| author | bulwahn | 
| Thu, 05 May 2011 10:47:31 +0200 | |
| changeset 42695 | a94ad372b2f5 | 
| parent 42151 | 4da4fc77664b | 
| child 42793 | 88bee9f6eec7 | 
| permissions | -rw-r--r-- | 
| 42151 | 1  | 
(* Title: HOL/HOLCF/IOA/ABP/Correctness.thy  | 
| 40945 | 2  | 
Author: Olaf Müller  | 
| 
3072
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
3  | 
*)  | 
| 
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
4  | 
|
| 17244 | 5  | 
header {* The main correctness proof: System_fin implements System *}
 | 
6  | 
||
7  | 
theory Correctness  | 
|
8  | 
imports IOA Env Impl Impl_finite  | 
|
| 39120 | 9  | 
uses "Check.ML"  | 
| 17244 | 10  | 
begin  | 
| 
3072
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
11  | 
|
| 27361 | 12  | 
primrec reduce :: "'a list => 'a list"  | 
13  | 
where  | 
|
| 17244 | 14  | 
reduce_Nil: "reduce [] = []"  | 
| 27361 | 15  | 
| reduce_Cons: "reduce(x#xs) =  | 
| 17244 | 16  | 
(case xs of  | 
17  | 
[] => [x]  | 
|
18  | 
| y#ys => (if (x=y)  | 
|
19  | 
then reduce xs  | 
|
| 
3072
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
20  | 
else (x#(reduce xs))))"  | 
| 
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
21  | 
|
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
22  | 
definition  | 
| 19689 | 23  | 
abs where  | 
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
24  | 
"abs =  | 
| 19689 | 25  | 
(%p.(fst(p),(fst(snd(p)),(fst(snd(snd(p))),  | 
26  | 
(reduce(fst(snd(snd(snd(p))))),reduce(snd(snd(snd(snd(p))))))))))"  | 
|
| 17244 | 27  | 
|
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
28  | 
definition  | 
| 
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
29  | 
  system_ioa :: "('m action, bool * 'm impl_state)ioa" where
 | 
| 
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
30  | 
"system_ioa = (env_ioa || impl_ioa)"  | 
| 
3072
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
31  | 
|
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
32  | 
definition  | 
| 
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
33  | 
  system_fin_ioa :: "('m action, bool * 'm impl_state)ioa" where
 | 
| 
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
34  | 
"system_fin_ioa = (env_ioa || impl_fin_ioa)"  | 
| 17244 | 35  | 
|
| 
3072
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
36  | 
|
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
37  | 
axiomatization where  | 
| 
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
20918 
diff
changeset
 | 
38  | 
sys_IOA: "IOA system_ioa" and  | 
| 17244 | 39  | 
sys_fin_IOA: "IOA system_fin_ioa"  | 
40  | 
||
| 19738 | 41  | 
|
42  | 
||
43  | 
declare split_paired_All [simp del] Collect_empty_eq [simp del]  | 
|
44  | 
||
45  | 
lemmas [simp] =  | 
|
46  | 
srch_asig_def rsch_asig_def rsch_ioa_def srch_ioa_def ch_ioa_def  | 
|
47  | 
ch_asig_def srch_actions_def rsch_actions_def rename_def rename_set_def asig_of_def  | 
|
48  | 
actions_def exis_elim srch_trans_def rsch_trans_def ch_trans_def  | 
|
49  | 
trans_of_def asig_projections set_lemmas  | 
|
50  | 
||
51  | 
lemmas abschannel_fin [simp] =  | 
|
52  | 
srch_fin_asig_def rsch_fin_asig_def  | 
|
53  | 
rsch_fin_ioa_def srch_fin_ioa_def  | 
|
54  | 
ch_fin_ioa_def ch_fin_trans_def ch_fin_asig_def  | 
|
55  | 
||
56  | 
lemmas impl_ioas = sender_ioa_def receiver_ioa_def  | 
|
57  | 
and impl_trans = sender_trans_def receiver_trans_def  | 
|
58  | 
and impl_asigs = sender_asig_def receiver_asig_def  | 
|
59  | 
||
60  | 
declare let_weak_cong [cong]  | 
|
| 
35215
 
a03462cbf86f
get rid of warnings about duplicate simp rules in all HOLCF theories
 
