| 50634 |      1 | (* Author: Alessandro Coglio *)
 | 
|  |      2 | 
 | 
|  |      3 | theory Finite_Lattice
 | 
|  |      4 | imports Product_Lattice
 | 
|  |      5 | begin
 | 
|  |      6 | 
 | 
|  |      7 | text {* A non-empty finite lattice is a complete lattice.
 | 
|  |      8 | Since types are never empty in Isabelle/HOL,
 | 
|  |      9 | a type of classes @{class finite} and @{class lattice}
 | 
|  |     10 | should also have class @{class complete_lattice}.
 | 
|  |     11 | A type class is defined
 | 
|  |     12 | that extends classes @{class finite} and @{class lattice}
 | 
|  |     13 | with the operators @{const bot}, @{const top}, @{const Inf}, and @{const Sup},
 | 
|  |     14 | along with assumptions that define these operators
 | 
|  |     15 | in terms of the ones of classes @{class finite} and @{class lattice}.
 | 
|  |     16 | The resulting class is a subclass of @{class complete_lattice}.
 | 
|  |     17 | Classes @{class bot} and @{class top} already include assumptions that suffice
 | 
|  |     18 | to define the operators @{const bot} and @{const top} (as proved below),
 | 
|  |     19 | and so no explicit assumptions on these two operators are needed
 | 
|  |     20 | in the following type class.%
 | 
|  |     21 | \footnote{The Isabelle/HOL library does not provide
 | 
|  |     22 | syntactic classes for the operators @{const bot} and @{const top}.} *}
 | 
|  |     23 | 
 | 
|  |     24 | class finite_lattice_complete = finite + lattice + bot + top + Inf + Sup +
 | 
|  |     25 | assumes Inf_def: "Inf A = Finite_Set.fold inf top A"
 | 
|  |     26 | assumes Sup_def: "Sup A = Finite_Set.fold sup bot A"
 | 
|  |     27 | -- "No explicit assumptions on @{const bot} or @{const top}."
 | 
|  |     28 | 
 | 
|  |     29 | instance finite_lattice_complete \<subseteq> bounded_lattice ..
 | 
|  |     30 | -- "This subclass relation eases the proof of the next two lemmas."
 | 
|  |     31 | 
 | 
|  |     32 | lemma finite_lattice_complete_bot_def:
 | 
|  |     33 |   "(bot::'a::finite_lattice_complete) = \<Sqinter>\<^bsub>fin\<^esub>UNIV"
 | 
|  |     34 | by (metis finite_UNIV sup_Inf_absorb sup_bot_left iso_tuple_UNIV_I)
 | 
|  |     35 | -- "Derived definition of @{const bot}."
 | 
|  |     36 | 
 | 
|  |     37 | lemma finite_lattice_complete_top_def:
 | 
|  |     38 |   "(top::'a::finite_lattice_complete) = \<Squnion>\<^bsub>fin\<^esub>UNIV"
 | 
|  |     39 | by (metis finite_UNIV inf_Sup_absorb inf_top_left iso_tuple_UNIV_I)
 | 
|  |     40 | -- "Derived definition of @{const top}."
