| author | smolkas | 
| Fri, 11 Jan 2013 14:35:28 +0100 | |
| changeset 50824 | a991d603aac6 | 
| parent 49810 | 53f14f62cca2 | 
| child 53374 | a14d2a854c02 | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Library/RBT_Impl.thy | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 2 | Author: Markus Reiter, TU Muenchen | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 3 | Author: Alexander Krauss, TU Muenchen | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 4 | *) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 5 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 6 | header {* Implementation of Red-Black Trees *}
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 7 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 8 | theory RBT_Impl | 
| 45990 
b7b905b23b2a
incorporated More_Set and More_List into the Main body -- to be consolidated later
 haftmann parents: 
41959diff
changeset | 9 | imports Main | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 10 | begin | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 11 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 12 | text {*
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 13 |   For applications, you should use theory @{text RBT} which defines
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 14 | an abstract type of red-black tree obeying the invariant. | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 15 | *} | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 16 | |
| 35550 | 17 | subsection {* Datatype of RB trees *}
 | 
| 18 | ||
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 19 | datatype color = R | B | 
| 35534 | 20 | datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
 | 
| 21 | ||
| 22 | lemma rbt_cases: | |
| 23 | obtains (Empty) "t = Empty" | |
| 24 | | (Red) l k v r where "t = Branch R l k v r" | |
| 25 | | (Black) l k v r where "t = Branch B l k v r" | |
| 26 | proof (cases t) | |
| 27 | case Empty with that show thesis by blast | |
| 28 | next | |
| 29 | case (Branch c) with that show thesis by (cases c) blast+ | |
| 30 | qed | |
| 31 | ||
| 35550 | 32 | subsection {* Tree properties *}
 | 
| 35534 | 33 | |
| 35550 | 34 | subsubsection {* Content of a tree *}
 | 
| 35 | ||
| 36 | primrec entries :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
 | |
| 35534 | 37 | where | 
| 38 | "entries Empty = []" | |
| 39 | | "entries (Branch _ l k v r) = entries l @ (k,v) # entries r" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 40 | |
| 35550 | 41 | abbreviation (input) entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 42 | where | 
| 35550 | 43 | "entry_in_tree k v t \<equiv> (k, v) \<in> set (entries t)" | 
| 44 | ||
| 45 | definition keys :: "('a, 'b) rbt \<Rightarrow> 'a list" where
 | |
| 46 | "keys t = map fst (entries t)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 47 | |
| 35550 | 48 | lemma keys_simps [simp, code]: | 
| 49 | "keys Empty = []" | |
| 50 | "keys (Branch c l k v r) = keys l @ k # keys r" | |
| 51 | by (simp_all add: keys_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 52 | |
| 35534 | 53 | lemma entry_in_tree_keys: | 
| 35550 | 54 | assumes "(k, v) \<in> set (entries t)" | 
| 55 | shows "k \<in> set (keys t)" | |
| 56 | proof - | |
| 57 | from assms have "fst (k, v) \<in> fst ` set (entries t)" by (rule imageI) | |
| 58 | then show ?thesis by (simp add: keys_def) | |
| 59 | qed | |
| 60 | ||
| 35602 | 61 | lemma keys_entries: | 
| 62 | "k \<in> set (keys t) \<longleftrightarrow> (\<exists>v. (k, v) \<in> set (entries t))" | |
| 63 | by (auto intro: entry_in_tree_keys) (auto simp add: keys_def) | |
| 64 | ||
| 48621 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 65 | lemma non_empty_rbt_keys: | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 66 | "t \<noteq> rbt.Empty \<Longrightarrow> keys t \<noteq> []" | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 67 | by (cases t) simp_all | 
| 35550 | 68 | |
| 69 | subsubsection {* Search tree properties *}
 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 70 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 71 | context ord begin | 
| 35534 | 72 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 73 | definition rbt_less :: "'a \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 74 | where | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 75 | rbt_less_prop: "rbt_less k t \<longleftrightarrow> (\<forall>x\<in>set (keys t). x < k)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 76 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 77 | abbreviation rbt_less_symbol (infix "|\<guillemotleft>" 50) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 78 | where "t |\<guillemotleft> x \<equiv> rbt_less x t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 79 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 80 | definition rbt_greater :: "'a \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
 | 
| 35534 | 81 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 82 | rbt_greater_prop: "rbt_greater k t = (\<forall>x\<in>set (keys t). k < x)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 83 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 84 | lemma rbt_less_simps [simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 85 | "Empty |\<guillemotleft> k = True" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 86 | "Branch c lt kt v rt |\<guillemotleft> k \<longleftrightarrow> kt < k \<and> lt |\<guillemotleft> k \<and> rt |\<guillemotleft> k" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 87 | by (auto simp add: rbt_less_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 88 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 89 | lemma rbt_greater_simps [simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 90 | "k \<guillemotleft>| Empty = True" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 91 | "k \<guillemotleft>| (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> k \<guillemotleft>| lt \<and> k \<guillemotleft>| rt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 92 | by (auto simp add: rbt_greater_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 93 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 94 | lemmas rbt_ord_props = rbt_less_prop rbt_greater_prop | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 95 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 96 | lemmas rbt_greater_nit = rbt_greater_prop entry_in_tree_keys | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 97 | lemmas rbt_less_nit = rbt_less_prop entry_in_tree_keys | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 98 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 99 | lemma (in order) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 100 | shows rbt_less_eq_trans: "l |\<guillemotleft> u \<Longrightarrow> u \<le> v \<Longrightarrow> l |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 101 | and rbt_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 102 | and rbt_greater_eq_trans: "u \<le> v \<Longrightarrow> v \<guillemotleft>| r \<Longrightarrow> u \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 103 | and rbt_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 104 | by (auto simp: rbt_ord_props) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 105 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 106 | primrec rbt_sorted :: "('a, 'b) rbt \<Rightarrow> bool"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 107 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 108 | "rbt_sorted Empty = True" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 109 | | "rbt_sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> rbt_sorted l \<and> rbt_sorted r)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 110 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 111 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 112 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 113 | context linorder begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 114 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 115 | lemma rbt_sorted_entries: | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 116 | "rbt_sorted t \<Longrightarrow> List.sorted (map fst (entries t))" | 
| 35550 | 117 | by (induct t) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 118 | (force simp: sorted_append sorted_Cons rbt_ord_props | 
| 35550 | 119 | dest!: entry_in_tree_keys)+ | 
| 120 | ||
| 121 | lemma distinct_entries: | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 122 | "rbt_sorted t \<Longrightarrow> distinct (map fst (entries t))" | 
| 35550 | 123 | by (induct t) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 124 | (force simp: sorted_append sorted_Cons rbt_ord_props | 
| 35550 | 125 | dest!: entry_in_tree_keys)+ | 
| 126 | ||
| 48621 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 127 | lemma distinct_keys: | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 128 | "rbt_sorted t \<Longrightarrow> distinct (keys t)" | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 129 | by (simp add: distinct_entries keys_def) | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 130 | |
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 131 | |
| 35550 | 132 | subsubsection {* Tree lookup *}
 | 
| 133 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 134 | primrec (in ord) rbt_lookup :: "('a, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
 | 
| 35534 | 135 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 136 | "rbt_lookup Empty k = None" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 137 | | "rbt_lookup (Branch _ l x y r) k = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 138 | (if k < x then rbt_lookup l k else if x < k then rbt_lookup r k else Some y)" | 
| 35534 | 139 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 140 | lemma rbt_lookup_keys: "rbt_sorted t \<Longrightarrow> dom (rbt_lookup t) = set (keys t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 141 | by (induct t) (auto simp: dom_def rbt_greater_prop rbt_less_prop) | 
| 35550 | 142 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 143 | lemma dom_rbt_lookup_Branch: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 144 | "rbt_sorted (Branch c t1 k v t2) \<Longrightarrow> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 145 | dom (rbt_lookup (Branch c t1 k v t2)) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 146 | = Set.insert k (dom (rbt_lookup t1) \<union> dom (rbt_lookup t2))" | 
| 35550 | 147 | proof - | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 148 | assume "rbt_sorted (Branch c t1 k v t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 149 | moreover from this have "rbt_sorted t1" "rbt_sorted t2" by simp_all | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 150 | ultimately show ?thesis by (simp add: rbt_lookup_keys) | 
| 35550 | 151 | qed | 
| 152 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 153 | lemma finite_dom_rbt_lookup [simp, intro!]: "finite (dom (rbt_lookup t))" | 
| 35550 | 154 | proof (induct t) | 
| 155 | case Empty then show ?case by simp | |
| 156 | next | |
| 157 | case (Branch color t1 a b t2) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 158 | let ?A = "Set.insert a (dom (rbt_lookup t1) \<union> dom (rbt_lookup t2))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 159 | have "dom (rbt_lookup (Branch color t1 a b t2)) \<subseteq> ?A" by (auto split: split_if_asm) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 160 | moreover from Branch have "finite (insert a (dom (rbt_lookup t1) \<union> dom (rbt_lookup t2)))" by simp | 
| 35550 | 161 | ultimately show ?case by (rule finite_subset) | 
| 162 | qed | |
| 163 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 164 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 165 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 166 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 167 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 168 | lemma rbt_lookup_rbt_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> rbt_lookup t k = None" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 169 | by (induct t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 170 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 171 | lemma rbt_lookup_rbt_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> rbt_lookup t k = None" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 172 | by (induct t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 173 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 174 | lemma rbt_lookup_Empty: "rbt_lookup Empty = empty" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 175 | by (rule ext) simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 176 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 177 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 178 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 179 | context linorder begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 180 | |
| 35618 | 181 | lemma map_of_entries: | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 182 | "rbt_sorted t \<Longrightarrow> map_of (entries t) = rbt_lookup t" | 
| 35550 | 183 | proof (induct t) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 184 | case Empty thus ?case by (simp add: rbt_lookup_Empty) | 
| 35550 | 185 | next | 
| 186 | case (Branch c t1 k v t2) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 187 | have "rbt_lookup (Branch c t1 k v t2) = rbt_lookup t2 ++ [k\<mapsto>v] ++ rbt_lookup t1" | 
| 35550 | 188 | proof (rule ext) | 
| 189 | fix x | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 190 | from Branch have RBT_SORTED: "rbt_sorted (Branch c t1 k v t2)" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 191 | let ?thesis = "rbt_lookup (Branch c t1 k v t2) x = (rbt_lookup t2 ++ [k \<mapsto> v] ++ rbt_lookup t1) x" | 
| 35550 | 192 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 193 | have DOM_T1: "!!k'. k'\<in>dom (rbt_lookup t1) \<Longrightarrow> k>k'" | 
| 35550 | 194 | proof - | 
| 195 | fix k' | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 196 | from RBT_SORTED have "t1 |\<guillemotleft> k" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 197 | with rbt_less_prop have "\<forall>k'\<in>set (keys t1). k>k'" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 198 | moreover assume "k'\<in>dom (rbt_lookup t1)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 199 | ultimately show "k>k'" using rbt_lookup_keys RBT_SORTED by auto | 
| 35550 | 200 | qed | 
| 201 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 202 | have DOM_T2: "!!k'. k'\<in>dom (rbt_lookup t2) \<Longrightarrow> k<k'" | 
| 35550 | 203 | proof - | 
| 204 | fix k' | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 205 | from RBT_SORTED have "k \<guillemotleft>| t2" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 206 | with rbt_greater_prop have "\<forall>k'\<in>set (keys t2). k<k'" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 207 | moreover assume "k'\<in>dom (rbt_lookup t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 208 | ultimately show "k<k'" using rbt_lookup_keys RBT_SORTED by auto | 
| 35550 | 209 | qed | 
| 210 | ||
| 211 |     {
 | |
| 212 | assume C: "x<k" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 213 | hence "rbt_lookup (Branch c t1 k v t2) x = rbt_lookup t1 x" by simp | 
| 35550 | 214 | moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 215 | moreover have "x \<notin> dom (rbt_lookup t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 216 | proof | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 217 | assume "x \<in> dom (rbt_lookup t2)" | 
| 35550 | 218 | with DOM_T2 have "k<x" by blast | 
| 219 | with C show False by simp | |
| 220 | qed | |
| 221 | ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) | |
| 222 |     } moreover {
 | |
| 223 | assume [simp]: "x=k" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 224 | hence "rbt_lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 225 | moreover have "x \<notin> dom (rbt_lookup t1)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 226 | proof | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 227 | assume "x \<in> dom (rbt_lookup t1)" | 
| 35550 | 228 | with DOM_T1 have "k>x" by blast | 
| 229 | thus False by simp | |
| 230 | qed | |
| 231 | ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) | |
| 232 |     } moreover {
 | |
| 233 | assume C: "x>k" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 234 | hence "rbt_lookup (Branch c t1 k v t2) x = rbt_lookup t2 x" by (simp add: less_not_sym[of k x]) | 
| 35550 | 235 | moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 236 | moreover have "x\<notin>dom (rbt_lookup t1)" proof | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 237 | assume "x\<in>dom (rbt_lookup t1)" | 
| 35550 | 238 | with DOM_T1 have "k>x" by simp | 
| 239 | with C show False by simp | |
| 240 | qed | |
| 241 | ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) | |
| 242 | } ultimately show ?thesis using less_linear by blast | |
| 243 | qed | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 244 | also from Branch | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 245 | have "rbt_lookup t2 ++ [k \<mapsto> v] ++ rbt_lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp | 
| 35618 | 246 | finally show ?case by simp | 
| 35550 | 247 | qed | 
| 248 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 249 | lemma rbt_lookup_in_tree: "rbt_sorted t \<Longrightarrow> rbt_lookup t k = Some v \<longleftrightarrow> (k, v) \<in> set (entries t)" | 
| 35618 | 250 | by (simp add: map_of_entries [symmetric] distinct_entries) | 
| 35602 | 251 | |
| 252 | lemma set_entries_inject: | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 253 | assumes rbt_sorted: "rbt_sorted t1" "rbt_sorted t2" | 
| 35602 | 254 | shows "set (entries t1) = set (entries t2) \<longleftrightarrow> entries t1 = entries t2" | 
| 255 | proof - | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 256 | from rbt_sorted have "distinct (map fst (entries t1))" | 
| 35602 | 257 | "distinct (map fst (entries t2))" | 
| 258 | by (auto intro: distinct_entries) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 259 | with rbt_sorted show ?thesis | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 260 | by (auto intro: map_sorted_distinct_set_unique rbt_sorted_entries simp add: distinct_map) | 
| 35602 | 261 | qed | 
| 35550 | 262 | |
| 263 | lemma entries_eqI: | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 264 | assumes rbt_sorted: "rbt_sorted t1" "rbt_sorted t2" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 265 | assumes rbt_lookup: "rbt_lookup t1 = rbt_lookup t2" | 
| 35602 | 266 | shows "entries t1 = entries t2" | 
| 35550 | 267 | proof - | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 268 | from rbt_sorted rbt_lookup have "map_of (entries t1) = map_of (entries t2)" | 
| 35618 | 269 | by (simp add: map_of_entries) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 270 | with rbt_sorted have "set (entries t1) = set (entries t2)" | 
| 35602 | 271 | by (simp add: map_of_inject_set distinct_entries) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 272 | with rbt_sorted show ?thesis by (simp add: set_entries_inject) | 
| 35602 | 273 | qed | 
| 35550 | 274 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 275 | lemma entries_rbt_lookup: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 276 | assumes "rbt_sorted t1" "rbt_sorted t2" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 277 | shows "entries t1 = entries t2 \<longleftrightarrow> rbt_lookup t1 = rbt_lookup t2" | 
| 35618 | 278 | using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric]) | 
| 35602 | 279 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 280 | lemma rbt_lookup_from_in_tree: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 281 | assumes "rbt_sorted t1" "rbt_sorted t2" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 282 | and "\<And>v. (k, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 283 | shows "rbt_lookup t1 k = rbt_lookup t2 k" | 
| 35602 | 284 | proof - | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 285 | from assms have "k \<in> dom (rbt_lookup t1) \<longleftrightarrow> k \<in> dom (rbt_lookup t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 286 | by (simp add: keys_entries rbt_lookup_keys) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 287 | with assms show ?thesis by (auto simp add: rbt_lookup_in_tree [symmetric]) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 288 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 289 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 290 | end | 
| 35550 | 291 | |
| 292 | subsubsection {* Red-black properties *}
 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 293 | |
| 35534 | 294 | primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 295 | where | 
| 35534 | 296 | "color_of Empty = B" | 
| 297 | | "color_of (Branch c _ _ _ _) = c" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 298 | |
| 35534 | 299 | primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
 | 
| 300 | where | |
| 301 | "bheight Empty = 0" | |
| 302 | | "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)" | |
| 303 | ||
| 304 | primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 305 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 306 | "inv1 Empty = True" | 
| 35534 | 307 | | "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 308 | |
| 35534 | 309 | primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 310 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 311 | "inv1l Empty = True" | 
| 35534 | 312 | | "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 313 | lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 314 | |
| 35534 | 315 | primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 316 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 317 | "inv2 Empty = True" | 
