1461
|
1 |
(* Title: Redex.ML
|
1048
|
2 |
ID: $Id$
|
1461
|
3 |
Author: Ole Rasmussen
|
1048
|
4 |
Copyright 1995 University of Cambridge
|
|
5 |
Logic Image: ZF
|
|
6 |
*)
|
|
7 |
|
6046
|
8 |
Addsimps redexes.intrs;
|
|
9 |
|
|
10 |
fun rotate n i = EVERY(replicate n (etac revcut_rl i));
|
|
11 |
(* ------------------------------------------------------------------------- *)
|
|
12 |
(* Specialisation of comp-rules *)
|
|
13 |
(* ------------------------------------------------------------------------- *)
|
|
14 |
|
6141
|
15 |
val compD1 = Scomp.dom_subset RS subsetD RS SigmaD1;
|
|
16 |
val compD2 = Scomp.dom_subset RS subsetD RS SigmaD2;
|
6046
|
17 |
|
6141
|
18 |
val regD = Sreg.dom_subset RS subsetD;
|
1048
|
19 |
|
|
20 |
(* ------------------------------------------------------------------------- *)
|
6046
|
21 |
(* Equality rules for union *)
|
1048
|
22 |
(* ------------------------------------------------------------------------- *)
|
|
23 |
|
6046
|
24 |
Goal "n:nat==>Var(n) un Var(n)=Var(n)";
|
|
25 |
by (asm_simp_tac (simpset() addsimps [union_def]) 1);
|
|
26 |
qed "union_Var";
|
|
27 |
|
|
28 |
Goal "[|u:redexes; v:redexes|]==>Fun(u) un Fun(v)=Fun(u un v)";
|
|
29 |
by (asm_simp_tac (simpset() addsimps [union_def]) 1);
|
|
30 |
qed "union_Fun";
|
|
31 |
|
6141
|
32 |
Goal "[|b1:bool; b2:bool; u1:redexes; v1:redexes; u2:redexes; v2:redexes|]==> \
|
6046
|
33 |
\ App(b1,u1,v1) un App(b2,u2,v2)=App(b1 or b2,u1 un u2,v1 un v2)";
|
|
34 |
by (asm_simp_tac (simpset() addsimps [union_def]) 1);
|
|
35 |
qed "union_App";
|
1048
|
36 |
|
6046
|
37 |
Addsimps (Ssub.intrs@bool_typechecks@
|
|
38 |
Sreg.intrs@Scomp.intrs@
|
|
39 |
[or_1 RSN (3,or_commute RS trans),
|
|
40 |
or_0 RSN (3,or_commute RS trans),
|
|
41 |
union_App,union_Fun,union_Var,compD2,compD1,regD]);
|
1048
|
42 |
|
6046
|
43 |
AddIs Scomp.intrs;
|
6141
|
44 |
AddSEs [Sreg.mk_cases "regular(App(b,f,a))",
|
|
45 |
Sreg.mk_cases "regular(Fun(b))",
|
|
46 |
Sreg.mk_cases "regular(Var(b))",
|
|
47 |
Scomp.mk_cases "Fun(u) ~ Fun(t)",
|
|
48 |
Scomp.mk_cases "u ~ Fun(t)",
|
|
49 |
Scomp.mk_cases "u ~ Var(n)",
|
|
50 |
Scomp.mk_cases "u ~ App(b,t,a)",
|
|
51 |
Scomp.mk_cases "Fun(t) ~ v",
|
|
52 |
Scomp.mk_cases "App(b,f,a) ~ v",
|
|
53 |
Scomp.mk_cases "Var(n) ~ u"];
|
1048
|
54 |
|
|
55 |
|
|
56 |
|
6046
|
57 |
(* ------------------------------------------------------------------------- *)
|
|
58 |
(* comp proofs *)
|
|
59 |
(* ------------------------------------------------------------------------- *)
|
|
60 |
|
|
61 |
Goal "u:redexes ==> u ~ u";
|
|
62 |
by (etac redexes.induct 1);
|
|
63 |
by (ALLGOALS Fast_tac);
|
|
64 |
qed "comp_refl";
|
|
65 |
|
|
66 |
Goal "u ~ v ==> v ~ u";
|
|
67 |
by (etac Scomp.induct 1);
|
|
68 |
by (ALLGOALS Fast_tac);
|
|
69 |
qed "comp_sym";
|
|
70 |
|
|
71 |
Goal "u ~ v <-> v ~ u";
|
|
72 |
by (fast_tac (claset() addIs [comp_sym]) 1);
|
|
73 |
qed "comp_sym_iff";
|
1048
|
74 |
|
|
75 |
|
6046
|
76 |
Goal "u ~ v ==> ALL w. v ~ w-->u ~ w";
|
|
77 |
by (etac Scomp.induct 1);
|
|
78 |
by (ALLGOALS Fast_tac);
|
|
79 |
qed_spec_mp "comp_trans";
|
|
80 |
|
|
81 |
(* ------------------------------------------------------------------------- *)
|
|
82 |
(* union proofs *)
|
|
83 |
(* ------------------------------------------------------------------------- *)
|
|
84 |
|
|
85 |
Goal "u ~ v ==> u <== (u un v)";
|
|
86 |
by (etac Scomp.induct 1);
|
|
87 |
by (etac boolE 3);
|
|
88 |
by (ALLGOALS Asm_simp_tac);
|
|
89 |
qed "union_l";
|
|
90 |
|
|
91 |
Goal "u ~ v ==> v <== (u un v)";
|
|
92 |
by (etac Scomp.induct 1);
|
|
93 |
by (eres_inst_tac [("c","b2")] boolE 3);
|
|
94 |
by (ALLGOALS Asm_simp_tac);
|
|
95 |
qed "union_r";
|
|
96 |
|
|
97 |
Goal "u ~ v ==> u un v = v un u";
|
|
98 |
by (etac Scomp.induct 1);
|
|
99 |
by (ALLGOALS(asm_simp_tac (simpset() addsimps [or_commute])));
|
|
100 |
qed "union_sym";
|
|
101 |
|
|
102 |
(* ------------------------------------------------------------------------- *)
|
|
103 |
(* regular proofs *)
|
|
104 |
(* ------------------------------------------------------------------------- *)
|
|
105 |
|
|
106 |
Goal "u ~ v ==> regular(u)-->regular(v)-->regular(u un v)";
|
|
107 |
by (etac Scomp.induct 1);
|
|
108 |
by Auto_tac;
|
|
109 |
by (dres_inst_tac [("psi", "regular(Fun(?u) un ?v)")] asm_rl 1);
|
|
110 |
by (Asm_full_simp_tac 1);
|
|
111 |
qed_spec_mp "union_preserve_regular";
|