 | 
|  |     41 | 
 | 
|  |     42 | text {* The definitional assumptions
 | 
|  |     43 | on the operators @{const Inf} and @{const Sup}
 | 
|  |     44 | of class @{class finite_lattice_complete}
 | 
|  |     45 | ensure that they yield infimum and supremum,
 | 
|  |     46 | as required for a complete lattice. *}
 | 
|  |     47 | 
 | 
|  |     48 | lemma finite_lattice_complete_Inf_lower:
 | 
|  |     49 |   "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Inf A \<le> x"
 | 
|  |     50 | unfolding Inf_def by (metis finite_code le_inf_iff fold_inf_le_inf)
 | 
|  |     51 | 
 | 
|  |     52 | lemma finite_lattice_complete_Inf_greatest:
 | 
|  |     53 |   "\<forall>x::'a::finite_lattice_complete \<in> A. z \<le> x \<Longrightarrow> z \<le> Inf A"
 | 
|  |     54 | unfolding Inf_def by (metis finite_code inf_le_fold_inf inf_top_right)
 | 
|  |     55 | 
 | 
|  |     56 | lemma finite_lattice_complete_Sup_upper:
 | 
|  |     57 |   "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Sup A \<ge> x"
 | 
|  |     58 | unfolding Sup_def by (metis finite_code le_sup_iff sup_le_fold_sup)
 | 
|  |     59 | 
 | 
|  |     60 | lemma finite_lattice_complete_Sup_least:
 | 
|  |     61 |   "\<forall>x::'a::finite_lattice_complete \<in> A. z \<ge> x \<Longrightarrow> z \<ge> Sup A"
 | 
|  |     62 | unfolding Sup_def by (metis finite_code fold_sup_le_sup sup_bot_right)
 | 
|  |     63 | 
 | 
|  |     64 | instance finite_lattice_complete \<subseteq> complete_lattice
 | 
|  |     65 | proof
 | 
|  |     66 | qed (auto simp:
 | 
|  |     67 |  finite_lattice_complete_Inf_lower
 | 
|  |     68 |  finite_lattice_complete_Inf_greatest
 | 
|  |     69 |  finite_lattice_complete_Sup_upper
 | 
|  |     70 |  finite_lattice_complete_Sup_least)
 | 
|  |     71 | 
 | 
|  |     72 | 
 | 
|  |     73 | text {* The product of two finite lattices is already a finite lattice. *}
 | 
|  |     74 | 
 | 
|  |     75 | lemma finite_Inf_prod:
 | 
|  |     76 |   "Inf(A::('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
 | 
|  |     77 |   Finite_Set.fold inf top A"
 | 
|  |     78 | by (metis Inf_fold_inf finite_code)
 | 
|  |     79 | 
 | 
|  |     80 | lemma finite_Sup_prod:
 | 
|  |     81 |   "Sup (A::('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
 | 
|  |     82 |   Finite_Set.fold sup bot A"
 | 
|  |     83 | by (metis Sup_fold_sup finite_code)
 | 
|  |     84 | 
 | 
|  |     85 | instance prod ::
 | 
|  |     86 |   (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete
 | 
|  |     87 | proof qed (auto simp: finite_Inf_prod finite_Sup_prod)
 | 
|  |     88 | 
 | 
|  |     89 | text {* Functions with a finite domain and with a finite lattice as codomain
 | 
|  |     90 | already form a finite lattice. *}
 | 
|  |     91 | 
 | 
|  |     92 | lemma finite_Inf_fun:
 | 
|  |     93 |   "Inf (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
 | 
|  |     94 |   Finite_Set.fold inf top A"
 | 
|  |     95 | by (metis Inf_fold_inf finite_code)
 | 
|  |     96 | 
 | 
|  |     97 | lemma finite_Sup_fun:
 | 
|  |     98 |   "Sup (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
 | 
|  |     99 |   Finite_Set.fold sup bot A"
 | 
|  |    100 | by (metis Sup_fold_sup finite_code)