| 35534 | 318 | | "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 319 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 320 | context ord begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 321 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 322 | definition is_rbt :: "('a, 'b) rbt \<Rightarrow> bool" where
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 323 | "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 324 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 325 | lemma is_rbt_rbt_sorted [simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 326 | "is_rbt t \<Longrightarrow> rbt_sorted t" by (simp add: is_rbt_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 327 | |
| 35534 | 328 | theorem Empty_is_rbt [simp]: | 
| 329 | "is_rbt Empty" by (simp add: is_rbt_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 330 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 331 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 332 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 333 | subsection {* Insertion *}
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 334 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 335 | fun (* slow, due to massive case splitting *) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 336 |   balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 337 | where | 
| 35534 | 338 | "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | 
| 339 | "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 340 | "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 341 | "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 342 | "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 343 | "balance a s t b = Branch B a s t b" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 344 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 345 | lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 346 | by (induct l k v r rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 347 | |
| 35534 | 348 | lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 349 | by (induct l k v r rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 350 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 351 | lemma balance_inv2: | 
| 35534 | 352 | assumes "inv2 l" "inv2 r" "bheight l = bheight r" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 353 | shows "inv2 (balance l k v r)" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 354 | using assms | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 355 | by (induct l k v r rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 356 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 357 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 358 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 359 | lemma balance_rbt_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 360 | by (induct a k x b rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 361 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 362 | lemma balance_rbt_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 363 | by (induct a k x b rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 364 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 365 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 366 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 367 | lemma (in linorder) balance_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 368 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 369 | assumes "rbt_sorted l" "rbt_sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 370 | shows "rbt_sorted (balance l k v r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 371 | using assms proof (induct l k v r rule: balance.induct) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 372 |   case ("2_2" a x w b y t c z s va vb vd vc)
 | 
| 35534 | 373 | hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 374 | by (auto simp add: rbt_ord_props) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 375 | hence "y \<guillemotleft>| (Branch B va vb vd vc)" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 376 | with "2_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 377 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 378 |   case ("3_2" va vb vd vc x w b y s c z)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 379 | from "3_2" have "x < y \<and> Branch B va vb vd vc |\<guillemotleft> x" | 
| 35534 | 380 | by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 381 | hence "Branch B va vb vd vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 382 | with "3_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 383 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 384 |   case ("3_3" x w b y s c z t va vb vd vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 385 | from "3_3" have "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 386 | hence "y \<guillemotleft>| Branch B va vb vd vc" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 387 | with "3_3" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 388 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 389 |   case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 390 | hence "x < y \<and> Branch B vd ve vg vf |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 391 | hence 1: "Branch B vd ve vg vf |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 392 | from "3_4" have "y < z \<and> z \<guillemotleft>| Branch B va vb vii vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 393 | hence "y \<guillemotleft>| Branch B va vb vii vc" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 394 | with 1 "3_4" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 395 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 396 |   case ("4_2" va vb vd vc x w b y s c z t dd)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 397 | hence "x < y \<and> Branch B va vb vd vc |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 398 | hence "Branch B va vb vd vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 399 | with "4_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 400 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 401 |   case ("5_2" x w b y s c z t va vb vd vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 402 | hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 403 | hence "y \<guillemotleft>| Branch B va vb vd vc" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 404 | with "5_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 405 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 406 |   case ("5_3" va vb vd vc x w b y s c z t)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 407 | hence "x < y \<and> Branch B va vb vd vc |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 408 | hence "Branch B va vb vd vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 409 | with "5_3" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 410 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 411 |   case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 412 | hence "x < y \<and> Branch B va vb vg vc |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 413 | hence 1: "Branch B va vb vg vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 414 | from "5_4" have "y < z \<and> z \<guillemotleft>| Branch B vd ve vii vf" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 415 | hence "y \<guillemotleft>| Branch B vd ve vii vf" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 416 | with 1 "5_4" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 417 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 418 | |
| 35550 | 419 | lemma entries_balance [simp]: | 
| 420 | "entries (balance l k v r) = entries l @ (k, v) # entries r" | |
| 421 | by (induct l k v r rule: balance.induct) auto | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 422 | |
| 35550 | 423 | lemma keys_balance [simp]: | 
| 424 | "keys (balance l k v r) = keys l @ k # keys r" | |
| 425 | by (simp add: keys_def) | |
| 426 | ||
| 427 | lemma balance_in_tree: | |
| 428 | "entry_in_tree k x (balance l v y r) \<longleftrightarrow> entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r" | |
| 429 | by (auto simp add: keys_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 430 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 431 | lemma (in linorder) rbt_lookup_balance[simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 432 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 433 | assumes "rbt_sorted l" "rbt_sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 434 | shows "rbt_lookup (balance l k v r) x = rbt_lookup (Branch B l k v r) x" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 435 | by (rule rbt_lookup_from_in_tree) (auto simp:assms balance_in_tree balance_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 436 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 437 | primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 438 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 439 | "paint c Empty = Empty" | 
| 35534 | 440 | | "paint c (Branch _ l k v r) = Branch c l k v r" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 441 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 442 | lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 443 | lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 444 | lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto | 
| 35534 | 445 | lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto | 
| 35550 | 446 | lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 447 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 448 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 449 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 450 | lemma paint_rbt_sorted[simp]: "rbt_sorted t \<Longrightarrow> rbt_sorted (paint c t)" by (cases t) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 451 | lemma paint_rbt_lookup[simp]: "rbt_lookup (paint c t) = rbt_lookup t" by (rule ext) (cases t, auto) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 452 | lemma paint_rbt_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 453 | lemma paint_rbt_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 454 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 455 | fun | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 456 |   rbt_ins :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 457 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 458 | "rbt_ins f k v Empty = Branch R Empty k v Empty" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 459 | "rbt_ins f k v (Branch B l x y r) = (if k < x then balance (rbt_ins f k v l) x y r | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 460 | else if k > x then balance l x y (rbt_ins f k v r) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 461 | else Branch B l x (f k y v) r)" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 462 | "rbt_ins f k v (Branch R l x y r) = (if k < x then Branch R (rbt_ins f k v l) x y r | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 463 | else if k > x then Branch R l x y (rbt_ins f k v r) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 464 | else Branch R l x (f k y v) r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 465 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 466 | lemma ins_inv1_inv2: | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 467 | assumes "inv1 t" "inv2 t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 468 | shows "inv2 (rbt_ins f k x t)" "bheight (rbt_ins f k x t) = bheight t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 469 | "color_of t = B \<Longrightarrow> inv1 (rbt_ins f k x t)" "inv1l (rbt_ins f k x t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 470 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 471 | by (induct f k x t rule: rbt_ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 472 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 473 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 474 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 475 | context linorder begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 476 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 477 | lemma ins_rbt_greater[simp]: "(v \<guillemotleft>| rbt_ins f (k :: 'a) x t) = (v \<guillemotleft>| t \<and> k > v)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 478 | by (induct f k x t rule: rbt_ins.induct) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 479 | lemma ins_rbt_less[simp]: "(rbt_ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 480 | by (induct f k x t rule: rbt_ins.induct) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 481 | lemma ins_rbt_sorted[simp]: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_ins f k x t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 482 | by (induct f k x t rule: rbt_ins.induct) (auto simp: balance_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 483 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 484 | lemma keys_ins: "set (keys (rbt_ins f k v t)) = { k } \<union> set (keys t)"
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 485 | by (induct f k v t rule: rbt_ins.induct) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 486 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 487 | lemma rbt_lookup_ins: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 488 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 489 | assumes "rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 490 | shows "rbt_lookup (rbt_ins f k v t) x = ((rbt_lookup t)(k |-> case rbt_lookup t k of None \<Rightarrow> v | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 491 | | Some w \<Rightarrow> f k w v)) x" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 492 | using assms by (induct f k v t rule: rbt_ins.induct) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 493 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 494 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 495 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 496 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 497 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 498 | definition rbt_insert_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 499 | where "rbt_insert_with_key f k v t = paint B (rbt_ins f k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 500 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 501 | definition rbt_insertw_def: "rbt_insert_with f = rbt_insert_with_key (\<lambda>_. f)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 502 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 503 | definition rbt_insert :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 504 | "rbt_insert = rbt_insert_with_key (\<lambda>_ _ nv. nv)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 505 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 506 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 507 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 508 | context linorder begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 509 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 510 | lemma rbt_insertwk_rbt_sorted: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert_with_key f (k :: 'a) x t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 511 | by (auto simp: rbt_insert_with_key_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 512 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 513 | theorem rbt_insertwk_is_rbt: | 
| 35534 | 514 | assumes inv: "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 515 | shows "is_rbt (rbt_insert_with_key f k x t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 516 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 517 | unfolding rbt_insert_with_key_def is_rbt_def | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 518 | by (auto simp: ins_inv1_inv2) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 519 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 520 | lemma rbt_lookup_rbt_insertwk: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 521 | assumes "rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 522 | shows "rbt_lookup (rbt_insert_with_key f k v t) x = ((rbt_lookup t)(k |-> case rbt_lookup t k of None \<Rightarrow> v | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 523 | | Some w \<Rightarrow> f k w v)) x" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 524 | unfolding rbt_insert_with_key_def using assms | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 525 | by (simp add:rbt_lookup_ins) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 526 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 527 | lemma rbt_insertw_rbt_sorted: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert_with f k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 528 | by (simp add: rbt_insertwk_rbt_sorted rbt_insertw_def) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 529 | theorem rbt_insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (rbt_insert_with f k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 530 | by (simp add: rbt_insertwk_is_rbt rbt_insertw_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 531 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 532 | lemma rbt_lookup_rbt_insertw: | 
| 35534 | 533 | assumes "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 534 | shows "rbt_lookup (rbt_insert_with f k v t) = (rbt_lookup t)(k \<mapsto> (if k:dom (rbt_lookup t) then f (the (rbt_lookup t k)) v else v))" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 535 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 536 | unfolding rbt_insertw_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 537 | by (rule_tac ext) (cases "rbt_lookup t k", auto simp:rbt_lookup_rbt_insertwk dom_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 538 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 539 | lemma rbt_insert_rbt_sorted: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 540 | by (simp add: rbt_insertwk_rbt_sorted rbt_insert_def) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 541 | theorem rbt_insert_is_rbt [simp]: "is_rbt t \<Longrightarrow> is_rbt (rbt_insert k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 542 | by (simp add: rbt_insertwk_is_rbt rbt_insert_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 543 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 544 | lemma rbt_lookup_rbt_insert: | 
| 35534 | 545 | assumes "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 546 | shows "rbt_lookup (rbt_insert k v t) = (rbt_lookup t)(k\<mapsto>v)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 547 | unfolding rbt_insert_def | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 548 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 549 | by (rule_tac ext) (simp add: rbt_lookup_rbt_insertwk split:option.split) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 550 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 551 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 552 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 553 | subsection {* Deletion *}
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 554 | |
| 35534 | 555 | lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 556 | by (cases t rule: rbt_cases) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 557 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 558 | fun | 
| 35550 | 559 |   balance_left :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 560 | where | 
| 35550 | 561 | "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" | | 
| 562 | "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" | | |
| 563 | "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" | | |
| 564 | "balance_left t k x s = Empty" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 565 | |
| 35550 | 566 | lemma balance_left_inv2_with_inv1: | 
| 35534 | 567 | assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt" | 
| 35550 | 568 | shows "bheight (balance_left lt k v rt) = bheight lt + 1" | 
| 569 | and "inv2 (balance_left lt k v rt)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 570 | using assms | 
| 35550 | 571 | by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 572 | |
| 35550 | 573 | lemma balance_left_inv2_app: | 
| 35534 | 574 | assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B" | 
| 35550 | 575 | shows "inv2 (balance_left lt k v rt)" | 
| 576 | "bheight (balance_left lt k v rt) = bheight rt" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 577 | using assms | 
| 35550 | 578 | by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 579 | |
| 35550 | 580 | lemma balance_left_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balance_left a k x b)" | 
| 581 | by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+ | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 582 | |
| 35550 | 583 | lemma balance_left_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balance_left lt k x rt)" | 
| 584 | by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 585 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 586 | lemma (in linorder) balance_left_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 587 | "\<lbrakk> rbt_sorted l; rbt_sorted r; rbt_less k l; k \<guillemotleft>| r \<rbrakk> \<Longrightarrow> rbt_sorted (balance_left l k v r)" | 
| 35550 | 588 | apply (induct l k v r rule: balance_left.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 589 | apply (auto simp: balance_rbt_sorted) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 590 | apply (unfold rbt_greater_prop rbt_less_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 591 | by force+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 592 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 593 | context order begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 594 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 595 | lemma balance_left_rbt_greater: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 596 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 597 | assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" | 
