4832
|
1 |
(* Title: HOL/Lex/NAe.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1998 TUM
|
|
5 |
*)
|
|
6 |
|
5118
|
7 |
Goal "steps A w O (eps A)^* = steps A w";
|
4832
|
8 |
by (exhaust_tac "w" 1);
|
5132
|
9 |
by (ALLGOALS(asm_simp_tac (simpset() addsimps [O_assoc])));
|
4832
|
10 |
qed_spec_mp "steps_epsclosure";
|
|
11 |
Addsimps [steps_epsclosure];
|
|
12 |
|
5118
|
13 |
Goal "[| (p,q) : (eps A)^*; (q,r) : steps A w |] ==> (p,r) : steps A w";
|
5132
|
14 |
by (rtac (steps_epsclosure RS equalityE) 1);
|
|
15 |
by (Blast_tac 1);
|
4832
|
16 |
qed "in_steps_epsclosure";
|
|
17 |
|
5069
|
18 |
Goal "(eps A)^* O steps A w = steps A w";
|
4832
|
19 |
by (induct_tac "w" 1);
|
|
20 |
by (Simp_tac 1);
|
|
21 |
by (asm_simp_tac (simpset() addsimps [O_assoc RS sym]) 1);
|
|
22 |
qed "epsclosure_steps";
|
|
23 |
|
5118
|
24 |
Goal "[| (p,q) : steps A w; (q,r) : (eps A)^* |] ==> (p,r) : steps A w";
|
5132
|
25 |
by (rtac (epsclosure_steps RS equalityE) 1);
|
|
26 |
by (Blast_tac 1);
|
4832
|
27 |
qed "in_epsclosure_steps";
|
|
28 |
|
5118
|
29 |
Goal "steps A (v@w) = steps A w O steps A v";
|
4832
|
30 |
by (induct_tac "v" 1);
|
5132
|
31 |
by (ALLGOALS(asm_simp_tac (simpset() addsimps [O_assoc])));
|
4832
|
32 |
qed "steps_append";
|
|
33 |
Addsimps [steps_append];
|
|
34 |
|
5069
|
35 |
Goal "(p,r) : steps A (v@w) = ((p,r) : (steps A w O steps A v))";
|
5132
|
36 |
by (rtac (steps_append RS equalityE) 1);
|
|
37 |
by (Blast_tac 1);
|
4832
|
38 |
qed "in_steps_append";
|
|
39 |
AddIffs [in_steps_append];
|
|
40 |
|
4900
|
41 |
(* Equivalence of steps and delta
|
4832
|
42 |
(* Use "(? x : f `` A. P x) = (? a:A. P(f x))" ?? *)
|
5069
|
43 |
Goal "!p. (p,q) : steps A w = (q : delta A w p)";
|
4832
|
44 |
by (induct_tac "w" 1);
|
|
45 |
by (Simp_tac 1);
|
|
46 |
by (asm_simp_tac (simpset() addsimps [comp_def,step_def]) 1);
|
5132
|
47 |
by (Blast_tac 1);
|
4832
|
48 |
qed_spec_mp "steps_equiv_delta";
|
4900
|
49 |
*)
|