv_mono1_neg";
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   495
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   496
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   497
(*** Monotonicity in the second argument (dividend) ***)
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   498
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   499
Goal "[| b*q + r = b'*q' + r';  #0 <= b'*q' + r';  \
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   500
\        r' < b';  #0 <= r;  #0 < b';  b' <= b |]  \
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   501
\     ==> q <= (q'::int)";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   502
by (subgoal_tac "#0 <= q'" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   503
 by (subgoal_tac "#0 < b'*(q' + #1)" 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   504
  by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 3);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   505
 by (asm_full_simp_tac (simpset() addsimps [pos_imp_zmult_pos_iff]) 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   506
by (subgoal_tac "b*q < b*(q' + #1)" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   507
 by (Asm_full_simp_tac 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   508
by (subgoal_tac "b*q = r' - r + b'*q'" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   509
 by (simp_tac (simpset() addsimps zcompare_rls) 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   510
by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   511
by (stac zadd_commute 1 THEN rtac zadd_zless_mono 1 THEN arith_tac 1);
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   512
by (rtac zmult_zle_mono1 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   513
by Auto_tac;
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   514
qed "zdiv_mono2_lemma";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   515
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   516
Goal "[| (#0::int) <= a;  #0 < b';  b' <= b |]  \
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   517
\     ==> a div b <= a div b'";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   518
by (subgoal_tac "b ~= #0" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   519
by (arith_tac 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   520
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   521
by (cut_inst_tac [("a","a"),("b","b'")] zmod_zdiv_equality 1);
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   522
by (rtac zdiv_mono2_lemma 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   523
by (etac subst 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   524
by (etac subst 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   525
by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   526
qed "zdiv_mono2";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   527
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   528
Goal "[| b*q + r = b'*q' + r';  b'*q' + r' < #0;  \
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   529
\        r < b;  #0 <= r';  #0 < b';  b' <= b |]  \
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   530
\     ==> q' <= (q::int)";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   531
by (subgoal_tac "q' < #0" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   532
 by (subgoal_tac "b'*q' < #0" 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   533
  by (arith_tac 3);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   534
 by (asm_full_simp_tac (simpset() addsimps [pos_imp_zmult_neg_iff]) 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   535
by (subgoal_tac "b*q' < b*(q + #1)" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   536
 by (Asm_full_simp_tac 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   537
by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   538
by (subgoal_tac "b*q' <= b'*q'" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   539
 by (asm_simp_tac (simpset() addsimps [zmult_zle_mono1_neg]) 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   540
by (subgoal_tac "b'*q' < b + b*q" 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   541
 by (Asm_simp_tac 2);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   542
by (arith_tac 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   543
qed "zdiv_mono2_neg_lemma";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   544
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   545
Goal "[| a < (#0::int);  #0 < b';  b' <= b |]  \
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   546
\     ==> a div b' <= a div b";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   547
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   548
by (cut_inst_tac [("a","a"),("b","b'")] zmod_zdiv_equality 1);
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   549
by (rtac zdiv_mono2_neg_lemma 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   550
by (etac subst 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   551
by (etac subst 1);
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   552
by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   553
qed "zdiv_mono2_neg";
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   554
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   555
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   556
(*** More algebraic laws for div and mod ***)
6943
2cde117d2738 faster division algorithm; monotonicity of div in 2nd arg
paulson
parents: 6917
diff changeset
   557
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   558
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   559
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   560
Goal "[| quorem((b,c),(q,r));  c ~= #0 |] \
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   561
\     ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   562
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   563
    (claset(),
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   564
     simpset() delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   565
               addsimps split_ifs@zmult_ac@
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   566
                        [quorem_def, linorder_neq_iff, 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   567
			 zadd_zmult_distrib2,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   568
			 pos_mod_sign,pos_mod_bound,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   569
			 neg_mod_sign, neg_mod_bound]));
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   570
by (ALLGOALS(rtac zmod_zdiv_equality));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   571
val lemma = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   572
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   573
Goal "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   574
by (zdiv_undefined_case_tac "c = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   575
by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_div]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   576