| 35550 | 598 | shows "k \<guillemotleft>| balance_left a x t b" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 599 | using assms | 
| 35550 | 600 | by (induct a x t b rule: balance_left.induct) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 601 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 602 | lemma balance_left_rbt_less: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 603 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 604 | assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" | 
| 35550 | 605 | shows "balance_left a x t b |\<guillemotleft> k" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 606 | using assms | 
| 35550 | 607 | by (induct a x t b rule: balance_left.induct) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 608 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 609 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 610 | |
| 35550 | 611 | lemma balance_left_in_tree: | 
| 35534 | 612 | assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r" | 
| 35550 | 613 | shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 614 | using assms | 
| 35550 | 615 | by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 616 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 617 | fun | 
| 35550 | 618 |   balance_right :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 619 | where | 
| 35550 | 620 | "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" | | 
| 621 | "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" | | |
| 622 | "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" | | |
| 623 | "balance_right t k x s = Empty" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 624 | |
| 35550 | 625 | lemma balance_right_inv2_with_inv1: | 
| 35534 | 626 | assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt" | 
| 35550 | 627 | shows "inv2 (balance_right lt k v rt) \<and> bheight (balance_right lt k v rt) = bheight lt" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 628 | using assms | 
| 35550 | 629 | by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 630 | |
| 35550 | 631 | lemma balance_right_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balance_right a k x b)" | 
| 632 | by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+ | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 633 | |
| 35550 | 634 | lemma balance_right_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balance_right lt k x rt)" | 
| 635 | by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 636 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 637 | lemma (in linorder) balance_right_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 638 | "\<lbrakk> rbt_sorted l; rbt_sorted r; rbt_less k l; k \<guillemotleft>| r \<rbrakk> \<Longrightarrow> rbt_sorted (balance_right l k v r)" | 
| 35550 | 639 | apply (induct l k v r rule: balance_right.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 640 | apply (auto simp:balance_rbt_sorted) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 641 | apply (unfold rbt_less_prop rbt_greater_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 642 | by force+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 643 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 644 | context order begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 645 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 646 | lemma balance_right_rbt_greater: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 647 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 648 | assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" | 
| 35550 | 649 | shows "k \<guillemotleft>| balance_right a x t b" | 
| 650 | using assms by (induct a x t b rule: balance_right.induct) auto | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 651 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 652 | lemma balance_right_rbt_less: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 653 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 654 | assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" | 
| 35550 | 655 | shows "balance_right a x t b |\<guillemotleft> k" | 
| 656 | using assms by (induct a x t b rule: balance_right.induct) auto | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 657 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 658 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 659 | |
| 35550 | 660 | lemma balance_right_in_tree: | 
| 35534 | 661 | assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r" | 
| 35550 | 662 | shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)" | 
| 663 | using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 664 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 665 | fun | 
| 35550 | 666 |   combine :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 667 | where | 
| 35550 | 668 | "combine Empty x = x" | 
| 669 | | "combine x Empty = x" | |
| 670 | | "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 671 | Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 672 | bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" | 
| 35550 | 673 | | "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 674 | Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 675 | bc \<Rightarrow> balance_left a k x (Branch B bc s y d))" | 
| 35550 | 676 | | "combine a (Branch R b k x c) = Branch R (combine a b) k x c" | 
| 677 | | "combine (Branch R a k x b) c = Branch R a k x (combine b c)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 678 | |
| 35550 | 679 | lemma combine_inv2: | 
| 35534 | 680 | assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt" | 
| 35550 | 681 | shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 682 | using assms | 
| 35550 | 683 | by (induct lt rt rule: combine.induct) | 
| 684 | (auto simp: balance_left_inv2_app split: rbt.splits color.splits) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 685 | |
| 35550 | 686 | lemma combine_inv1: | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 687 | assumes "inv1 lt" "inv1 rt" | 
| 35550 | 688 | shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (combine lt rt)" | 
| 689 | "inv1l (combine lt rt)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 690 | using assms | 
| 35550 | 691 | by (induct lt rt rule: combine.induct) | 
| 692 | (auto simp: balance_left_inv1 split: rbt.splits color.splits) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 693 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 694 | context linorder begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 695 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 696 | lemma combine_rbt_greater[simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 697 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 698 | assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" | 
| 35550 | 699 | shows "k \<guillemotleft>| combine l r" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 700 | using assms | 
| 35550 | 701 | by (induct l r rule: combine.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 702 | (auto simp: balance_left_rbt_greater split:rbt.splits color.splits) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 703 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 704 | lemma combine_rbt_less[simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 705 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 706 | assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" | 
| 35550 | 707 | shows "combine l r |\<guillemotleft> k" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 708 | using assms | 
| 35550 | 709 | by (induct l r rule: combine.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 710 | (auto simp: balance_left_rbt_less split:rbt.splits color.splits) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 711 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 712 | lemma combine_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 713 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 714 | assumes "rbt_sorted l" "rbt_sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 715 | shows "rbt_sorted (combine l r)" | 
| 35550 | 716 | using assms proof (induct l r rule: combine.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 717 | case (3 a x v b c y w d) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 718 | hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 719 | by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 720 | with 3 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 721 | show ?case | 
| 35550 | 722 | by (cases "combine b c" rule: rbt_cases) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 723 | (auto, (metis combine_rbt_greater combine_rbt_less ineqs ineqs rbt_less_simps(2) rbt_greater_simps(2) rbt_greater_trans rbt_less_trans)+) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 724 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 725 | case (4 a x v b c y w d) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 726 | hence "x < k \<and> rbt_greater k c" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 727 | hence "rbt_greater x c" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 728 | with 4 have 2: "rbt_greater x (combine b c)" by (simp add: combine_rbt_greater) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 729 | from 4 have "k < y \<and> rbt_less k b" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 730 | hence "rbt_less y b" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 731 | with 4 have 3: "rbt_less y (combine b c)" by (simp add: combine_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 732 | show ?case | 
| 35550 | 733 | proof (cases "combine b c" rule: rbt_cases) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 734 | case Empty | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 735 | from 4 have "x < y \<and> rbt_greater y d" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 736 | hence "rbt_greater x d" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 737 | with 4 Empty have "rbt_sorted a" and "rbt_sorted (Branch B Empty y w d)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 738 | and "rbt_less x a" and "rbt_greater x (Branch B Empty y w d)" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 739 | with Empty show ?thesis by (simp add: balance_left_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 740 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 741 | case (Red lta va ka rta) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 742 | with 2 4 have "x < va \<and> rbt_less x a" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 743 | hence 5: "rbt_less va a" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 744 | from Red 3 4 have "va < y \<and> rbt_greater y d" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 745 | hence "rbt_greater va d" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 746 | with Red 2 3 4 5 show ?thesis by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 747 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 748 | case (Black lta va ka rta) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 749 | from 4 have "x < y \<and> rbt_greater y d" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 750 | hence "rbt_greater x d" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 751 | with Black 2 3 4 have "rbt_sorted a" and "rbt_sorted (Branch B (combine b c) y w d)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 752 | and "rbt_less x a" and "rbt_greater x (Branch B (combine b c) y w d)" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 753 | with Black show ?thesis by (simp add: balance_left_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 754 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 755 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 756 | case (5 va vb vd vc b x w c) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 757 | hence "k < x \<and> rbt_less k (Branch B va vb vd vc)" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 758 | hence "rbt_less x (Branch B va vb vd vc)" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 759 | with 5 show ?case by (simp add: combine_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 760 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 761 | case (6 a x v b va vb vd vc) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 762 | hence "x < k \<and> rbt_greater k (Branch B va vb vd vc)" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 763 | hence "rbt_greater x (Branch B va vb vd vc)" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 764 | with 6 show ?case by (simp add: combine_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 765 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 766 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 767 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 768 | |
| 35550 | 769 | lemma combine_in_tree: | 
| 35534 | 770 | assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r" | 
| 35550 | 771 | shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 772 | using assms | 
| 35550 | 773 | proof (induct l r rule: combine.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 774 | case (4 _ _ _ b c) | 
| 35550 | 775 | hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2) | 
| 776 | from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 777 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 778 | show ?case | 
| 35550 | 779 | proof (cases "combine b c" rule: rbt_cases) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 780 | case Empty | 
| 35550 | 781 | with 4 a show ?thesis by (auto simp: balance_left_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 782 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 783 | case (Red lta ka va rta) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 784 | with 4 show ?thesis by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 785 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 786 | case (Black lta ka va rta) | 
| 35550 | 787 | with a b 4 show ?thesis by (auto simp: balance_left_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 788 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 789 | qed (auto split: rbt.splits color.splits) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 790 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 791 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 792 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 793 | fun | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 794 |   rbt_del_from_left :: "'a \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 795 |   rbt_del_from_right :: "'a \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 796 |   rbt_del :: "'a\<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 797 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 798 | "rbt_del x Empty = Empty" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 799 | "rbt_del x (Branch c a y s b) = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 800 | (if x < y then rbt_del_from_left x a y s b | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 801 | else (if x > y then rbt_del_from_right x a y s b else combine a b))" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 802 | "rbt_del_from_left x (Branch B lt z v rt) y s b = balance_left (rbt_del x (Branch B lt z v rt)) y s b" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 803 | "rbt_del_from_left x a y s b = Branch R (rbt_del x a) y s b" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 804 | "rbt_del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (rbt_del x (Branch B lt z v rt))" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 805 | "rbt_del_from_right x a y s b = Branch R a y s (rbt_del x b)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 806 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 807 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 808 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 809 | context linorder begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 810 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 811 | lemma | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 812 | assumes "inv2 lt" "inv1 lt" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 813 | shows | 
| 35534 | 814 | "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow> | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 815 | inv2 (rbt_del_from_left x lt k v rt) \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 816 | bheight (rbt_del_from_left x lt k v rt) = bheight lt \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 817 | (color_of lt = B \<and> color_of rt = B \<and> inv1 (rbt_del_from_left x lt k v rt) \<or> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 818 | (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (rbt_del_from_left x lt k v rt))" | 
| 35534 | 819 | and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow> | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 820 | inv2 (rbt_del_from_right x lt k v rt) \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 821 | bheight (rbt_del_from_right x lt k v rt) = bheight lt \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 822 | (color_of lt = B \<and> color_of rt = B \<and> inv1 (rbt_del_from_right x lt k v rt) \<or> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 823 | (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (rbt_del_from_right x lt k v rt))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 824 | and rbt_del_inv1_inv2: "inv2 (rbt_del x lt) \<and> (color_of lt = R \<and> bheight (rbt_del x lt) = bheight lt \<and> inv1 (rbt_del x lt) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 825 | \<or> color_of lt = B \<and> bheight (rbt_del x lt) = bheight lt - 1 \<and> inv1l (rbt_del x lt))" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 826 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 827 | proof (induct x lt k v rt and x lt k v rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 828 | case (2 y c _ y') | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 829 | have "y = y' \<or> y < y' \<or> y > y'" by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 830 | thus ?case proof (elim disjE) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 831 | assume "y = y'" | 
| 35550 | 832 | with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 833 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 834 | assume "y < y'" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 835 | with 2 show ?thesis by (cases c) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 836 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 837 | assume "y' < y" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 838 | with 2 show ?thesis by (cases c) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 839 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 840 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 841 | case (3 y lt z v rta y' ss bb) | 
| 35550 | 842 | thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 843 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 844 | case (5 y a y' ss lt z v rta) | 
| 35550 | 845 | thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 846 | next | 