 | 
|  |    101 | 
 | 
|  |    102 | instance "fun" :: (finite, finite_lattice_complete) finite_lattice_complete
 | 
|  |    103 | proof qed (auto simp: finite_Inf_fun finite_Sup_fun)
 | 
|  |    104 | 
 | 
|  |    105 | 
 | 
|  |    106 | subsection {* Finite Distributive Lattices *}
 | 
|  |    107 | 
 | 
|  |    108 | text {* A finite distributive lattice is a complete lattice
 | 
|  |    109 | whose @{const inf} and @{const sup} operators
 | 
|  |    110 | distribute over @{const Sup} and @{const Inf}. *}
 | 
|  |    111 | 
 | 
|  |    112 | class finite_distrib_lattice_complete =
 | 
|  |    113 |   distrib_lattice + finite_lattice_complete
 | 
|  |    114 | 
 | 
|  |    115 | lemma finite_distrib_lattice_complete_sup_Inf:
 | 
|  |    116 |   "sup (x::'a::finite_distrib_lattice_complete) (Inf A) = (INF y:A. sup x y)"
 | 
|  |    117 | apply (rule finite_induct)
 | 
|  |    118 | apply (metis finite_code)
 | 
|  |    119 | apply (metis INF_empty Inf_empty sup_top_right)
 | 
|  |    120 | apply (metis INF_insert Inf_insert sup_inf_distrib1)
 | 
|  |    121 | done
 | 
|  |    122 | 
 | 
|  |    123 | lemma finite_distrib_lattice_complete_inf_Sup:
 | 
|  |    124 |   "inf (x::'a::finite_distrib_lattice_complete) (Sup A) = (SUP y:A. inf x y)"
 | 
|  |    125 | apply (rule finite_induct)
 | 
|  |    126 | apply (metis finite_code)
 | 
|  |    127 | apply (metis SUP_empty Sup_empty inf_bot_right)
 | 
|  |    128 | apply (metis SUP_insert Sup_insert inf_sup_distrib1)
 | 
|  |    129 | done
 | 
|  |    130 | 
 | 
|  |    131 | instance finite_distrib_lattice_complete \<subseteq> complete_distrib_lattice
 | 
|  |    132 | proof
 | 
|  |    133 | qed (auto simp:
 | 
|  |    134 |  finite_distrib_lattice_complete_sup_Inf
 | 
|  |    135 |  finite_distrib_lattice_complete_inf_Sup)
 | 
|  |    136 | 
 | 
|  |    137 | text {* The product of two finite distributive lattices
 | 
|  |    138 | is already a finite distributive lattice. *}
 | 
|  |    139 | 
 | 
|  |    140 | instance prod ::
 | 
|  |    141 |   (finite_distrib_lattice_complete, finite_distrib_lattice_complete)
 | 
|  |    142 |   finite_distrib_lattice_complete
 | 
|  |    143 | ..
 | 
|  |    144 | 
 | 
|  |    145 | text {* Functions with a finite domain
 | 
|  |    146 | and with a finite distributive lattice as codomain
 | 
|  |    147 | already form a finite distributive lattice. *}
 | 
|  |    148 | 
 | 
|  |    149 | instance "fun" ::
 | 
|  |    150 |   (finite, finite_distrib_lattice_complete) finite_distrib_lattice_complete
 | 
|  |    151 | ..
 | 
|  |    152 | 
 | 
|  |    153 | 
 | 
|  |    154 | subsection {* Linear Orders *}
 | 
|  |    155 | 
 | 
|  |    156 | text {* A linear order is a distributive lattice.
 | 
|  |    157 | Since in Isabelle/HOL
 | 
|  |    158 | a subclass must have all the parameters of its superclasses,
 | 
|  |    159 | class @{class linorder} cannot be a subclass of @{class distrib_lattice}.
 | 
|  |    160 | So class @{class linorder} is extended with
 | 
|  |    161 | the operators @{const inf} and @{const sup},
 | 
|  |    162 | along with assumptions that define these operators
 | 
|  |    163 | in terms of the ones of class @{class linorder}.