huffman 
parents: 
35174 
diff
changeset
 | 
61  | 
declare ioa_triple_proj [simp] starts_of_par [simp]  | 
| 19738 | 62  | 
|
63  | 
lemmas env_ioas = env_ioa_def env_asig_def env_trans_def  | 
|
| 
35215
 
a03462cbf86f
get rid of warnings about duplicate simp rules in all HOLCF theories
 
huffman 
parents: 
35174 
diff
changeset
 | 
64  | 
lemmas hom_ioas =  | 
| 
 
a03462cbf86f
get rid of warnings about duplicate simp rules in all HOLCF theories
 
huffman 
parents: 
35174 
diff
changeset
 | 
65  | 
env_ioas [simp] impl_ioas [simp] impl_trans [simp] impl_asigs [simp]  | 
| 
 
a03462cbf86f
get rid of warnings about duplicate simp rules in all HOLCF theories
 
huffman 
parents: 
35174 
diff
changeset
 | 
66  | 
asig_projections set_lemmas  | 
| 19738 | 67  | 
|
68  | 
||
69  | 
subsection {* lemmas about reduce *}
 | 
|
70  | 
||
71  | 
lemma l_iff_red_nil: "(reduce l = []) = (l = [])"  | 
|
72  | 
by (induct l) (auto split: list.split)  | 
|
73  | 
||
74  | 
lemma hd_is_reduce_hd: "s ~= [] --> hd s = hd (reduce s)"  | 
|
75  | 
by (induct s) (auto split: list.split)  | 
|
76  | 
||
77  | 
text {* to be used in the following Lemma *}
 | 
|
78  | 
lemma rev_red_not_nil [rule_format]:  | 
|
79  | 
"l ~= [] --> reverse (reduce l) ~= []"  | 
|
80  | 
by (induct l) (auto split: list.split)  | 
|
81  | 
||
82  | 
text {* shows applicability of the induction hypothesis of the following Lemma 1 *}
 | 
|
83  | 
lemma last_ind_on_first:  | 
|
84  | 
"l ~= [] ==> hd (reverse (reduce (a # l))) = hd (reverse (reduce l))"  | 
|
85  | 
apply simp  | 
|
| 26342 | 86  | 
  apply (tactic {* auto_tac (@{claset},
 | 
| 26649 | 87  | 
    HOL_ss addsplits [@{thm list.split}]
 | 
88  | 
    addsimps (@{thms reverse.simps} @ [@{thm hd_append}, @{thm rev_red_not_nil}])) *})
 | 
|
| 19738 | 89  | 
done  | 
90  | 
||
91  | 
text {* Main Lemma 1 for @{text "S_pkt"} in showing that reduce is refinement. *}
 | 
|
92  | 
lemma reduce_hd:  | 
|
93  | 
"if x=hd(reverse(reduce(l))) & reduce(l)~=[] then  | 
|
94  | 
reduce(l@[x])=reduce(l) else  | 
|
95  | 
reduce(l@[x])=reduce(l)@[x]"  | 
|
96  | 
apply (simplesubst split_if)  | 
|
97  | 
apply (rule conjI)  | 
|
98  | 
txt {* @{text "-->"} *}
 | 
|
99  | 
apply (induct_tac "l")  | 
|
100  | 
apply (simp (no_asm))  | 
|
101  | 
apply (case_tac "list=[]")  | 
|
| 
35215
 
a03462cbf86f
get rid of warnings about duplicate simp rules in all HOLCF theories
 