qed "zdiv_zmult1_eq";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   577
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   578
Goal "(a*b) mod c = a*(b mod c) mod (c::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   579
by (zdiv_undefined_case_tac "c = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   580
by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_mod]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   581
qed "zmod_zmult1_eq";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   582
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   583
Goal "b ~= (#0::int) ==> (a*b) div b = a";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   584
by (asm_simp_tac (simpset() addsimps [zdiv_zmult1_eq]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   585
qed "zdiv_zmult_self1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   586
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   587
Goal "b ~= (#0::int) ==> (b*a) div b = a";
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   588
by (stac zmult_commute 1 THEN etac zdiv_zmult_self1 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   589
qed "zdiv_zmult_self2";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   590
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   591
Addsimps [zdiv_zmult_self1, zdiv_zmult_self2];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   592
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   593
Goal "(a*b) mod b = (#0::int)";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   594
by (simp_tac (simpset() addsimps [zmod_zmult1_eq]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   595
qed "zmod_zmult_self1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   596
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   597
Goal "(b*a) mod b = (#0::int)";
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   598
by (simp_tac (simpset() addsimps [zmult_commute, zmod_zmult1_eq]) 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   599
qed "zmod_zmult_self2";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   600
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   601
Addsimps [zmod_zmult_self1, zmod_zmult_self2];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   602
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   603
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   604
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   605
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   606
Goal "[| quorem((a,c),(aq,ar));  quorem((b,c),(bq,br));  c ~= #0 |] \
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   607
\     ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   608
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   609
    (claset(),
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   610
     simpset() delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   611
               addsimps split_ifs@zmult_ac@
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   612
                        [quorem_def, linorder_neq_iff, 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   613
			 zadd_zmult_distrib2,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   614
			 pos_mod_sign,pos_mod_bound,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   615
			 neg_mod_sign, neg_mod_bound]));
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   616
by (ALLGOALS(rtac zmod_zdiv_equality));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   617
val lemma = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   618
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   619
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   620
Goal "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   621
by (zdiv_undefined_case_tac "c = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   622
by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   623
			       MRS lemma RS quorem_div]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   624
qed "zdiv_zadd1_eq";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   625
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   626
Goal "(a+b) mod (c::int) = (a mod c + b mod c) mod c";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   627
by (zdiv_undefined_case_tac "c = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   628
by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   629
			       MRS lemma RS quorem_mod]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   630
qed "zmod_zadd1_eq";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   631
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   632
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   633
Goal "(a mod b) div b = (#0::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   634
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   635
by (auto_tac (claset(), 
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   636
       simpset() addsimps [linorder_neq_iff, 
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   637
			   pos_mod_sign, pos_mod_bound, div_pos_pos_trivial, 
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   638
			   neg_mod_sign, neg_mod_bound, div_neg_neg_trivial]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   639
qed "mod_div_trivial";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   640
Addsimps [mod_div_trivial];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   641
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   642
Goal "(a mod b) mod b = a mod (b::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   643
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   644
by (auto_tac (claset(), 
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   645
       simpset() addsimps [linorder_neq_iff, 
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   646
			   pos_mod_sign, pos_mod_bound, mod_pos_pos_trivial, 
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   647
			   neg_mod_sign, neg_mod_bound, mod_neg_neg_trivial]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   648
qed "mod_mod_trivial";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   649
Addsimps [mod_mod_trivial];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   650
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   651
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   652
Goal "a ~= (#0::int) ==> (a+b) div a = b div a + #1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   653
by (asm_simp_tac (simpset() addsimps [zdiv_zadd1_eq]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   654
qed "zdiv_zadd_self1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   655
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   656
Goal "a ~= (#0::int) ==> (b+a) div a = b div a + #1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   657
by (asm_simp_tac (simpset() addsimps [zdiv_zadd1_eq]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   658
qed "zdiv_zadd_self2";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   659