| 35534 | 847 |   case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 848 | qed auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 849 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 850 | lemma | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 851 | rbt_del_from_left_rbt_less: "\<lbrakk> lt |\<guillemotleft> v; rt |\<guillemotleft> v; k < v\<rbrakk> \<Longrightarrow> rbt_del_from_left x lt k y rt |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 852 | and rbt_del_from_right_rbt_less: "\<lbrakk>lt |\<guillemotleft> v; rt |\<guillemotleft> v; k < v\<rbrakk> \<Longrightarrow> rbt_del_from_right x lt k y rt |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 853 | and rbt_del_rbt_less: "lt |\<guillemotleft> v \<Longrightarrow> rbt_del x lt |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 854 | by (induct x lt k y rt and x lt k y rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 855 | (auto simp: balance_left_rbt_less balance_right_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 856 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 857 | lemma rbt_del_from_left_rbt_greater: "\<lbrakk>v \<guillemotleft>| lt; v \<guillemotleft>| rt; k > v\<rbrakk> \<Longrightarrow> v \<guillemotleft>| rbt_del_from_left x lt k y rt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 858 | and rbt_del_from_right_rbt_greater: "\<lbrakk>v \<guillemotleft>| lt; v \<guillemotleft>| rt; k > v\<rbrakk> \<Longrightarrow> v \<guillemotleft>| rbt_del_from_right x lt k y rt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 859 | and rbt_del_rbt_greater: "v \<guillemotleft>| lt \<Longrightarrow> v \<guillemotleft>| rbt_del x lt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 860 | by (induct x lt k y rt and x lt k y rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 861 | (auto simp: balance_left_rbt_greater balance_right_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 862 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 863 | lemma "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> k; k \<guillemotleft>| rt\<rbrakk> \<Longrightarrow> rbt_sorted (rbt_del_from_left x lt k y rt)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 864 | and "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> k; k \<guillemotleft>| rt\<rbrakk> \<Longrightarrow> rbt_sorted (rbt_del_from_right x lt k y rt)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 865 | and rbt_del_rbt_sorted: "rbt_sorted lt \<Longrightarrow> rbt_sorted (rbt_del x lt)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 866 | proof (induct x lt k y rt and x lt k y rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 867 | case (3 x lta zz v rta yy ss bb) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 868 | from 3 have "Branch B lta zz v rta |\<guillemotleft> yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 869 | hence "rbt_del x (Branch B lta zz v rta) |\<guillemotleft> yy" by (rule rbt_del_rbt_less) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 870 | with 3 show ?case by (simp add: balance_left_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 871 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 872 |   case ("4_2" x vaa vbb vdd vc yy ss bb)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 873 | hence "Branch R vaa vbb vdd vc |\<guillemotleft> yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 874 | hence "rbt_del x (Branch R vaa vbb vdd vc) |\<guillemotleft> yy" by (rule rbt_del_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 875 | with "4_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 876 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 877 | case (5 x aa yy ss lta zz v rta) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 878 | hence "yy \<guillemotleft>| Branch B lta zz v rta" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 879 | hence "yy \<guillemotleft>| rbt_del x (Branch B lta zz v rta)" by (rule rbt_del_rbt_greater) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 880 | with 5 show ?case by (simp add: balance_right_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 881 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 882 |   case ("6_2" x aa yy ss vaa vbb vdd vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 883 | hence "yy \<guillemotleft>| Branch R vaa vbb vdd vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 884 | hence "yy \<guillemotleft>| rbt_del x (Branch R vaa vbb vdd vc)" by (rule rbt_del_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 885 | with "6_2" show ?case by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 886 | qed (auto simp: combine_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 887 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 888 | lemma "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> kt; kt \<guillemotleft>| rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (rbt_del_from_left x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 889 | and "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> kt; kt \<guillemotleft>| rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (rbt_del_from_right x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 890 | and rbt_del_in_tree: "\<lbrakk>rbt_sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (rbt_del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 891 | proof (induct x lt kt y rt and x lt kt y rt and x t rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 892 | case (2 xx c aa yy ss bb) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 893 | have "xx = yy \<or> xx < yy \<or> xx > yy" by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 894 | from this 2 show ?case proof (elim disjE) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 895 | assume "xx = yy" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 896 | with 2 show ?thesis proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 897 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 898 | from 2 `xx = yy` `xx = k` have "rbt_sorted (Branch c aa yy ss bb) \<and> k = yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 899 | hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: rbt_less_nit rbt_greater_prop) | 
| 35550 | 900 | with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree) | 
| 901 | qed (simp add: combine_in_tree) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 902 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 903 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 904 | case (3 xx lta zz vv rta yy ss bb) | 
| 35534 | 905 | def mt[simp]: mt == "Branch B lta zz vv rta" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 906 | from 3 have "inv2 mt \<and> inv1 mt" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 907 | hence "inv2 (rbt_del xx mt) \<and> (color_of mt = R \<and> bheight (rbt_del xx mt) = bheight mt \<and> inv1 (rbt_del xx mt) \<or> color_of mt = B \<and> bheight (rbt_del xx mt) = bheight mt - 1 \<and> inv1l (rbt_del xx mt))" by (blast dest: rbt_del_inv1_inv2) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 908 | with 3 have 4: "entry_in_tree k v (rbt_del_from_left xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balance_left_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 909 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 910 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 911 | from 3 True have "yy \<guillemotleft>| bb \<and> yy > k" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 912 | hence "k \<guillemotleft>| bb" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 913 | with 3 4 True show ?thesis by (auto simp: rbt_greater_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 914 | qed auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 915 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 916 |   case ("4_1" xx yy ss bb)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 917 | show ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 918 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 919 | with "4_1" have "yy \<guillemotleft>| bb \<and> k < yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 920 | hence "k \<guillemotleft>| bb" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 921 | with "4_1" `xx = k` | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 922 | have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: rbt_greater_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 923 | thus ?thesis by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 924 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 925 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 926 |   case ("4_2" xx vaa vbb vdd vc yy ss bb)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 927 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 928 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 929 | with "4_2" have "k < yy \<and> yy \<guillemotleft>| bb" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 930 | hence "k \<guillemotleft>| bb" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 931 | with True "4_2" show ?thesis by (auto simp: rbt_greater_nit) | 
| 35550 | 932 | qed auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 933 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 934 | case (5 xx aa yy ss lta zz vv rta) | 
| 35534 | 935 | def mt[simp]: mt == "Branch B lta zz vv rta" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 936 | from 5 have "inv2 mt \<and> inv1 mt" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 937 | hence "inv2 (rbt_del xx mt) \<and> (color_of mt = R \<and> bheight (rbt_del xx mt) = bheight mt \<and> inv1 (rbt_del xx mt) \<or> color_of mt = B \<and> bheight (rbt_del xx mt) = bheight mt - 1 \<and> inv1l (rbt_del xx mt))" by (blast dest: rbt_del_inv1_inv2) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 938 | with 5 have 3: "entry_in_tree k v (rbt_del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balance_right_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 939 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 940 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 941 | from 5 True have "aa |\<guillemotleft> yy \<and> yy < k" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 942 | hence "aa |\<guillemotleft> k" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 943 | with 3 5 True show ?thesis by (auto simp: rbt_less_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 944 | qed auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 945 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 946 |   case ("6_1" xx aa yy ss)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 947 | show ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 948 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 949 | with "6_1" have "aa |\<guillemotleft> yy \<and> k > yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 950 | hence "aa |\<guillemotleft> k" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 951 | with "6_1" `xx = k` show ?thesis by (auto simp: rbt_less_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 952 | qed simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 953 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 954 |   case ("6_2" xx aa yy ss vaa vbb vdd vc)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 955 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 956 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 957 | with "6_2" have "k > yy \<and> aa |\<guillemotleft> yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 958 | hence "aa |\<guillemotleft> k" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 959 | with True "6_2" show ?thesis by (auto simp: rbt_less_nit) | 
| 35550 | 960 | qed auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 961 | qed simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 962 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 963 | definition (in ord) rbt_delete where | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 964 | "rbt_delete k t = paint B (rbt_del k t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 965 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 966 | theorem rbt_delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (rbt_delete k t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 967 | proof - | 
| 35534 | 968 | from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 969 | hence "inv2 (rbt_del k t) \<and> (color_of t = R \<and> bheight (rbt_del k t) = bheight t \<and> inv1 (rbt_del k t) \<or> color_of t = B \<and> bheight (rbt_del k t) = bheight t - 1 \<and> inv1l (rbt_del k t))" by (rule rbt_del_inv1_inv2) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 970 | hence "inv2 (rbt_del k t) \<and> inv1l (rbt_del k t)" by (cases "color_of t") auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 971 | with assms show ?thesis | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 972 | unfolding is_rbt_def rbt_delete_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 973 | by (auto intro: paint_rbt_sorted rbt_del_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 974 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 975 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 976 | lemma rbt_delete_in_tree: | 
| 35534 | 977 | assumes "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 978 | shows "entry_in_tree k v (rbt_delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 979 | using assms unfolding is_rbt_def rbt_delete_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 980 | by (auto simp: rbt_del_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 981 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 982 | lemma rbt_lookup_rbt_delete: | 
| 35534 | 983 | assumes is_rbt: "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 984 |   shows "rbt_lookup (rbt_delete k t) = (rbt_lookup t)|`(-{k})"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 985 | proof | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 986 | fix x | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 987 |   show "rbt_lookup (rbt_delete k t) x = (rbt_lookup t |` (-{k})) x" 
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 988 | proof (cases "x = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 989 | assume "x = k" | 
| 35534 | 990 | with is_rbt show ?thesis | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 991 | by (cases "rbt_lookup (rbt_delete k t) k") (auto simp: rbt_lookup_in_tree rbt_delete_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 992 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 993 | assume "x \<noteq> k" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 994 | thus ?thesis | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 995 | by auto (metis is_rbt rbt_delete_is_rbt rbt_delete_in_tree is_rbt_rbt_sorted rbt_lookup_from_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 996 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 997 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 998 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 999 | end | 
| 35550 | 1000 | |
| 1001 | subsection {* Modifying existing entries *}
 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1002 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1003 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1004 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1005 | primrec | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1006 |   rbt_map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1007 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1008 | "rbt_map_entry k f Empty = Empty" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1009 | | "rbt_map_entry k f (Branch c lt x v rt) = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1010 | (if k < x then Branch c (rbt_map_entry k f lt) x v rt | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1011 | else if k > x then (Branch c lt x v (rbt_map_entry k f rt)) | 
| 35602 | 1012 | else Branch c lt x (f v) rt)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1013 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1014 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1015 | lemma rbt_map_entry_color_of: "color_of (rbt_map_entry k f t) = color_of t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1016 | lemma rbt_map_entry_inv1: "inv1 (rbt_map_entry k f t) = inv1 t" by (induct t) (simp add: rbt_map_entry_color_of)+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1017 | lemma rbt_map_entry_inv2: "inv2 (rbt_map_entry k f t) = inv2 t" "bheight (rbt_map_entry k f t) = bheight t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1018 | lemma rbt_map_entry_rbt_greater: "rbt_greater a (rbt_map_entry k f t) = rbt_greater a t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1019 | lemma rbt_map_entry_rbt_less: "rbt_less a (rbt_map_entry k f t) = rbt_less a t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1020 | lemma rbt_map_entry_rbt_sorted: "rbt_sorted (rbt_map_entry k f t) = rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1021 | by (induct t) (simp_all add: rbt_map_entry_rbt_less rbt_map_entry_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1022 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1023 | theorem rbt_map_entry_is_rbt [simp]: "is_rbt (rbt_map_entry k f t) = is_rbt t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1024 | unfolding is_rbt_def by (simp add: rbt_map_entry_inv2 rbt_map_entry_color_of rbt_map_entry_rbt_sorted rbt_map_entry_inv1 ) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1025 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1026 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1027 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1028 | theorem (in linorder) rbt_lookup_rbt_map_entry: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1029 | "rbt_lookup (rbt_map_entry k f t) = (rbt_lookup t)(k := Option.map f (rbt_lookup t k))" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1030 | by (induct t) (auto split: option.splits simp add: fun_eq_iff) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1031 | |
| 35550 | 1032 | subsection {* Mapping all entries *}
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1033 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1034 | primrec | 
| 35602 | 1035 |   map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1036 | where | 
| 35550 | 1037 | "map f Empty = Empty" | 
| 1038 | | "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)" | |
| 32237 
cdc76a42fed4
added missing proof of RBT.map_of_alist_of (contributed by Peter Lammich)
 krauss parents: 
30738diff
changeset | 1039 | |
| 35550 | 1040 | lemma map_entries [simp]: "entries (map f t) = List.map (\<lambda>(k, v). (k, f k v)) (entries t)" | 
| 1041 | by (induct t) auto | |
| 1042 | lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def) | |
| 1043 | lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+ | |
| 1044 | lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+ | |
| 1045 | lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+ | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1046 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1047 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1048 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1049 | lemma map_rbt_greater: "rbt_greater k (map f t) = rbt_greater k t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1050 | lemma map_rbt_less: "rbt_less k (map f t) = rbt_less k t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1051 | lemma map_rbt_sorted: "rbt_sorted (map f t) = rbt_sorted t" by (induct t) (simp add: map_rbt_less map_rbt_greater)+ | 
| 35550 | 1052 | theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1053 | unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_rbt_sorted map_color_of) | 
| 32237 
cdc76a42fed4
added missing proof of RBT.map_of_alist_of (contributed by Peter Lammich)
 krauss parents: 
30738diff
changeset | 1054 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1055 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1056 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1057 | theorem (in linorder) rbt_lookup_map: "rbt_lookup (map f t) x = Option.map (f x) (rbt_lookup t x)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1058 | apply(induct t) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1059 | apply auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1060 | apply(subgoal_tac "x = a") | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1061 | apply auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1062 | done | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1063 | (* FIXME: simproc "antisym less" does not work for linorder context, only for linorder type class | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1064 | by (induct t) auto *) | 
| 35550 | 1065 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1066 | hide_const (open) map | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1067 | |
| 35550 | 1068 | subsection {* Folding over entries *}
 | 
| 1069 | ||
| 1070 | definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
 | |
| 46133 
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
 haftmann parents: 
45990diff
changeset | 1071 | "fold f t = List.fold (prod_case f) (entries t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1072 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1073 | lemma fold_simps [simp]: | 
| 35550 | 1074 | "fold f Empty = id" | 
| 1075 | "fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1076 | by (simp_all add: fold_def fun_eq_iff) | 
| 35534 | 1077 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1078 | lemma fold_code [code]: | 
| 49810 | 1079 | "fold f Empty x = x" | 
| 1080 | "fold f (Branch c lt k v rt) x = fold f rt (f k v (fold f lt x))" | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1081 | by(simp_all) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1082 | |
| 48621 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1083 | (* fold with continuation predicate *) | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1084 | |
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1085 | fun foldi :: "('c \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a :: linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" 
 | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1086 | where | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1087 | "foldi c f Empty s = s" | | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1088 | "foldi c f (Branch col l k v r) s = ( | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1089 | if (c s) then | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1090 | let s' = foldi c f l s in | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1091 | if (c s') then | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1092 | foldi c f r (f k v s') | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1093 | else s' | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1094 | else | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1095 | s | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1096 | )" | 
| 35606 | 1097 | |
| 1098 | subsection {* Bulkloading a tree *}
 | |
| 1099 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1100 | definition (in ord) rbt_bulkload :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1101 | "rbt_bulkload xs = foldr (\<lambda>(k, v). rbt_insert k v) xs Empty" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1102 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1103 | context linorder begin | 
| 35606 | 1104 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1105 | lemma rbt_bulkload_is_rbt [simp, intro]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1106 | "is_rbt (rbt_bulkload xs)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1107 | unfolding rbt_bulkload_def by (induct xs) auto | 
| 35606 | 1108 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1109 | lemma rbt_lookup_rbt_bulkload: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1110 | "rbt_lookup (rbt_bulkload xs) = map_of xs" | 
| 35606 | 1111 | proof - | 
| 1112 | obtain ys where "ys = rev xs" by simp | |
| 1113 | have "\<And>t. is_rbt t \<Longrightarrow> | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1114 | rbt_lookup (List.fold (prod_case rbt_insert) ys t) = rbt_lookup t ++ map_of (rev ys)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1115 | by (induct ys) (simp_all add: rbt_bulkload_def rbt_lookup_rbt_insert prod_case_beta) | 
| 35606 | 1116 | from this Empty_is_rbt have | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1117 | "rbt_lookup (List.fold (prod_case rbt_insert) (rev xs) Empty) = rbt_lookup Empty ++ map_of xs" | 
| 35606 | 1118 | by (simp add: `ys = rev xs`) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1119 | then show ?thesis by (simp add: rbt_bulkload_def rbt_lookup_Empty foldr_conv_fold) | 
| 35606 | 1120 | qed | 