huffman 
parents: 
35174 
diff
changeset
 | 
102  | 
apply simp  | 
| 19738 | 103  | 
apply (rule impI)  | 
104  | 
apply (simp (no_asm))  | 
|
105  | 
apply (cut_tac l = "list" in cons_not_nil)  | 
|
106  | 
apply (simp del: reduce_Cons)  | 
|
107  | 
apply (erule exE)+  | 
|
108  | 
apply hypsubst  | 
|
109  | 
apply (simp del: reduce_Cons add: last_ind_on_first l_iff_red_nil)  | 
|
110  | 
txt {* @{text "<--"} *}
 | 
|
111  | 
apply (simp (no_asm) add: and_de_morgan_and_absorbe l_iff_red_nil)  | 
|
112  | 
apply (induct_tac "l")  | 
|
113  | 
apply (simp (no_asm))  | 
|
114  | 
apply (case_tac "list=[]")  | 
|
115  | 
apply (cut_tac [2] l = "list" in cons_not_nil)  | 
|
116  | 
apply simp  | 
|
117  | 
apply (auto simp del: reduce_Cons simp add: last_ind_on_first l_iff_red_nil split: split_if)  | 
|
118  | 
apply simp  | 
|
119  | 
done  | 
|
120  | 
||
121  | 
||
122  | 
text {* Main Lemma 2 for R_pkt in showing that reduce is refinement. *}
 | 
|
123  | 
lemma reduce_tl: "s~=[] ==>  | 
|
124  | 
if hd(s)=hd(tl(s)) & tl(s)~=[] then  | 
|
125  | 
reduce(tl(s))=reduce(s) else  | 
|
126  | 
reduce(tl(s))=tl(reduce(s))"  | 
|
127  | 
apply (cut_tac l = "s" in cons_not_nil)  | 
|
128  | 
apply simp  | 
|
129  | 
apply (erule exE)+  | 
|
130  | 
apply (auto split: list.split)  | 
|
131  | 
done  | 
|
132  | 
||
133  | 
||
134  | 
subsection {* Channel Abstraction *}
 | 
|
135  | 
||
136  | 
declare split_if [split del]  | 
|
137  | 
||
138  | 
lemma channel_abstraction: "is_weak_ref_map reduce ch_ioa ch_fin_ioa"  | 
|
139  | 
apply (simp (no_asm) add: is_weak_ref_map_def)  | 
|
140  | 
txt {* main-part *}
 | 
|
141  | 
apply (rule allI)+  | 
|
142  | 
apply (rule imp_conj_lemma)  | 
|
143  | 
apply (induct_tac "a")  | 
|
144  | 
txt {* 2 cases *}
 | 
|
145  | 
apply (simp_all (no_asm) cong del: if_weak_cong add: externals_def)  | 
|
146  | 
txt {* fst case *}
 | 
|
147  | 
apply (rule impI)  | 
|
148  | 
apply (rule disjI2)  | 
|
149  | 
apply (rule reduce_hd)  | 
|
150  | 
txt {* snd case *}
 | 
|
151  | 
apply (rule impI)  | 
|
152  | 
apply (erule conjE)+  | 
|
153  | 
apply (erule disjE)  | 
|
154  | 
apply (simp add: l_iff_red_nil)  | 
|
155  | 
apply (erule hd_is_reduce_hd [THEN mp])  | 
|
156  | 
apply (simp add: l_iff_red_nil)  | 
|
157  | 
apply (rule conjI)  | 
|
158  | 
apply (erule hd_is_reduce_hd [THEN mp])  | 
|
159  | 
apply (rule bool_if_impl_or [THEN mp])  | 
|
160  | 
apply (erule reduce_tl)  | 
|
161  | 
done  | 
|
162  | 
||
163  | 
declare split_if [split]  | 
|
164  | 
||
165  | 
lemma sender_abstraction: "is_weak_ref_map reduce srch_ioa srch_fin_ioa"  | 
|
166  | 
apply (tactic {*
 | 
|
| 39159 | 167  | 
  simp_tac (HOL_ss addsimps [@{thm srch_fin_ioa_def}, @{thm rsch_fin_ioa_def},
 | 
168  | 
    @{thm srch_ioa_def}, @{thm rsch_ioa_def}, @{thm rename_through_pmap},
 | 
|
169  | 
    @{thm channel_abstraction}]) 1 *})
 | 
|
| 19738 | 170  | 
done  | 
171  | 
||
172  | 
lemma receiver_abstraction: "is_weak_ref_map reduce rsch_ioa rsch_fin_ioa"  | 
|
173  | 
apply (tactic {*
 | 
|
| 39159 | 174  | 
  simp_tac (HOL_ss addsimps [@{thm srch_fin_ioa_def}, @{thm rsch_fin_ioa_def},
 | 
175  | 
    @{thm srch_ioa_def}, @{thm rsch_ioa_def}, @{thm rename_through_pmap},
 | 
|
176  | 
    @{thm channel_abstraction}]) 1 *})
 | 
|
| 19738 | 177  | 
done  | 
178  | 
||
179  | 
||
180  | 