Addsimps [zdiv_zadd_self1, zdiv_zadd_self2];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   660
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   661
Goal "(a+b) mod a = b mod (a::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   662
by (zdiv_undefined_case_tac "a = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   663
by (asm_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   664
qed "zmod_zadd_self1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   665
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   666
Goal "(b+a) mod a = b mod (a::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   667
by (zdiv_undefined_case_tac "a = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   668
by (asm_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   669
qed "zmod_zadd_self2";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   670
Addsimps [zmod_zadd_self1, zmod_zadd_self2];
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   671
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   672
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   673
(*** proving  a div (b*c) = (a div b) div c ***)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   674
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   675
(*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   676
  7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   677
  to cause particular problems.*)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   678
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   679
(** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   680
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   681
Goal "[| (#0::int) < c;  b < r;  r <= #0 |] ==> b*c < b*(q mod c) + r";
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   682
by (subgoal_tac "b * (c - q mod c) < r * #1" 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   683
by (asm_full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   684
by (rtac order_le_less_trans 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   685
by (etac zmult_zless_mono1 2);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   686
by (rtac zmult_zle_mono2_neg 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   687
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   688
    (claset(),
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   689
     simpset() addsimps zcompare_rls@
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   690
                        [zadd_commute, add1_zle_eq, pos_mod_bound]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   691
val lemma1 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   692
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   693
Goal "[| (#0::int) < c;   b < r;  r <= #0 |] ==> b * (q mod c) + r <= #0";
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   694
by (subgoal_tac "b * (q mod c) <= #0" 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   695
by (arith_tac 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   696
by (asm_simp_tac (simpset() addsimps [neg_imp_zmult_nonpos_iff, 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   697
				      pos_mod_sign]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   698
val lemma2 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   699
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   700
Goal "[| (#0::int) < c;  #0 <= r;  r < b |] ==> #0 <= b * (q mod c) + r";
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   701
by (subgoal_tac "#0 <= b * (q mod c)" 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   702
by (arith_tac 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   703
by (asm_simp_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   704
    (simpset() addsimps [pos_imp_zmult_nonneg_iff, pos_mod_sign]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   705
val lemma3 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   706
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   707
Goal "[| (#0::int) < c; #0 <= r; r < b |] ==> b * (q mod c) + r < b * c";
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   708
by (subgoal_tac "r * #1 < b * (c - q mod c)" 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   709
by (asm_full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   710
by (rtac order_less_le_trans 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   711
by (etac zmult_zless_mono1 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   712
by (rtac zmult_zle_mono2 2);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   713
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   714
    (claset(),
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   715
     simpset() addsimps zcompare_rls@
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   716
                        [zadd_commute, add1_zle_eq, pos_mod_bound]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   717
val lemma4 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   718
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   719
Goal "[| quorem ((a,b), (q,r));  b ~= #0;  #0 < c |] \
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   720
\     ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   721
by (auto_tac  (*SLOW*)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   722
    (claset(),
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   723
     simpset() delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   724
               addsimps split_ifs@zmult_ac@
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   725
                        [quorem_def, linorder_neq_iff,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   726
			 pos_imp_zmult_pos_iff,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   727
			 neg_imp_zmult_pos_iff,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   728
			 zadd_zmult_distrib2 RS sym,
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   729
			 lemma1, lemma2, lemma3, lemma4]));
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   730
by (ALLGOALS(rtac zmod_zdiv_equality));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   731
val lemma = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   732
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   733
Goal "(#0::int) < c ==> a div (b*c) = (a div b) div c";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   734
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   735
by (force_tac (claset(),
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   736
	       simpset() addsimps [quorem_div_mod RS lemma RS quorem_div, 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   737
				   zmult_eq_0_iff]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   738
qed "zdiv_zmult2_eq";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   739
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   740
Goal "(#0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   741
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   742