| 1121 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1122 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1123 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1124 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1125 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1126 | subsection {* Building a RBT from a sorted list *}
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1127 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1128 | text {* 
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1129 | These functions have been adapted from | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1130 | Andrew W. Appel, Efficient Verified Red-Black Trees (September 2011) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1131 | *} | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1132 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1133 | fun rbtreeify_f :: "nat \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt \<times> ('a \<times> 'b) list"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1134 |   and rbtreeify_g :: "nat \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt \<times> ('a \<times> 'b) list"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1135 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1136 | "rbtreeify_f n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1137 | (if n = 0 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1138 | else if n = 1 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1139 | case kvs of (k, v) # kvs' \<Rightarrow> (Branch R Empty k v Empty, kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1140 | else if (n mod 2 = 0) then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1141 | case rbtreeify_f (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1142 | apfst (Branch B t1 k v) (rbtreeify_g (n div 2) kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1143 | else case rbtreeify_f (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1144 | apfst (Branch B t1 k v) (rbtreeify_f (n div 2) kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1145 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1146 | | "rbtreeify_g n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1147 | (if n = 0 \<or> n = 1 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1148 | else if n mod 2 = 0 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1149 | case rbtreeify_g (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1150 | apfst (Branch B t1 k v) (rbtreeify_g (n div 2) kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1151 | else case rbtreeify_f (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1152 | apfst (Branch B t1 k v) (rbtreeify_g (n div 2) kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1153 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1154 | definition rbtreeify :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1155 | where "rbtreeify kvs = fst (rbtreeify_g (Suc (length kvs)) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1156 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1157 | declare rbtreeify_f.simps [simp del] rbtreeify_g.simps [simp del] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1158 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1159 | lemma rbtreeify_f_code [code]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1160 | "rbtreeify_f n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1161 | (if n = 0 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1162 | else if n = 1 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1163 | case kvs of (k, v) # kvs' \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1164 | (Branch R Empty k v Empty, kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1165 | else let (n', r) = divmod_nat n 2 in | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1166 | if r = 0 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1167 | case rbtreeify_f n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1168 | apfst (Branch B t1 k v) (rbtreeify_g n' kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1169 | else case rbtreeify_f n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1170 | apfst (Branch B t1 k v) (rbtreeify_f n' kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1171 | by(subst rbtreeify_f.simps)(simp only: Let_def divmod_nat_div_mod prod.simps) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1172 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1173 | lemma rbtreeify_g_code [code]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1174 | "rbtreeify_g n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1175 | (if n = 0 \<or> n = 1 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1176 | else let (n', r) = divmod_nat n 2 in | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1177 | if r = 0 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1178 | case rbtreeify_g n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1179 | apfst (Branch B t1 k v) (rbtreeify_g n' kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1180 | else case rbtreeify_f n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1181 | apfst (Branch B t1 k v) (rbtreeify_g n' kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1182 | by(subst rbtreeify_g.simps)(simp only: Let_def divmod_nat_div_mod prod.simps) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1183 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1184 | lemma Suc_double_half: "Suc (2 * n) div 2 = n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1185 | by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1186 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1187 | lemma div2_plus_div2: "n div 2 + n div 2 = (n :: nat) - n mod 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1188 | by arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1189 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1190 | lemma rbtreeify_f_rec_aux_lemma: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1191 | "\<lbrakk>k - n div 2 = Suc k'; n \<le> k; n mod 2 = Suc 0\<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1192 | \<Longrightarrow> k' - n div 2 = k - n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1193 | apply(rule add_right_imp_eq[where a = "n - n div 2"]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1194 | apply(subst add_diff_assoc2, arith) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1195 | apply(simp add: div2_plus_div2) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1196 | done | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1197 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1198 | lemma rbtreeify_f_simps: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1199 | "rbtreeify_f 0 kvs = (RBT_Impl.Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1200 | "rbtreeify_f (Suc 0) ((k, v) # kvs) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1201 | (Branch R Empty k v Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1202 | "0 < n \<Longrightarrow> rbtreeify_f (2 * n) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1203 | (case rbtreeify_f n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1204 | apfst (Branch B t1 k v) (rbtreeify_g n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1205 | "0 < n \<Longrightarrow> rbtreeify_f (Suc (2 * n)) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1206 | (case rbtreeify_f n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1207 | apfst (Branch B t1 k v) (rbtreeify_f n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1208 | by(subst (1) rbtreeify_f.simps, simp add: Suc_double_half)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1209 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1210 | lemma rbtreeify_g_simps: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1211 | "rbtreeify_g 0 kvs = (Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1212 | "rbtreeify_g (Suc 0) kvs = (Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1213 | "0 < n \<Longrightarrow> rbtreeify_g (2 * n) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1214 | (case rbtreeify_g n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1215 | apfst (Branch B t1 k v) (rbtreeify_g n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1216 | "0 < n \<Longrightarrow> rbtreeify_g (Suc (2 * n)) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1217 | (case rbtreeify_f n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1218 | apfst (Branch B t1 k v) (rbtreeify_g n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1219 | by(subst (1) rbtreeify_g.simps, simp add: Suc_double_half)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1220 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1221 | declare rbtreeify_f_simps[simp] rbtreeify_g_simps[simp] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1222 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1223 | lemma length_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1224 | \<Longrightarrow> length (snd (rbtreeify_f n kvs)) = length kvs - n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1225 | and length_rbtreeify_g:"\<lbrakk> 0 < n; n \<le> Suc (length kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1226 | \<Longrightarrow> length (snd (rbtreeify_g n kvs)) = Suc (length kvs) - n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1227 | proof(induction n kvs and n kvs rule: rbtreeify_f_rbtreeify_g.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1228 | case (1 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1229 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1230 | proof(cases "n \<le> 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1231 | case True thus ?thesis using "1.prems" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1232 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1233 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1234 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1235 | hence "n \<noteq> 0" "n \<noteq> 1" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1236 | note IH = "1.IH"[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1237 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1238 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1239 | case True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1240 | hence "length (snd (rbtreeify_f n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1241 | length (snd (rbtreeify_f (2 * (n div 2)) kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1242 | by(metis minus_nat.diff_0 mult_div_cancel) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1243 | also from "1.prems" False obtain k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1244 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1245 | also have "0 < n div 2" using False by(simp) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1246 | note rbtreeify_f_simps(3)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1247 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1248 | also let ?rest1 = "snd (rbtreeify_f (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1249 | from "1.prems" have "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1250 | with True have len: "length ?rest1 = length kvs - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1251 | with "1.prems" False obtain t1 k' v' kvs'' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1252 | where kvs'': "rbtreeify_f (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1253 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1254 | note this also note prod.simps(2) also note list.simps(5) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1255 | also note prod.simps(2) also note snd_apfst | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1256 | also have "0 < n div 2" "n div 2 \<le> Suc (length kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1257 | using len "1.prems" False unfolding kvs'' by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1258 | with True kvs''[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1259 | have "length (snd (rbtreeify_g (n div 2) kvs'')) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1260 | Suc (length kvs'') - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1261 | finally show ?thesis using len[unfolded kvs''] "1.prems" True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1262 | by(simp add: Suc_diff_le[symmetric] mult_2[symmetric] mult_div_cancel) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1263 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1264 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1265 | hence "length (snd (rbtreeify_f n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1266 | length (snd (rbtreeify_f (Suc (2 * (n div 2))) kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1267 | by(metis Suc_eq_plus1_left comm_semiring_1_class.normalizing_semiring_rules(7) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1268 | mod_2_not_eq_zero_eq_one_nat semiring_div_class.mod_div_equality') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1269 | also from "1.prems" `\<not> n \<le> 1` obtain k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1270 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1271 | also have "0 < n div 2" using `\<not> n \<le> 1` by(simp) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1272 | note rbtreeify_f_simps(4)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1273 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1274 | also let ?rest1 = "snd (rbtreeify_f (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1275 | from "1.prems" have "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1276 | with False have len: "length ?rest1 = length kvs - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1277 | with "1.prems" `\<not> n \<le> 1` obtain t1 k' v' kvs'' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1278 | where kvs'': "rbtreeify_f (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1279 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1280 | note this also note prod.simps(2) also note list.simps(5) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1281 | also note prod.simps(2) also note snd_apfst | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1282 | also have "n div 2 \<le> length kvs''" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1283 | using len "1.prems" False unfolding kvs'' by simp arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1284 | with False kvs''[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1285 | have "length (snd (rbtreeify_f (n div 2) kvs'')) = length kvs'' - n div 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1286 | by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1287 | finally show ?thesis using len[unfolded kvs''] "1.prems" False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1288 | by simp(rule rbtreeify_f_rec_aux_lemma[OF sym]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1289 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1290 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1291 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1292 | case (2 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1293 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1294 | proof(cases "n > 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1295 | case False with `0 < n` show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1296 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1297 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1298 | case True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1299 | hence "\<not> (n = 0 \<or> n = 1)" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1300 | note IH = "2.IH"[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1301 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1302 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1303 | case True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1304 | hence "length (snd (rbtreeify_g n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1305 | length (snd (rbtreeify_g (2 * (n div 2)) kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1306 | by(metis minus_nat.diff_0 mult_div_cancel) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1307 | also from "2.prems" True obtain k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1308 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1309 | also have "0 < n div 2" using `1 < n` by(simp) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1310 | note rbtreeify_g_simps(3)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1311 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1312 | also let ?rest1 = "snd (rbtreeify_g (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1313 | from "2.prems" `1 < n` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1314 | have "0 < n div 2" "n div 2 \<le> Suc (length kvs)" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1315 | with True have len: "length ?rest1 = Suc (length kvs) - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1316 | with "2.prems" obtain t1 k' v' kvs'' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1317 | where kvs'': "rbtreeify_g (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1318 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1319 | note this also note prod.simps(2) also note list.simps(5) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1320 | also note prod.simps(2) also note snd_apfst | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1321 | also have "n div 2 \<le> Suc (length kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1322 | using len "2.prems" unfolding kvs'' by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1323 | with True kvs''[symmetric] refl refl `0 < n div 2` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1324 | have "length (snd (rbtreeify_g (n div 2) kvs'')) = Suc (length kvs'') - n div 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1325 | by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1326 | finally show ?thesis using len[unfolded kvs''] "2.prems" True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1327 | by(simp add: Suc_diff_le[symmetric] mult_2[symmetric] mult_div_cancel) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1328 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1329 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1330 | hence "length (snd (rbtreeify_g n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1331 | length (snd (rbtreeify_g (Suc (2 * (n div 2))) kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1332 | by(metis Suc_eq_plus1_left comm_semiring_1_class.normalizing_semiring_rules(7) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1333 | mod_2_not_eq_zero_eq_one_nat semiring_div_class.mod_div_equality') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1334 | also from "2.prems" `1 < n` obtain k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1335 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1336 | also have "0 < n div 2" using `1 < n` by(simp) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1337 | note rbtreeify_g_simps(4)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1338 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1339 | also let ?rest1 = "snd (rbtreeify_f (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1340 | from "2.prems" have "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1341 | with False have len: "length ?rest1 = length kvs - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1342 | with "2.prems" `1 < n` False obtain t1 k' v' kvs'' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1343 | where kvs'': "rbtreeify_f (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1344 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm, arith) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1345 | note this also note prod.simps(2) also note list.simps(5) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1346 | also note prod.simps(2) also note snd_apfst | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1347 | also have "n div 2 \<le> Suc (length kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1348 | using len "2.prems" False unfolding kvs'' by simp arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1349 | with False kvs''[symmetric] refl refl `0 < n div 2` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1350 | have "length (snd (rbtreeify_g (n div 2) kvs'')) = Suc (length kvs'') - n div 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1351 | by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1352 | finally show ?thesis using len[unfolded kvs''] "2.prems" False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1353 | by(simp add: div2_plus_div2) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1354 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1355 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1356 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1357 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1358 | lemma rbtreeify_induct [consumes 1, case_names f_0 f_1 f_even f_odd g_0 g_1 g_even g_odd]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1359 | fixes P Q | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1360 | defines "f0 == (\<And>kvs. P 0 kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1361 | and "f1 == (\<And>k v kvs. P (Suc 0) ((k, v) # kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1362 | and "feven == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1363 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> length kvs; P n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1364 | rbtreeify_f n kvs = (t, (k, v) # kvs'); n \<le> Suc (length kvs'); Q n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1365 | \<Longrightarrow> P (2 * n) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1366 | and "fodd == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1367 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> length kvs; P n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1368 | rbtreeify_f n kvs = (t, (k, v) # kvs'); n \<le> length kvs'; P n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1369 | \<Longrightarrow> P (Suc (2 * n)) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1370 | and "g0 == (\<And>kvs. Q 0 kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1371 | and "g1 == (\<And>kvs. Q (Suc 0) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1372 | and "geven == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1373 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> Suc (length kvs); Q n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1374 | rbtreeify_g n kvs = (t, (k, v) # kvs'); n \<le> Suc (length kvs'); Q n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1375 | \<Longrightarrow> Q (2 * n) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1376 | and "godd == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1377 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> length kvs; P n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1378 | rbtreeify_f n kvs = (t, (k, v) # kvs'); n \<le> Suc (length kvs'); Q n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1379 | \<Longrightarrow> Q (Suc (2 * n)) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1380 | shows "\<lbrakk> n \<le> length kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1381 | PROP f0; PROP f1; PROP feven; PROP fodd; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1382 | PROP g0; PROP g1; PROP geven; PROP godd \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1383 | \<Longrightarrow> P n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1384 | and "\<lbrakk> n \<le> Suc (length kvs); | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1385 | PROP f0; PROP f1; PROP feven; PROP fodd; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1386 | PROP g0; PROP g1; PROP geven; PROP godd \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1387 | \<Longrightarrow> Q n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1388 | proof - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1389 | assume f0: "PROP f0" and f1: "PROP f1" and feven: "PROP feven" and fodd: "PROP fodd" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1390 | and g0: "PROP g0" and g1: "PROP g1" and geven: "PROP geven" and godd: "PROP godd" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1391 | show "n \<le> length kvs \<Longrightarrow> P n kvs" and "n \<le> Suc (length kvs) \<Longrightarrow> Q n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1392 | proof(induction rule: rbtreeify_f_rbtreeify_g.