 | 
|  |    164 | The resulting class is a subclass of @{class distrib_lattice}. *}
 | 
|  |    165 | 
 | 
|  |    166 | class linorder_lattice = linorder + inf + sup +
 | 
|  |    167 | assumes inf_def: "inf x y = (if x \<le> y then x else y)"
 | 
|  |    168 | assumes sup_def: "sup x y = (if x \<ge> y then x else y)"
 | 
|  |    169 | 
 | 
|  |    170 | text {* The definitional assumptions
 | 
|  |    171 | on the operators @{const inf} and @{const sup}
 | 
|  |    172 | of class @{class linorder_lattice}
 | 
|  |    173 | ensure that they yield infimum and supremum,
 | 
|  |    174 | and that they distribute over each other,
 | 
|  |    175 | as required for a distributive lattice. *}
 | 
|  |    176 | 
 | 
|  |    177 | lemma linorder_lattice_inf_le1: "inf (x::'a::linorder_lattice) y \<le> x"
 | 
|  |    178 | unfolding inf_def by (metis (full_types) linorder_linear)
 | 
|  |    179 | 
 | 
|  |    180 | lemma linorder_lattice_inf_le2: "inf (x::'a::linorder_lattice) y \<le> y"
 | 
|  |    181 | unfolding inf_def by (metis (full_types) linorder_linear)
 | 
|  |    182 | 
 | 
|  |    183 | lemma linorder_lattice_inf_greatest:
 | 
|  |    184 |   "(x::'a::linorder_lattice) \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> inf y z"
 | 
|  |    185 | unfolding inf_def by (metis (full_types))
 | 
|  |    186 | 
 | 
|  |    187 | lemma linorder_lattice_sup_ge1: "sup (x::'a::linorder_lattice) y \<ge> x"
 | 
|  |    188 | unfolding sup_def by (metis (full_types) linorder_linear)
 | 
|  |    189 | 
 | 
|  |    190 | lemma linorder_lattice_sup_ge2: "sup (x::'a::linorder_lattice) y \<ge> y"
 | 
|  |    191 | unfolding sup_def by (metis (full_types) linorder_linear)
 | 
|  |    192 | 
 | 
|  |    193 | lemma linorder_lattice_sup_least:
 | 
|  |    194 |   "(x::'a::linorder_lattice) \<ge> y \<Longrightarrow> x \<ge> z \<Longrightarrow> x \<ge> sup y z"
 | 
|  |    195 | by (auto simp: sup_def)
 | 
|  |    196 | 
 | 
|  |    197 | lemma linorder_lattice_sup_inf_distrib1:
 | 
|  |    198 |   "sup (x::'a::linorder_lattice) (inf y z) = inf (sup x y) (sup x z)"
 | 
|  |    199 | by (auto simp: inf_def sup_def)
 | 
|  |    200 |  
 | 
|  |    201 | instance linorder_lattice \<subseteq> distrib_lattice
 | 
|  |    202 | proof                                                     
 | 
|  |    203 | qed (auto simp:
 | 
|  |    204 |  linorder_lattice_inf_le1
 | 
|  |    205 |  linorder_lattice_inf_le2
 | 
|  |    206 |  linorder_lattice_inf_greatest
 | 
|  |    207 |  linorder_lattice_sup_ge1
 | 
|  |    208 |  linorder_lattice_sup_ge2
 | 
|  |    209 |  linorder_lattice_sup_least
 | 
|  |    210 |  linorder_lattice_sup_inf_distrib1)
 | 
|  |    211 | 
 | 
|  |    212 | 
 | 
|  |    213 | subsection {* Finite Linear Orders *}
 | 
|  |    214 | 
 | 
|  |    215 | text {* A (non-empty) finite linear order is a complete linear order. *}
 | 
|  |    216 | 
 | 
|  |    217 | class finite_linorder_complete = linorder_lattice + finite_lattice_complete
 | 
|  |    218 | 
 | 
|  |    219 | instance finite_linorder_complete \<subseteq> complete_linorder ..
 | 
|  |    220 | 
 | 
|  |    221 | text {* A (non-empty) finite linear order is a complete lattice
 | 
|  |    222 | whose @{const inf} and @{const sup} operators
 | 
|  |    223 | distribute over @{const Sup} and @{const Inf}. *}
 | 
|  |    224 | 
 | 
|  |    225 | instance finite_linorder_complete \<subseteq> finite_distrib_lattice_complete ..
 | 
|  |    226 | 
 | 
|  |    227 | 
 | 
|  |    228 | end
 |