by (force_tac (claset(),
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   743
	       simpset() addsimps [quorem_div_mod RS lemma RS quorem_mod, 
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   744
				   zmult_eq_0_iff]) 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   745
qed "zmod_zmult2_eq";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   746
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   747
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   748
(*** Cancellation of common factors in "div" ***)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   749
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   750
Goal "[| (#0::int) < b;  c ~= #0 |] ==> (c*a) div (c*b) = a div b";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   751
by (stac zdiv_zmult2_eq 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   752
by Auto_tac;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   753
val lemma1 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   754
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   755
Goal "[| b < (#0::int);  c ~= #0 |] ==> (c*a) div (c*b) = a div b";
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   756
by (subgoal_tac "(c * (-a)) div (c * (-b)) = (-a) div (-b)" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   757
by (rtac lemma1 2);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   758
by (auto_tac (claset(), simpset() addsimps [zmult_zminus_right]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   759
val lemma2 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   760
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   761
Goal "c ~= (#0::int) ==> (c*a) div (c*b) = a div b";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   762
by (zdiv_undefined_case_tac "b = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   763
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   764
    (claset(), 
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   765
     simpset() addsimps [read_instantiate [("x", "b")] linorder_neq_iff, 
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   766
			 lemma1, lemma2]));
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   767
qed "zdiv_zmult_zmult1";
6917
eba301caceea Introduction of integer division algorithm
paulson
parents:
diff changeset
   768
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   769
Goal "c ~= (#0::int) ==> (a*c) div (b*c) = a div b";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   770
by (dtac zdiv_zmult_zmult1 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   771
by (auto_tac (claset(), simpset() addsimps [zmult_commute]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   772
qed "zdiv_zmult_zmult2";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   773
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   774
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   775
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   776
(*** Distribution of factors over "mod" ***)
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   777
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   778
Goal "[| (#0::int) < b;  c ~= #0 |] ==> (c*a) mod (c*b) = c * (a mod b)";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   779
by (stac zmod_zmult2_eq 1);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   780
by Auto_tac;
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   781
val lemma1 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   782
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   783
Goal "[| b < (#0::int);  c ~= #0 |] ==> (c*a) mod (c*b) = c * (a mod b)";
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   784
by (subgoal_tac "(c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   785
by (rtac lemma1 2);
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   786
by (auto_tac (claset(), 
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   787
	      simpset() addsimps [zmult_zminus_right, zmod_zminus_zminus]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   788
val lemma2 = result();
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   789
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   790
Goal "(c*a) mod (c*b) = (c::int) * (a mod b)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   791
by (zdiv_undefined_case_tac "b = #0" 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   792
by (zdiv_undefined_case_tac "c = #0" 1);
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   793
by (auto_tac
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   794
    (claset(), 
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   795
     simpset() addsimps [read_instantiate [("x", "b")] linorder_neq_iff, 
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   796
			 lemma1, lemma2]));
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   797
qed "zmod_zmult_zmult1";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   798
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   799
Goal "(a*c) mod (b*c) = (a mod b) * (c::int)";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   800
by (cut_inst_tac [("c","c")] zmod_zmult_zmult1 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   801
by (auto_tac (claset(), simpset() addsimps [zmult_commute]));
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   802
qed "zmod_zmult_zmult2";
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   803
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   804
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   805
(*** Speeding up the division algorithm with shifting ***)
6992
8113992d3f45 many new theorems
paulson
parents: 6943
diff changeset
   806
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   807
(** computing "div" by shifting **)
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   808
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   809
Goal "(#0::int) <= a ==> (#1 + #2*b) div (#2*a) = b div a";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   810
by (zdiv_undefined_case_tac "a = #0" 1);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   811
by (subgoal_tac "#1 <= a" 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   812
 by (arith_tac 2);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   813
by (subgoal_tac "#1 < a * #2" 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   814
 by (dres_inst_tac [("i","#1"), ("k", "#2")] zmult_zle_mono1 2);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   815
by (subgoal_tac "#2*(#1 + b mod a) <= #2*a" 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   816
 by (rtac zmult_zle_mono2 2);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   817
by (auto_tac (claset(),
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   818
	      simpset() addsimps [zadd_commute, zmult_commute, 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   819
				  add1_zle_eq, pos_mod_bound]));
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   820
by (stac zdiv_zadd1_eq 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   821