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1393 | case (1 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1394 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1395 | proof(cases "n \<le> 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1396 | case True thus ?thesis using "1.prems" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1397 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1398 | (auto simp add: f0[unfolded f0_def] f1[unfolded f1_def]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1399 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1400 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1401 | hence ns: "n \<noteq> 0" "n \<noteq> 1" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1402 | hence ge0: "n div 2 > 0" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1403 | note IH = "1.IH"[OF ns] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1404 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1405 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1406 | case True note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1407 | moreover from "1.prems" have n2: "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1408 | moreover with True have "P (n div 2) kvs" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1409 | moreover from length_rbtreeify_f[OF n2] ge0 "1.prems" obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1410 | where kvs': "rbtreeify_f (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1411 | by(cases "snd (rbtreeify_f (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1412 | (auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1413 | moreover from "1.prems" length_rbtreeify_f[OF n2] ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1414 | have "n div 2 \<le> Suc (length kvs')" by(simp add: kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1415 | moreover with True kvs'[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1416 | have "Q (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1417 | moreover note feven[unfolded feven_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1418 | (* FIXME: why does by(rule feven[unfolded feven_def]) not work? *) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1419 | ultimately have "P (2 * (n div 2)) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1420 | thus ?thesis using True by (metis div_mod_equality' minus_nat.diff_0 nat_mult_commute) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1421 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1422 | case False note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1423 | moreover from "1.prems" have n2: "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1424 | moreover with False have "P (n div 2) kvs" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1425 | moreover from length_rbtreeify_f[OF n2] ge0 "1.prems" obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1426 | where kvs': "rbtreeify_f (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1427 | by(cases "snd (rbtreeify_f (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1428 | (auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1429 | moreover from "1.prems" length_rbtreeify_f[OF n2] ge0 False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1430 | have "n div 2 \<le> length kvs'" by(simp add: kvs') arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1431 | moreover with False kvs'[symmetric] refl refl have "P (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1432 | moreover note fodd[unfolded fodd_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1433 | ultimately have "P (Suc (2 * (n div 2))) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1434 | thus ?thesis using False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1435 | by simp (metis One_nat_def Suc_eq_plus1_left le_add_diff_inverse mod_less_eq_dividend mult_div_cancel) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1436 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1437 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1438 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1439 | case (2 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1440 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1441 | proof(cases "n \<le> 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1442 | case True thus ?thesis using "2.prems" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1443 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1444 | (auto simp add: g0[unfolded g0_def] g1[unfolded g1_def]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1445 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1446 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1447 | hence ns: "\<not> (n = 0 \<or> n = 1)" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1448 | hence ge0: "n div 2 > 0" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1449 | note IH = "2.IH"[OF ns] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1450 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1451 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1452 | case True note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1453 | moreover from "2.prems" have n2: "n div 2 \<le> Suc (length kvs)" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1454 | moreover with True have "Q (n div 2) kvs" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1455 | moreover from length_rbtreeify_g[OF ge0 n2] ge0 "2.prems" obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1456 | where kvs': "rbtreeify_g (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1457 | by(cases "snd (rbtreeify_g (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1458 | (auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1459 | moreover from "2.prems" length_rbtreeify_g[OF ge0 n2] ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1460 | have "n div 2 \<le> Suc (length kvs')" by(simp add: kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1461 | moreover with True kvs'[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1462 | have "Q (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1463 | moreover note geven[unfolded geven_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1464 | ultimately have "Q (2 * (n div 2)) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1465 | thus ?thesis using True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1466 | by(metis div_mod_equality' minus_nat.diff_0 nat_mult_commute) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1467 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1468 | case False note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1469 | moreover from "2.prems" have n2: "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1470 | moreover with False have "P (n div 2) kvs" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1471 | moreover from length_rbtreeify_f[OF n2] ge0 "2.prems" False obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1472 | where kvs': "rbtreeify_f (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1473 | by(cases "snd (rbtreeify_f (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1474 | (auto simp add: snd_def split: prod.split_asm, arith) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1475 | moreover from "2.prems" length_rbtreeify_f[OF n2] ge0 False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1476 | have "n div 2 \<le> Suc (length kvs')" by(simp add: kvs') arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1477 | moreover with False kvs'[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1478 | have "Q (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1479 | moreover note godd[unfolded godd_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1480 | ultimately have "Q (Suc (2 * (n div 2))) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1481 | thus ?thesis using False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1482 | by simp (metis One_nat_def Suc_eq_plus1_left le_add_diff_inverse mod_less_eq_dividend mult_div_cancel) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1483 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1484 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1485 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1486 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1487 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1488 | lemma inv1_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1489 | \<Longrightarrow> inv1 (fst (rbtreeify_f n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1490 | and inv1_rbtreeify_g: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1491 | \<Longrightarrow> inv1 (fst (rbtreeify_g n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1492 | by(induct n kvs and n kvs rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1493 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1494 | fun plog2 :: "nat \<Rightarrow> nat" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1495 | where "plog2 n = (if n \<le> 1 then 0 else plog2 (n div 2) + 1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1496 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1497 | declare plog2.simps [simp del] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1498 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1499 | lemma plog2_simps [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1500 | "plog2 0 = 0" "plog2 (Suc 0) = 0" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1501 | "0 < n \<Longrightarrow> plog2 (2 * n) = 1 + plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1502 | "0 < n \<Longrightarrow> plog2 (Suc (2 * n)) = 1 + plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1503 | by(subst plog2.simps, simp add: Suc_double_half)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1504 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1505 | lemma bheight_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1506 | \<Longrightarrow> bheight (fst (rbtreeify_f n kvs)) = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1507 | and bheight_rbtreeify_g: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1508 | \<Longrightarrow> bheight (fst (rbtreeify_g n kvs)) = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1509 | by(induct n kvs and n kvs rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1510 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1511 | lemma bheight_rbtreeify_f_eq_plog2I: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1512 | "\<lbrakk> rbtreeify_f n kvs = (t, kvs'); n \<le> length kvs \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1513 | \<Longrightarrow> bheight t = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1514 | using bheight_rbtreeify_f[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1515 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1516 | lemma bheight_rbtreeify_g_eq_plog2I: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1517 | "\<lbrakk> rbtreeify_g n kvs = (t, kvs'); n \<le> Suc (length kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1518 | \<Longrightarrow> bheight t = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1519 | using bheight_rbtreeify_g[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1520 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1521 | hide_const (open) plog2 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1522 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1523 | lemma inv2_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1524 | \<Longrightarrow> inv2 (fst (rbtreeify_f n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1525 | and inv2_rbtreeify_g: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1526 | \<Longrightarrow> inv2 (fst (rbtreeify_g n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1527 | by(induct n kvs and n kvs rule: rbtreeify_induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1528 | (auto simp add: bheight_rbtreeify_f bheight_rbtreeify_g | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1529 | intro: bheight_rbtreeify_f_eq_plog2I bheight_rbtreeify_g_eq_plog2I) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1530 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1531 | lemma "n \<le> length kvs \<Longrightarrow> True" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1532 | and color_of_rbtreeify_g: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1533 | "\<lbrakk> n \<le> Suc (length kvs); 0 < n \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1534 | \<Longrightarrow> color_of (fst (rbtreeify_g n kvs)) = B" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1535 | by(induct n kvs and n kvs rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1536 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1537 | lemma entries_rbtreeify_f_append: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1538 | "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1539 | \<Longrightarrow> entries (fst (rbtreeify_f n kvs)) @ snd (rbtreeify_f n kvs) = kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1540 | and entries_rbtreeify_g_append: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1541 | "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1542 | \<Longrightarrow> entries (fst (rbtreeify_g n kvs)) @ snd (rbtreeify_g n kvs) = kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1543 | by(induction rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1544 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1545 | lemma length_entries_rbtreeify_f: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1546 | "n \<le> length kvs \<Longrightarrow> length (entries (fst (rbtreeify_f n kvs))) = n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1547 | and length_entries_rbtreeify_g: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1548 | "n \<le> Suc (length kvs) \<Longrightarrow> length (entries (fst (rbtreeify_g n kvs))) = n - 1" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1549 | by(induct rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1550 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1551 | lemma rbtreeify_f_conv_drop: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1552 | "n \<le> length kvs \<Longrightarrow> snd (rbtreeify_f n kvs) = drop n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1553 | using entries_rbtreeify_f_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1554 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_f) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1555 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1556 | lemma rbtreeify_g_conv_drop: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1557 | "n \<le> Suc (length kvs) \<Longrightarrow> snd (rbtreeify_g n kvs) = drop (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1558 | using entries_rbtreeify_g_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1559 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1560 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1561 | lemma entries_rbtreeify_f [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1562 | "n \<le> length kvs \<Longrightarrow> entries (fst (rbtreeify_f n kvs)) = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1563 | using entries_rbtreeify_f_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1564 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_f) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1565 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1566 | lemma entries_rbtreeify_g [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1567 | "n \<le> Suc (length kvs) \<Longrightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1568 | entries (fst (rbtreeify_g n kvs)) = take (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1569 | using entries_rbtreeify_g_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1570 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1571 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1572 | lemma keys_rbtreeify_f [simp]: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1573 | \<Longrightarrow> keys (fst (rbtreeify_f n kvs)) = take n (map fst kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1574 | by(simp add: keys_def take_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1575 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1576 | lemma keys_rbtreeify_g [simp]: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1577 | \<Longrightarrow> keys (fst (rbtreeify_g n kvs)) = take (n - 1) (map fst kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1578 | by(simp add: keys_def take_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1579 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1580 | lemma rbtreeify_fD: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1581 | "\<lbrakk> rbtreeify_f n kvs = (t, kvs'); n \<le> length kvs \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1582 | \<Longrightarrow> entries t = take n kvs \<and> kvs' = drop n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1583 | using rbtreeify_f_conv_drop[of n kvs] entries_rbtreeify_f[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1584 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1585 | lemma rbtreeify_gD: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1586 | "\<lbrakk> rbtreeify_g n kvs = (t, kvs'); n \<le> Suc (length kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1587 | \<Longrightarrow> entries t = take (n - 1) kvs \<and> kvs' = drop (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1588 | using rbtreeify_g_conv_drop[of n kvs] entries_rbtreeify_g[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1589 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1590 | lemma entries_rbtreeify [simp]: "entries (rbtreeify kvs) = kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1591 | by(simp add: rbtreeify_def entries_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1592 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1593 | context linorder begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1594 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1595 | lemma rbt_sorted_rbtreeify_f: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1596 | "\<lbrakk> n \<le> length kvs; sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1597 | \<Longrightarrow> rbt_sorted (fst (rbtreeify_f n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1598 | and rbt_sorted_rbtreeify_g: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1599 | "\<lbrakk> n \<le> Suc (length kvs); sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1600 | \<Longrightarrow> rbt_sorted (fst (rbtreeify_g n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1601 | proof(induction n kvs and n kvs rule: rbtreeify_induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1602 | case (f_even n kvs t k v kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1603 | from rbtreeify_fD[OF `rbtreeify_f n kvs = (t, (k, v) # kvs')` `n \<le> length kvs`] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1604 | have "entries t = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1605 | and kvs': "drop n kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1606 | hence unfold: "kvs = take n kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1607 | from `sorted (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1608 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1609 | by(subst (asm) unfold)(auto simp add: sorted_append