text {* 3 thms that do not hold generally! The lucky restriction here is
 | 
|
181  | 
the absence of internal actions. *}  | 
|
182  | 
lemma sender_unchanged: "is_weak_ref_map (%id. id) sender_ioa sender_ioa"  | 
|
183  | 
apply (simp (no_asm) add: is_weak_ref_map_def)  | 
|
184  | 
txt {* main-part *}
 | 
|
185  | 
apply (rule allI)+  | 
|
186  | 
apply (induct_tac a)  | 
|
187  | 
txt {* 7 cases *}
 | 
|
188  | 
apply (simp_all (no_asm) add: externals_def)  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
text {* 2 copies of before *}
 | 
|
192  | 
lemma receiver_unchanged: "is_weak_ref_map (%id. id) receiver_ioa receiver_ioa"  | 
|
193  | 
apply (simp (no_asm) add: is_weak_ref_map_def)  | 
|
194  | 
txt {* main-part *}
 | 
|
195  | 
apply (rule allI)+  | 
|
196  | 
apply (induct_tac a)  | 
|
197  | 
txt {* 7 cases *}
 | 
|
198  | 
apply (simp_all (no_asm) add: externals_def)  | 
|
199  | 
done  | 
|
200  | 
||
201  | 
lemma env_unchanged: "is_weak_ref_map (%id. id) env_ioa env_ioa"  | 
|
202  | 
apply (simp (no_asm) add: is_weak_ref_map_def)  | 
|
203  | 
txt {* main-part *}
 | 
|
204  | 
apply (rule allI)+  | 
|
205  | 
apply (induct_tac a)  | 
|
206  | 
txt {* 7 cases *}
 | 
|
207  | 
apply (simp_all (no_asm) add: externals_def)  | 
|
208  | 
done  | 
|
209  | 
||
210  | 
||
211  | 
lemma compat_single_ch: "compatible srch_ioa rsch_ioa"  | 
|
212  | 
apply (simp add: compatible_def Int_def)  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
213  | 
apply (rule set_eqI)  | 
| 19738 | 214  | 
apply (induct_tac x)  | 
215  | 
apply simp_all  | 
|
216  | 
done  | 
|
217  | 
||
218  | 
text {* totally the same as before *}
 | 
|
219  | 
lemma compat_single_fin_ch: "compatible srch_fin_ioa rsch_fin_ioa"  | 
|
220  | 
apply (simp add: compatible_def Int_def)  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
221  | 
apply (rule set_eqI)  | 
| 19738 | 222  | 
apply (induct_tac x)  | 
223  | 
apply simp_all  | 
|
224  | 
done  | 
|
225  | 
||
226  | 
lemmas del_simps = trans_of_def srch_asig_def rsch_asig_def  | 
|
227  | 
asig_of_def actions_def srch_trans_def rsch_trans_def srch_ioa_def  | 
|
228  | 
srch_fin_ioa_def rsch_fin_ioa_def rsch_ioa_def sender_trans_def  | 
|
229  | 
receiver_trans_def set_lemmas  | 
|
230  | 
||
231  | 
lemma compat_rec: "compatible receiver_ioa (srch_ioa || rsch_ioa)"  | 
|
232  | 
apply (simp del: del_simps  | 
|
233  | 
add: compatible_def asig_of_par asig_comp_def actions_def Int_def)  | 
|
234  | 
apply simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
235  | 
apply (rule set_eqI)  | 
| 19738 | 236  | 
apply (induct_tac x)  | 
237  | 
apply simp_all  | 
|
238  | 
done  | 
|
239  | 
||
240  | 
text {* 5 proofs totally the same as before *}
 | 
|
241  | 
lemma compat_rec_fin: "compatible receiver_ioa (srch_fin_ioa || rsch_fin_ioa)"  | 
|
242  | 
apply (simp del: del_simps  | 
|
243  | 
add: compatible_def asig_of_par asig_comp_def actions_def Int_def)  | 
|
244  | 
apply simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
245  | 
apply (rule set_eqI)  | 
| 19738 | 246  | 
apply (induct_tac x)  | 
247  | 
apply simp_all  | 
|
248  | 
done  | 
|
249  | 
||
250  | 
lemma compat_sen: "compatible sender_ioa  | 
|
251  | 
(receiver_ioa || srch_ioa || rsch_ioa)"  | 
|
252  | 
apply (simp del: del_simps  | 
|
253  | 
add: compatible_def asig_of_par asig_comp_def actions_def Int_def)  | 
|
254  | 