by (asm_simp_tac (simpset() addsimps [zdiv_zmult_zmult2, zmod_zmult_zmult2, 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   822
				      div_pos_pos_trivial]) 1);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   823
by (stac div_pos_pos_trivial 1);
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   824
by (asm_simp_tac (simpset() delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   825
           addsimps zadd_ac@ [zmult_2_right, mod_pos_pos_trivial,
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   826
                    pos_mod_sign RS zadd_zle_mono1 RSN (2,order_trans)]) 1);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   827
by (auto_tac (claset(),
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   828
	      simpset() addsimps [mod_pos_pos_trivial]));
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   829
qed "pos_zdiv_times_2";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   830
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   831
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   832
Goal "a <= (#0::int) ==> (#1 + #2*b) div (#2*a) = (b+#1) div a";
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   833
by (subgoal_tac "(#1 + #2*(-b-#1)) div (#2 * (-a)) = (-b-#1) div (-a)" 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   834
by (rtac pos_zdiv_times_2 2);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   835
by (auto_tac (claset(),
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   836
	      simpset() addsimps [zmult_zminus_right]));
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   837
by (subgoal_tac "(#-1 - (#2 * b)) = - (#1 + (#2 * b))" 1);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   838
by (Simp_tac 2);
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   839
by (asm_full_simp_tac (HOL_ss
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   840
		       addsimps [zdiv_zminus_zminus, zdiff_def,
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   841
				 zminus_zadd_distrib RS sym]) 1);
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   842
qed "neg_zdiv_times_2";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   843
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   844
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   845
(*Not clear why this must be proved separately; probably number_of causes
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   846
  simplification problems*)
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   847
Goal "~ #0 <= x ==> x <= (#0::int)";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   848
by Auto_tac;
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   849
val lemma = result();
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   850
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   851
Goal "number_of (v BIT b) div number_of (w BIT False) = \
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   852
\         (if ~b | (#0::int) <= number_of w                   \
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   853
\          then number_of v div (number_of w)    \
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   854
\          else (number_of v + (#1::int)) div (number_of w))";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   855
by (simp_tac (simpset_of Int.thy
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   856
			 addsimps [zadd_assoc, number_of_BIT]) 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   857
by (asm_simp_tac (simpset()
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   858
		  delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   859
                  delsimps bin_arith_extra_simps@bin_rel_simps
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   860
		  addsimps [zmult_2 RS sym, zdiv_zmult_zmult1,
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   861
			    pos_zdiv_times_2, lemma, neg_zdiv_times_2]) 1);
6999
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   862
qed "zdiv_number_of_BIT";
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   863
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   864
Addsimps [zdiv_number_of_BIT];
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   865
73f681047e5f optimization for division by powers of 2
paulson
parents: 6992
diff changeset
   866
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   867
(** computing "mod" by shifting (proofs resemble those for "div") **)
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   868
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   869
Goal "(#0::int) <= a ==> (#1 + #2*b) mod (#2*a) = #1 + #2 * (b mod a)";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   870
by (zdiv_undefined_case_tac "a = #0" 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   871
by (subgoal_tac "#1 <= a" 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   872
 by (arith_tac 2);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   873
by (subgoal_tac "#1 < a * #2" 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   874
 by (dres_inst_tac [("i","#1"), ("k", "#2")] zmult_zle_mono1 2);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   875
by (subgoal_tac "#2*(#1 + b mod a) <= #2*a" 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   876
 by (rtac zmult_zle_mono2 2);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   877
by (auto_tac (claset(),
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   878
	      simpset() addsimps [zadd_commute, zmult_commute, 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   879
				  add1_zle_eq, pos_mod_bound]));
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   880
by (stac zmod_zadd1_eq 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   881
by (asm_simp_tac (simpset() addsimps [zmod_zmult_zmult2, 
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   882
				      mod_pos_pos_trivial]) 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   883
by (rtac mod_pos_pos_trivial 1);
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   884
by (asm_simp_tac (simpset() delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   885
                  addsimps zadd_ac@ [zmult_2_right, mod_pos_pos_trivial,
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   886
                    pos_mod_sign RS zadd_zle_mono1 RSN (2,order_trans)]) 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   887
by (auto_tac (claset(),
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   888
	      simpset() addsimps [mod_pos_pos_trivial]));
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   889
qed "pos_zmod_times_2";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   890
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   891
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   892
Goal "a <= (#0::int) ==> (#1 + #2*b) mod (#2*a) = #2 * ((b+#1) mod a) - #1";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   893
by (subgoal_tac 
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   894