sorted_Cons) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1610 | moreover from `distinct (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1611 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1612 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1613 | ultimately have "(\<forall>(x, y) \<in> set (take n kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1614 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1615 | hence "fst (rbtreeify_f n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_g n kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1616 | using `n \<le> Suc (length kvs')` `n \<le> length kvs` set_take_subset[of "n - 1" kvs'] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1617 | by(auto simp add: ord.rbt_greater_prop ord.rbt_less_prop take_map split_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1618 | moreover from `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1619 | have "rbt_sorted (fst (rbtreeify_f n kvs))" by(rule f_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1620 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1621 | using `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1622 | by(subst (asm) (1 2) unfold, simp add: sorted_append sorted_Cons)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1623 | hence "rbt_sorted (fst (rbtreeify_g n kvs'))" by(rule f_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1624 | ultimately show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1625 | using `0 < n` `rbtreeify_f n kvs = (t, (k, v) # kvs')` by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1626 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1627 | case (f_odd n kvs t k v kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1628 | from rbtreeify_fD[OF `rbtreeify_f n kvs = (t, (k, v) # kvs')` `n \<le> length kvs`] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1629 | have "entries t = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1630 | and kvs': "drop n kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1631 | hence unfold: "kvs = take n kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1632 | from `sorted (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1633 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1634 | by(subst (asm) unfold)(auto simp add: sorted_append sorted_Cons) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1635 | moreover from `distinct (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1636 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1637 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1638 | ultimately have "(\<forall>(x, y) \<in> set (take n kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1639 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1640 | hence "fst (rbtreeify_f n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_f n kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1641 | using `n \<le> length kvs'` `n \<le> length kvs` set_take_subset[of n kvs'] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1642 | by(auto simp add: rbt_greater_prop rbt_less_prop take_map split_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1643 | moreover from `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1644 | have "rbt_sorted (fst (rbtreeify_f n kvs))" by(rule f_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1645 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1646 | using `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1647 | by(subst (asm) (1 2) unfold, simp add: sorted_append sorted_Cons)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1648 | hence "rbt_sorted (fst (rbtreeify_f n kvs'))" by(rule f_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1649 | ultimately show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1650 | using `0 < n` `rbtreeify_f n kvs = (t, (k, v) # kvs')` by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1651 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1652 | case (g_even n kvs t k v kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1653 | from rbtreeify_gD[OF `rbtreeify_g n kvs = (t, (k, v) # kvs')` `n \<le> Suc (length kvs)`] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1654 | have t: "entries t = take (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1655 | and kvs': "drop (n - 1) kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1656 | hence unfold: "kvs = take (n - 1) kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1657 | from `sorted (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1658 | have "(\<forall>(x, y) \<in> set (take (n - 1) kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1659 | by(subst (asm) unfold)(auto simp add: sorted_append sorted_Cons) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1660 | moreover from `distinct (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1661 | have "(\<forall>(x, y) \<in> set (take (n - 1) kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1662 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1663 | ultimately have "(\<forall>(x, y) \<in> set (take (n - 1) kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1664 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1665 | hence "fst (rbtreeify_g n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_g n kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1666 | using `n \<le> Suc (length kvs')` `n \<le> Suc (length kvs)` set_take_subset[of "n - 1" kvs'] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1667 | by(auto simp add: rbt_greater_prop rbt_less_prop take_map split_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1668 | moreover from `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1669 | have "rbt_sorted (fst (rbtreeify_g n kvs))" by(rule g_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1670 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1671 | using `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1672 | by(subst (asm) (1 2) unfold, simp add: sorted_append sorted_Cons)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1673 | hence "rbt_sorted (fst (rbtreeify_g n kvs'))" by(rule g_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1674 | ultimately show ?case using `0 < n` `rbtreeify_g n kvs = (t, (k, v) # kvs')` by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1675 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1676 | case (g_odd n kvs t k v kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1677 | from rbtreeify_fD[OF `rbtreeify_f n kvs = (t, (k, v) # kvs')` `n \<le> length kvs`] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1678 | have "entries t = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1679 | and kvs': "drop n kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1680 | hence unfold: "kvs = take n kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1681 | from `sorted (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1682 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1683 | by(subst (asm) unfold)(auto simp add: sorted_append sorted_Cons) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1684 | moreover from `distinct (map fst kvs)` kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1685 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1686 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1687 | ultimately have "(\<forall>(x, y) \<in> set (take n kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1688 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1689 | hence "fst (rbtreeify_f n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_g n kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1690 | using `n \<le> Suc (length kvs')` `n \<le> length kvs` set_take_subset[of "n - 1" kvs'] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1691 | by(auto simp add: rbt_greater_prop rbt_less_prop take_map split_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1692 | moreover from `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1693 | have "rbt_sorted (fst (rbtreeify_f n kvs))" by(rule g_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1694 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1695 | using `sorted (map fst kvs)` `distinct (map fst kvs)` | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1696 | by(subst (asm) (1 2) unfold, simp add: sorted_append sorted_Cons)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1697 | hence "rbt_sorted (fst (rbtreeify_g n kvs'))" by(rule g_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1698 | ultimately show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1699 | using `0 < n` `rbtreeify_f n kvs = (t, (k, v) # kvs')` by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1700 | qed simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1701 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1702 | lemma rbt_sorted_rbtreeify: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1703 | "\<lbrakk> sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> \<Longrightarrow> rbt_sorted (rbtreeify kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1704 | by(simp add: rbtreeify_def rbt_sorted_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1705 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1706 | lemma is_rbt_rbtreeify: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1707 | "\<lbrakk> sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1708 | \<Longrightarrow> is_rbt (rbtreeify kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1709 | by(simp add: is_rbt_def rbtreeify_def inv1_rbtreeify_g inv2_rbtreeify_g rbt_sorted_rbtreeify_g color_of_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1710 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1711 | lemma rbt_lookup_rbtreeify: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1712 | "\<lbrakk> sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> \<Longrightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1713 | rbt_lookup (rbtreeify kvs) = map_of kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1714 | by(simp add: map_of_entries[symmetric] rbt_sorted_rbtreeify) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1715 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1716 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1717 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1718 | text {* 
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1719 | Functions to compare the height of two rbt trees, taken from | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1720 | Andrew W. Appel, Efficient Verified Red-Black Trees (September 2011) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1721 | *} | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1722 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1723 | fun skip_red :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1724 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1725 | "skip_red (Branch color.R l k v r) = l" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1726 | | "skip_red t = t" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1727 | |
| 49807 | 1728 | definition skip_black :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1729 | where | 
| 49807 | 1730 | "skip_black t = (let t' = skip_red t in case t' of Branch color.B l k v r \<Rightarrow> l | _ \<Rightarrow> t')" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1731 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1732 | datatype compare = LT | GT | EQ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1733 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1734 | partial_function (tailrec) compare_height :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> compare"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1735 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1736 | "compare_height sx s t tx = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1737 | (case (skip_red sx, skip_red s, skip_red t, skip_red tx) of | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1738 | (Branch _ sx' _ _ _, Branch _ s' _ _ _, Branch _ t' _ _ _, Branch _ tx' _ _ _) \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1739 | compare_height (skip_black sx') s' t' (skip_black tx') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1740 | | (_, rbt.Empty, _, Branch _ _ _ _ _) \<Rightarrow> LT | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1741 | | (Branch _ _ _ _ _, _, rbt.Empty, _) \<Rightarrow> GT | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1742 | | (Branch _ sx' _ _ _, Branch _ s' _ _ _, Branch _ t' _ _ _, rbt.Empty) \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1743 | compare_height (skip_black sx') s' t' rbt.Empty | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1744 | | (rbt.Empty, Branch _ s' _ _ _, Branch _ t' _ _ _, Branch _ tx' _ _ _) \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1745 | compare_height rbt.Empty s' t' (skip_black tx') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1746 | | _ \<Rightarrow> EQ)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1747 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1748 | declare compare_height.simps [code] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1749 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1750 | hide_type (open) compare | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1751 | hide_const (open) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1752 | compare_height skip_black skip_red LT GT EQ compare_case compare_rec | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1753 | Abs_compare Rep_compare compare_rep_set | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1754 | hide_fact (open) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1755 | Abs_compare_cases Abs_compare_induct Abs_compare_inject Abs_compare_inverse | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1756 | Rep_compare Rep_compare_cases Rep_compare_induct Rep_compare_inject Rep_compare_inverse | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1757 | compare.simps compare.exhaust compare.induct compare.recs compare.simps | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1758 | compare.size compare.case_cong compare.weak_case_cong compare.cases | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1759 | compare.nchotomy compare.split compare.split_asm compare_rec_def | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1760 | compare.eq.refl compare.eq.simps | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1761 | compare.EQ_def compare.GT_def compare.LT_def | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1762 | equal_compare_def | 
| 49807 | 1763 | skip_red_def skip_red.simps skip_red.cases skip_red.induct | 
| 1764 | skip_black_def | |
| 1765 | compare_height_def compare_height.simps | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1766 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1767 | subsection {* union and intersection of sorted associative lists *}
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1768 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1769 | context ord begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1770 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1771 | function sunion_with :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list" 
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1772 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1773 | "sunion_with f ((k, v) # as) ((k', v') # bs) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1774 | (if k > k' then (k', v') # sunion_with f ((k, v) # as) bs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1775 | else if k < k' then (k, v) # sunion_with f as ((k', v') # bs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1776 | else (k, f k v v') # sunion_with f as bs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1777 | | "sunion_with f [] bs = bs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1778 | | "sunion_with f as [] = as" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1779 | by pat_completeness auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1780 | termination by lexicographic_order | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1781 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1782 | function sinter_with :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1783 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1784 | "sinter_with f ((k, v) # as) ((k', v') # bs) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1785 | (if k > k' then sinter_with f ((k, v) # as) bs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1786 | else if k < k' then sinter_with f as ((k', v') # bs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1787 | else (k, f k v v') # sinter_with f as bs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1788 | | "sinter_with f [] _ = []" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1789 | | "sinter_with f _ [] = []" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1790 | by pat_completeness auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1791 | termination by lexicographic_order | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1792 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1793 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1794 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1795 | declare ord.sunion_with.simps [code] ord.sinter_with.simps[code] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1796 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1797 | context linorder begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1798 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1799 | lemma set_fst_sunion_with: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1800 | "set (map fst (sunion_with f xs ys)) = set (map fst xs) \<union> set (map fst ys)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1801 | by(induct f xs ys rule: sunion_with.induct) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1802 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1803 | lemma sorted_sunion_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1804 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1805 | \<Longrightarrow> sorted (map fst (sunion_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1806 | by(induct f xs ys rule: sunion_with.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1807 | (auto simp add: sorted_Cons set_fst_sunion_with simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1808 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1809 | lemma distinct_sunion_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1810 | "\<lbrakk> distinct (map fst xs); distinct (map fst ys); sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1811 | \<Longrightarrow> distinct (map fst (sunion_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1812 | proof(induct f xs ys rule: sunion_with.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1813 | case (1 f k v xs k' v' ys) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1814 | have "\<lbrakk> \<not> k < k'; \<not> k' < k \<rbrakk> \<Longrightarrow> k = k'" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1815 | thus ?case using "1" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1816 | by(auto simp add: set_fst_sunion_with sorted_Cons simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1817 | qed simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1818 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1819 | lemma map_of_sunion_with: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1820 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1821 | \<Longrightarrow> map_of (sunion_with f xs ys) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1822 | (case map_of xs k of None \<Rightarrow> map_of ys k | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1823 | | Some v \<Rightarrow> case map_of ys k of None \<Rightarrow> Some v | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1824 | | Some w \<Rightarrow> Some (f k v w))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1825 | by(induct f xs ys rule: sunion_with.induct)(auto simp add: sorted_Cons split: option.split dest: map_of_SomeD bspec) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1826 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1827 | lemma set_fst_sinter_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1828 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1829 | \<Longrightarrow> set (map fst (sinter_with f xs ys)) = set (map fst xs) \<inter> set (map fst ys)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1830 | by(induct f xs ys rule: sinter_with.induct)(auto simp add: sorted_Cons simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1831 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1832 | lemma set_fst_sinter_with_subset1: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1833 | "set (map fst (sinter_with f xs ys)) \<subseteq> set (map fst xs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1834 | by(induct f xs ys rule: sinter_with.induct) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1835 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1836 | lemma set_fst_sinter_with_subset2: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1837 | "set (map fst (sinter_with f xs ys)) \<subseteq> set (map fst ys)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1838 | by(induct f xs ys rule: sinter_with.induct)(auto simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1839 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1840 | lemma sorted_sinter_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1841 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1842 | \<Longrightarrow> sorted (map fst (sinter_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1843 | by(induct f xs ys rule: sinter_with.induct)(auto simp add: sorted_Cons simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1844 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1845 | lemma distinct_sinter_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1846 | "\<lbrakk> distinct (map fst xs); distinct (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1847 | \<Longrightarrow> distinct (map fst (sinter_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1848 | proof(induct f xs ys rule: sinter_with.