apply simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
255  | 
apply (rule set_eqI)  | 
| 19738 | 256  | 
apply (induct_tac x)  | 
257  | 
apply simp_all  | 
|
258  | 
done  | 
|
259  | 
||
260  | 
lemma compat_sen_fin: "compatible sender_ioa  | 
|
261  | 
(receiver_ioa || srch_fin_ioa || rsch_fin_ioa)"  | 
|
262  | 
apply (simp del: del_simps  | 
|
263  | 
add: compatible_def asig_of_par asig_comp_def actions_def Int_def)  | 
|
264  | 
apply simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
265  | 
apply (rule set_eqI)  | 
| 19738 | 266  | 
apply (induct_tac x)  | 
267  | 
apply simp_all  | 
|
268  | 
done  | 
|
269  | 
||
270  | 
lemma compat_env: "compatible env_ioa  | 
|
271  | 
(sender_ioa || receiver_ioa || srch_ioa || rsch_ioa)"  | 
|
272  | 
apply (simp del: del_simps  | 
|
273  | 
add: compatible_def asig_of_par asig_comp_def actions_def Int_def)  | 
|
274  | 
apply simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
275  | 
apply (rule set_eqI)  | 
| 19738 | 276  | 
apply (induct_tac x)  | 
277  | 
apply simp_all  | 
|
278  | 
done  | 
|
279  | 
||
280  | 
lemma compat_env_fin: "compatible env_ioa  | 
|
281  | 
(sender_ioa || receiver_ioa || srch_fin_ioa || rsch_fin_ioa)"  | 
|
282  | 
apply (simp del: del_simps  | 
|
283  | 
add: compatible_def asig_of_par asig_comp_def actions_def Int_def)  | 
|
284  | 
apply simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39159 
diff
changeset
 | 
285  | 
apply (rule set_eqI)  | 
| 19738 | 286  | 
apply (induct_tac x)  | 
287  | 
apply simp_all  | 
|
288  | 
done  | 
|
289  | 
||
290  | 
||
291  | 
text {* lemmata about externals of channels *}
 | 
|
292  | 
lemma ext_single_ch: "externals(asig_of(srch_fin_ioa)) = externals(asig_of(srch_ioa)) &  | 
|
293  | 
externals(asig_of(rsch_fin_ioa)) = externals(asig_of(rsch_ioa))"  | 
|
294  | 
by (simp add: externals_def)  | 
|
295  | 
||
296  | 
||
297  | 
subsection {* Soundness of Abstraction *}
 | 
|
298  | 
||
299  | 
lemmas ext_simps = externals_of_par ext_single_ch  | 
|
300  | 
and compat_simps = compat_single_ch compat_single_fin_ch compat_rec  | 
|
301  | 
compat_rec_fin compat_sen compat_sen_fin compat_env compat_env_fin  | 
|
302  | 
and abstractions = env_unchanged sender_unchanged  | 
|
303  | 
receiver_unchanged sender_abstraction receiver_abstraction  | 
|
304  | 
||
305  | 
||
306  | 
(* FIX: this proof should be done with compositionality on trace level, not on  | 
|
307  | 
weak_ref_map level, as done here with fxg_is_weak_ref_map_of_product_IOA  | 
|
308  | 
||
309  | 
Goal "is_weak_ref_map abs system_ioa system_fin_ioa"  | 
|
310  | 
||
311  | 
by (simp_tac (impl_ss delsimps ([srch_ioa_def, rsch_ioa_def, srch_fin_ioa_def,  | 
|
312  | 
rsch_fin_ioa_def] @ env_ioas @ impl_ioas)  | 
|
313  | 
addsimps [system_def, system_fin_def, abs_def,  | 
|
314  | 
impl_ioa_def, impl_fin_ioa_def, sys_IOA,  | 
|
315  | 
sys_fin_IOA]) 1);  | 
|
316  | 
||
317  | 
by (REPEAT (EVERY[rtac fxg_is_weak_ref_map_of_product_IOA 1,  | 
|
318  | 
simp_tac (ss addsimps abstractions) 1,  | 
|
319  | 
rtac conjI 1]));  | 
|
320  | 
||
321  | 
by (ALLGOALS (simp_tac (ss addsimps ext_ss @ compat_ss)));  | 
|
322  | 
||
323  | 
qed "system_refinement";  | 
|
324  | 
*)  | 
|
| 17244 | 325  | 
|
| 
3072
 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 
mueller 
parents:  
diff
changeset
 | 
326  | 
end  |