    "(#1 + #2*(-b-#1)) mod (#2*(-a)) = #1 + #2*((-b-#1) mod (-a))" 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   895
by (rtac pos_zmod_times_2 2);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   896
by (auto_tac (claset(),
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   897
	      simpset() addsimps [zmult_zminus_right]));
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   898
by (subgoal_tac "(#-1 - (#2 * b)) = - (#1 + (#2 * b))" 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   899
by (Simp_tac 2);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   900
by (asm_full_simp_tac (HOL_ss
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   901
		       addsimps [zmod_zminus_zminus, zdiff_def,
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   902
				 zminus_zadd_distrib RS sym]) 1);
7086
f9aa63a5a8b6 expandshort
paulson
parents: 7074
diff changeset
   903
by (dtac (zminus_equation RS iffD1 RS sym) 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   904
by (auto_tac (claset(),
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   905
	      simpset() addsimps [zmult_zminus_right]));
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   906
qed "neg_zmod_times_2";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   907
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   908
Goal "number_of (v BIT b) mod number_of (w BIT False) = \
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   909
\         (if b then \
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   910
\               if (#0::int) <= number_of w \
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   911
\               then #2 * (number_of v mod number_of w) + #1    \
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   912
\               else #2 * ((number_of v + (#1::int)) mod number_of w) - #1  \
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   913
\          else #2 * (number_of v mod number_of w))";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   914
by (simp_tac (simpset_of Int.thy
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   915
			 addsimps [zadd_assoc, number_of_BIT]) 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   916
by (asm_simp_tac (simpset()
7549
1dcf2a7a2b5b Integ/bin_simprocs.ML now loaded in Integ/Bin.ML
nipkow
parents: 7499
diff changeset
   917
		  delsimprocs [Int_CC.sum_conv, Int_CC.rel_conv]
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   918
		  delsimps bin_arith_extra_simps@bin_rel_simps
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   919
		  addsimps [zmult_2 RS sym, zmod_zmult_zmult1,
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   920
			    pos_zmod_times_2, lemma, neg_zmod_times_2]) 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   921
qed "zmod_number_of_BIT";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   922
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   923
Addsimps [zmod_number_of_BIT];
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   924
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   925
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   926
(** Quotients of signs **)
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   927
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   928
Goal "[| a < (#0::int);  #0 < b |] ==> a div b < #0";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   929
by (subgoal_tac "a div b <= #-1" 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   930
by (Force_tac 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   931
by (rtac order_trans 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   932
by (res_inst_tac [("a'","#-1")]  zdiv_mono1 1);
7074
e0730ffaafcc zadd_ac and zmult_ac are no longer included by default
paulson
parents: 7035
diff changeset
   933
by (auto_tac (claset(), simpset() addsimps [zdiv_minus1]));
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   934
qed "div_neg_pos_less0";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   935
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   936
Goal "[| (#0::int) <= a;  b < #0 |] ==> a div b <= #0";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   937
by (dtac zdiv_mono1_neg 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   938
by Auto_tac;
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   939
qed "div_nonneg_neg_le0";
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   940
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   941
Goal "(#0::int) < b ==> (#0 <= a div b) = (#0 <= a)";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   942
by Auto_tac;
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   943
by (dtac zdiv_mono1 2);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   944
by (auto_tac (claset(), simpset() addsimps [linorder_neq_iff]));
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   945
by (full_simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1);
7127
48e235179ffb added parentheses to cope with a possible reduction of the precedence of unary
paulson
parents: 7086
diff changeset
   946
by (blast_tac (claset() addIs [div_neg_pos_less0]) 1);
7035
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   947
qed "pos_imp_zdiv_nonneg_iff";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   948
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   949
Goal "b < (#0::int) ==> (#0 <= a div b) = (a <= (#0::int))";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   950
by (stac (zdiv_zminus_zminus RS sym) 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   951
by (stac pos_imp_zdiv_nonneg_iff 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   952
by Auto_tac;
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   953
qed "neg_imp_zdiv_nonneg_iff";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   954
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   955
(*But not (a div b <= 0 iff a<=0); consider a=1, b=2 when a div b = 0.*)
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   956
Goal "(#0::int) < b ==> (a div b < #0) = (a < #0)";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   957
by (asm_simp_tac (simpset() addsimps [linorder_not_le RS sym,
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   958
				      pos_imp_zdiv_nonneg_iff]) 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   959
qed "pos_imp_zdiv_neg_iff";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   960
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   961
(*Again the law fails for <=: consider a = -1, b = -2 when a div b = 0*)
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   962
Goal "b < (#0::int) ==> (a div b < #0) = (#0 < a)";
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   963
by (asm_simp_tac (simpset() addsimps [linorder_not_le RS sym,
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   964
				      neg_imp_zdiv_nonneg_iff]) 1);
d1b7a2372b31 many new laws about div and mod
paulson
parents: 6999
diff changeset
   965
qed "neg_imp_zdiv_neg_iff";