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1849 | case (1 f k v as k' v' bs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1850 | have "\<lbrakk> \<not> k < k'; \<not> k' < k \<rbrakk> \<Longrightarrow> k = k'" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1851 | thus ?case using "1" set_fst_sinter_with_subset1[of f as bs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1852 | set_fst_sinter_with_subset2[of f as bs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1853 | by(auto simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1854 | qed simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1855 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1856 | lemma map_of_sinter_with: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1857 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1858 | \<Longrightarrow> map_of (sinter_with f xs ys) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1859 | (case map_of xs k of None \<Rightarrow> None | Some v \<Rightarrow> Option.map (f k v) (map_of ys k))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1860 | apply(induct f xs ys rule: sinter_with.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1861 | apply(auto simp add: sorted_Cons Option.map_def split: option.splits dest: map_of_SomeD bspec) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1862 | done | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1863 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1864 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1865 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1866 | lemma distinct_map_of_rev: "distinct (map fst xs) \<Longrightarrow> map_of (rev xs) = map_of xs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1867 | by(induct xs)(auto 4 3 simp add: map_add_def intro!: ext split: option.split intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1868 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1869 | lemma map_map_filter: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1870 | "map f (List.map_filter g xs) = List.map_filter (Option.map f \<circ> g) xs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1871 | by(auto simp add: List.map_filter_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1872 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1873 | lemma map_filter_option_map_const: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1874 | "List.map_filter (\<lambda>x. Option.map (\<lambda>y. f x) (g (f x))) xs = filter (\<lambda>x. g x \<noteq> None) (map f xs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1875 | by(auto simp add: map_filter_def filter_map o_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1876 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1877 | lemma set_map_filter: "set (List.map_filter P xs) = the ` (P ` set xs - {None})"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1878 | by(auto simp add: List.map_filter_def intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1879 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1880 | context ord begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1881 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1882 | definition rbt_union_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1883 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1884 | "rbt_union_with_key f t1 t2 = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1885 | (case RBT_Impl.compare_height t1 t1 t2 t2 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1886 | of compare.EQ \<Rightarrow> rbtreeify (sunion_with f (entries t1) (entries t2)) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1887 | | compare.LT \<Rightarrow> fold (rbt_insert_with_key (\<lambda>k v w. f k w v)) t1 t2 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1888 | | compare.GT \<Rightarrow> fold (rbt_insert_with_key f) t2 t1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1889 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1890 | definition rbt_union_with where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1891 | "rbt_union_with f = rbt_union_with_key (\<lambda>_. f)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1892 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1893 | definition rbt_union where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1894 | "rbt_union = rbt_union_with_key (%_ _ rv. rv)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1895 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1896 | definition rbt_inter_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1897 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1898 | "rbt_inter_with_key f t1 t2 = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1899 | (case RBT_Impl.compare_height t1 t1 t2 t2 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1900 | of compare.EQ \<Rightarrow> rbtreeify (sinter_with f (entries t1) (entries t2)) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1901 | | compare.LT \<Rightarrow> rbtreeify (List.map_filter (\<lambda>(k, v). Option.map (\<lambda>w. (k, f k v w)) (rbt_lookup t2 k)) (entries t1)) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1902 | | compare.GT \<Rightarrow> rbtreeify (List.map_filter (\<lambda>(k, v). Option.map (\<lambda>w. (k, f k w v)) (rbt_lookup t1 k)) (entries t2)))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1903 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1904 | definition rbt_inter_with where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1905 | "rbt_inter_with f = rbt_inter_with_key (\<lambda>_. f)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1906 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1907 | definition rbt_inter where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1908 | "rbt_inter = rbt_inter_with_key (\<lambda>_ _ rv. rv)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1909 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1910 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1911 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1912 | context linorder begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1913 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1914 | lemma rbt_sorted_entries_right_unique: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1915 | "\<lbrakk> (k, v) \<in> set (entries t); (k, v') \<in> set (entries t); | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1916 | rbt_sorted t \<rbrakk> \<Longrightarrow> v = v'" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1917 | by(auto dest!: distinct_entries inj_onD[where x="(k, v)" and y="(k, v')"] simp add: distinct_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1918 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1919 | lemma rbt_sorted_fold_rbt_insertwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1920 | "rbt_sorted t \<Longrightarrow> rbt_sorted (List.fold (\<lambda>(k, v). rbt_insert_with_key f k v) xs t)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1921 | by(induct xs rule: rev_induct)(auto simp add: rbt_insertwk_rbt_sorted) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1922 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1923 | lemma is_rbt_fold_rbt_insertwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1924 | assumes "is_rbt t1" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1925 | shows "is_rbt (fold (rbt_insert_with_key f) t2 t1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1926 | proof - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1927 | def xs \<equiv> "entries t2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1928 | from assms show ?thesis unfolding fold_def xs_def[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1929 | by(induct xs rule: rev_induct)(auto simp add: rbt_insertwk_is_rbt) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1930 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1931 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1932 | lemma rbt_lookup_fold_rbt_insertwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1933 | assumes t1: "rbt_sorted t1" and t2: "rbt_sorted t2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1934 | shows "rbt_lookup (fold (rbt_insert_with_key f) t1 t2) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1935 | (case rbt_lookup t1 k of None \<Rightarrow> rbt_lookup t2 k | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1936 | | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> Some v | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1937 | | Some w \<Rightarrow> Some (f k w v))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1938 | proof - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1939 | def xs \<equiv> "entries t1" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1940 | hence dt1: "distinct (map fst xs)" using t1 by(simp add: distinct_entries) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1941 | with t2 show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1942 | unfolding fold_def map_of_entries[OF t1, symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1943 | xs_def[symmetric] distinct_map_of_rev[OF dt1, symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1944 | apply(induct xs rule: rev_induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1945 | apply(auto simp add: rbt_lookup_rbt_insertwk rbt_sorted_fold_rbt_insertwk split: option.splits) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1946 | apply(auto simp add: distinct_map_of_rev intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1947 | done | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1948 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1949 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1950 | lemma is_rbt_rbt_unionwk [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1951 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_union_with_key f t1 t2)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1952 | by(simp add: rbt_union_with_key_def Let_def is_rbt_fold_rbt_insertwk is_rbt_rbtreeify rbt_sorted_entries distinct_entries split: compare.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1953 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1954 | lemma rbt_lookup_rbt_unionwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1955 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1956 | \<Longrightarrow> rbt_lookup (rbt_union_with_key f t1 t2) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1957 | (case rbt_lookup t1 k of None \<Rightarrow> rbt_lookup t2 k | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1958 | | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> Some v | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1959 | | Some w \<Rightarrow> Some (f k v w))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1960 | by(auto simp add: rbt_union_with_key_def Let_def rbt_lookup_fold_rbt_insertwk rbt_sorted_entries distinct_entries map_of_sunion_with map_of_entries rbt_lookup_rbtreeify split: option.split compare.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1961 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1962 | lemma rbt_unionw_is_rbt: "\<lbrakk> is_rbt lt; is_rbt rt \<rbrakk> \<Longrightarrow> is_rbt (rbt_union_with f lt rt)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1963 | by(simp add: rbt_union_with_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1964 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1965 | lemma rbt_union_is_rbt: "\<lbrakk> is_rbt lt; is_rbt rt \<rbrakk> \<Longrightarrow> is_rbt (rbt_union lt rt)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1966 | by(simp add: rbt_union_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1967 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1968 | lemma rbt_lookup_rbt_union: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1969 | "\<lbrakk> rbt_sorted s; rbt_sorted t \<rbrakk> \<Longrightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1970 | rbt_lookup (rbt_union s t) = rbt_lookup s ++ rbt_lookup t" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1971 | by(rule ext)(simp add: rbt_lookup_rbt_unionwk rbt_union_def map_add_def split: option.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1972 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1973 | lemma rbt_interwk_is_rbt [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1974 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_inter_with_key f t1 t2)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1975 | by(auto simp add: rbt_inter_with_key_def Let_def map_map_filter split_def o_def option_map_comp map_filter_option_map_const sorted_filter[where f=id, simplified] rbt_sorted_entries distinct_entries intro: is_rbt_rbtreeify split: compare.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1976 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1977 | lemma rbt_interw_is_rbt: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1978 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_inter_with f t1 t2)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1979 | by(simp add: rbt_inter_with_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1980 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1981 | lemma rbt_inter_is_rbt: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1982 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_inter t1 t2)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1983 | by(simp add: rbt_inter_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1984 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1985 | lemma rbt_lookup_rbt_interwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1986 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1987 | \<Longrightarrow> rbt_lookup (rbt_inter_with_key f t1 t2) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1988 | (case rbt_lookup t1 k of None \<Rightarrow> None | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1989 | | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> None | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1990 | | Some w \<Rightarrow> Some (f k v w))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1991 | by(auto 4 3 simp add: rbt_inter_with_key_def Let_def map_of_entries[symmetric] rbt_lookup_rbtreeify map_map_filter split_def o_def option_map_comp map_filter_option_map_const sorted_filter[where f=id, simplified] rbt_sorted_entries distinct_entries map_of_sinter_with map_of_eq_None_iff set_map_filter split: option.split compare.split intro: rev_image_eqI dest: rbt_sorted_entries_right_unique) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1992 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1993 | lemma rbt_lookup_rbt_inter: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1994 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1995 | \<Longrightarrow> rbt_lookup (rbt_inter t1 t2) = rbt_lookup t2 |` dom (rbt_lookup t1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1996 | by(auto simp add: rbt_inter_def rbt_lookup_rbt_interwk restrict_map_def split: option.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1997 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1998 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1999 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2000 | |
| 49480 | 2001 | subsection {* Code generator setup *}
 | 
| 2002 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2003 | lemmas [code] = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2004 | ord.rbt_less_prop | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2005 | ord.rbt_greater_prop | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2006 | ord.rbt_sorted.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2007 | ord.rbt_lookup.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2008 | ord.is_rbt_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2009 | ord.rbt_ins.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2010 | ord.rbt_insert_with_key_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2011 | ord.rbt_insertw_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2012 | ord.rbt_insert_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2013 | ord.rbt_del_from_left.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2014 | ord.rbt_del_from_right.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2015 | ord.rbt_del.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2016 | ord.rbt_delete_def | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2017 | ord.sunion_with.simps | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2018 | ord.sinter_with.simps | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2019 | ord.rbt_union_with_key_def | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2020 | ord.rbt_union_with_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2021 | ord.rbt_union_def | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2022 | ord.rbt_inter_with_key_def | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2023 | ord.rbt_inter_with_def | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2024 | ord.rbt_inter_def | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2025 | ord.rbt_map_entry.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2026 | ord.rbt_bulkload_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2027 | |
| 49480 | 2028 | text {* More efficient implementations for @{term entries} and @{term keys} *}
 | 
| 2029 | ||
| 2030 | definition gen_entries :: | |
| 2031 |   "(('a \<times> 'b) \<times> ('a, 'b) rbt) list \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
 | |
| 2032 | where | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2033 | "gen_entries kvts t = entries t @ concat (map (\<lambda>(kv, t). kv # entries t) kvts)" | 
| 49480 | 2034 | |
| 2035 | lemma gen_entries_simps [simp, code]: | |
| 2036 | "gen_entries [] Empty = []" | |
| 2037 | "gen_entries ((kv, t) # kvts) Empty = kv # gen_entries kvts t" | |
| 2038 | "gen_entries kvts (Branch c l k v r) = gen_entries (((k, v), r) # kvts) l" | |
| 2039 | by(simp_all add: gen_entries_def) | |
| 2040 | ||
| 2041 | lemma entries_code [code]: | |
| 2042 | "entries = gen_entries []" | |
| 2043 | by(simp add: gen_entries_def fun_eq_iff) | |
| 2044 | ||
| 2045 | definition gen_keys :: "('a \<times> ('a, 'b) rbt) list \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'a list"
 | |
| 2046 | where "gen_keys kts t = RBT_Impl.keys t @ concat (List.map (\<lambda>(k, t). k # keys t) kts)" | |
| 2047 | ||
| 2048 | lemma gen_keys_simps [simp, code]: | |
| 2049 | "gen_keys [] Empty = []" | |
| 2050 | "gen_keys ((k, t) # kts) Empty = k # gen_keys kts t" | |
| 2051 | "gen_keys kts (Branch c l k v r) = gen_keys ((k, r) # kts) l" | |
| 2052 | by(simp_all add: gen_keys_def) | |
| 2053 | ||
| 2054 | lemma keys_code [code]: | |
| 2055 | "keys = gen_keys []" | |
| 2056 | by(simp add: gen_keys_def fun_eq_iff) | |
| 2057 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2058 | text {* Restore original type constraints for constants *}
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2059 | setup {*
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2060 | fold Sign.add_const_constraint | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2061 |     [(@{const_name rbt_less}, SOME @{typ "('a :: order) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2062 |      (@{const_name rbt_greater}, SOME @{typ "('a :: order) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2063 |      (@{const_name rbt_sorted}, SOME @{typ "('a :: linorder, 'b) rbt \<Rightarrow> bool"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2064 |      (@{const_name rbt_lookup}, SOME @{typ "('a :: linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2065 |      (@{const_name is_rbt}, SOME @{typ "('a :: linorder, 'b) rbt \<Rightarrow> bool"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2066 |      (@{const_name rbt_ins}, SOME @{typ "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2067 |      (@{const_name rbt_insert_with_key}, SOME @{typ "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2068 |      (@{const_name rbt_insert_with}, SOME @{typ "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a :: linorder) \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2069 |      (@{const_name rbt_insert}, SOME @{typ "('a :: linorder) \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2070 |      (@{const_name rbt_del_from_left}, SOME @{typ "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2071 |      (@{const_name rbt_del_from_right}, SOME @{typ "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2072 |      (@{const_name rbt_del}, SOME @{typ "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2073 |      (@{const_name rbt_delete}, SOME @{typ "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2074 |      (@{const_name rbt_union_with_key}, SOME @{typ "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2075 |      (@{const_name rbt_union_with}, SOME @{typ "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2076 |      (@{const_name rbt_union}, SOME @{typ "('a\<Colon>linorder,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2077 |      (@{const_name rbt_map_entry}, SOME @{typ "'a\<Colon>linorder \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"}),
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2078 |      (@{const_name rbt_bulkload}, SOME @{typ "('a \<times> 'b) list \<Rightarrow> ('a\<Colon>linorder,'b) rbt"})]
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2079 | *} | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 2080 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2081 | hide_const (open) R B Empty entries keys fold gen_keys gen_entries | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 2082 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 2083 | end |