| author | smolkas | 
| Fri, 11 Jan 2013 14:35:28 +0100 | |
| changeset 50824 | a991d603aac6 | 
| parent 47446 | ed0795caec95 | 
| child 53596 | d29d63460d84 | 
| permissions | -rw-r--r-- | 
| 38622 | 1 | (* Title: HOL/Library/Set_Algebras.thy | 
| 2 | Author: Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 3 | *) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 4 | |
| 38622 | 5 | header {* Algebraic operations on sets *}
 | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 6 | |
| 38622 | 7 | theory Set_Algebras | 
| 30738 | 8 | imports Main | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 9 | begin | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 10 | |
| 19736 | 11 | text {*
 | 
| 38622 | 12 | This library lifts operations like addition and muliplication to | 
| 13 | sets. It was designed to support asymptotic calculations. See the | |
| 14 |   comments at the top of theory @{text BigO}.
 | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 15 | *} | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 16 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 17 | instantiation set :: (plus) plus | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 18 | begin | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 19 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 20 | definition plus_set :: "'a::plus set \<Rightarrow> 'a set \<Rightarrow> 'a set" where | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 21 |   set_plus_def: "A + B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a + b}"
 | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 22 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 23 | instance .. | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 24 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 25 | end | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 26 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 27 | instantiation set :: (times) times | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 28 | begin | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 29 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 30 | definition times_set :: "'a::times set \<Rightarrow> 'a set \<Rightarrow> 'a set" where | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 31 |   set_times_def: "A * B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a * b}"
 | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 32 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 33 | instance .. | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 34 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 35 | end | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 36 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 37 | instantiation set :: (zero) zero | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 38 | begin | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 39 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 40 | definition | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 41 |   set_zero[simp]: "0::('a::zero)set == {0}"
 | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 42 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 43 | instance .. | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 44 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 45 | end | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 46 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 47 | instantiation set :: (one) one | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 48 | begin | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 49 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 50 | definition | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 51 |   set_one[simp]: "1::('a::one)set == {1}"
 | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 52 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 53 | instance .. | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 54 | |
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 55 | end | 
| 25594 | 56 | |
| 38622 | 57 | definition elt_set_plus :: "'a::plus \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "+o" 70) where | 
| 58 |   "a +o B = {c. \<exists>b\<in>B. c = a + b}"
 | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 59 | |
| 38622 | 60 | definition elt_set_times :: "'a::times \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "*o" 80) where | 
| 61 |   "a *o B = {c. \<exists>b\<in>B. c = a * b}"
 | |
| 25594 | 62 | |
| 38622 | 63 | abbreviation (input) elt_set_eq :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infix "=o" 50) where | 
| 64 | "x =o A \<equiv> x \<in> A" | |
| 25594 | 65 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 66 | instance set :: (semigroup_add) semigroup_add | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 67 | by default (force simp add: set_plus_def add.assoc) | 
| 25594 | 68 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 69 | instance set :: (ab_semigroup_add) ab_semigroup_add | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 70 | by default (force simp add: set_plus_def add.commute) | 
| 25594 | 71 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 72 | instance set :: (monoid_add) monoid_add | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 73 | by default (simp_all add: set_plus_def) | 
| 25594 | 74 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 75 | instance set :: (comm_monoid_add) comm_monoid_add | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 76 | by default (simp_all add: set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 77 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 78 | instance set :: (semigroup_mult) semigroup_mult | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 79 | by default (force simp add: set_times_def mult.assoc) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 80 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 81 | instance set :: (ab_semigroup_mult) ab_semigroup_mult | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 82 | by default (force simp add: set_times_def mult.commute) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 83 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 84 | instance set :: (monoid_mult) monoid_mult | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 85 | by default (simp_all add: set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 86 | |
| 47443 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 87 | instance set :: (comm_monoid_mult) comm_monoid_mult | 
| 
aeff49a3369b
backported Set_Algebras to use type classes (basically reverting b3e8d5ec721d from 2008)
 krauss parents: 
44890diff
changeset | 88 | by default (simp_all add: set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 89 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 90 | lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C + D" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 91 | by (auto simp add: set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 92 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 93 | lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C" | 
| 19736 | 94 | by (auto simp add: elt_set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 95 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 96 | lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) + | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 97 | (b +o D) = (a + b) +o (C + D)" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 98 | apply (auto simp add: elt_set_plus_def set_plus_def add_ac) | 
| 19736 | 99 | apply (rule_tac x = "ba + bb" in exI) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 100 | apply (auto simp add: add_ac) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 101 | apply (rule_tac x = "aa + a" in exI) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 102 | apply (auto simp add: add_ac) | 
| 19736 | 103 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 104 | |
| 19736 | 105 | lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) = | 
| 106 | (a + b) +o C" | |
| 107 | by (auto simp add: elt_set_plus_def add_assoc) | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 108 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 109 | lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) + C = | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 110 | a +o (B + C)" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 111 | apply (auto simp add: elt_set_plus_def set_plus_def) | 
| 19736 | 112 | apply (blast intro: add_ac) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 113 | apply (rule_tac x = "a + aa" in exI) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 114 | apply (rule conjI) | 
| 19736 | 115 | apply (rule_tac x = "aa" in bexI) | 
| 116 | apply auto | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 117 | apply (rule_tac x = "ba" in bexI) | 
| 19736 | 118 | apply (auto simp add: add_ac) | 
| 119 | done | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 120 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 121 | theorem set_plus_rearrange4: "C + ((a::'a::comm_monoid_add) +o D) = | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 122 | a +o (C + D)" | 
| 44142 | 123 | apply (auto simp add: elt_set_plus_def set_plus_def add_ac) | 
| 19736 | 124 | apply (rule_tac x = "aa + ba" in exI) | 
| 125 | apply (auto simp add: add_ac) | |
| 126 | done | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 127 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 128 | theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2 | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 129 | set_plus_rearrange3 set_plus_rearrange4 | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 130 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 131 | lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D" | 
| 19736 | 132 | by (auto simp add: elt_set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 133 | |
| 19736 | 134 | lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==>
 | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 135 | C + E <= D + F" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 136 | by (auto simp add: set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 137 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 138 | lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C + D" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 139 | by (auto simp add: elt_set_plus_def set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 140 | |
| 19736 | 141 | lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==> | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 142 | a +o D <= D + C" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 143 | by (auto simp add: elt_set_plus_def set_plus_def add_ac) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 144 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 145 | lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C + D" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 146 | apply (subgoal_tac "a +o B <= a +o D") | 
| 19736 | 147 | apply (erule order_trans) | 
| 148 | apply (erule set_plus_mono3) | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 149 | apply (erule set_plus_mono) | 
| 19736 | 150 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 151 | |
| 19736 | 152 | lemma set_plus_mono_b: "C <= D ==> x : a +o C | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 153 | ==> x : a +o D" | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 154 | apply (frule set_plus_mono) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 155 | apply auto | 
| 19736 | 156 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 157 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 158 | lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C + E ==> | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 159 | x : D + F" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 160 | apply (frule set_plus_mono2) | 
| 19736 | 161 | prefer 2 | 
| 162 | apply force | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 163 | apply assumption | 
| 19736 | 164 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 165 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 166 | lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C + D" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 167 | apply (frule set_plus_mono3) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 168 | apply auto | 
| 19736 | 169 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 170 | |
| 19736 | 171 | lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==> | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 172 | x : a +o D ==> x : D + C" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 173 | apply (frule set_plus_mono4) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 174 | apply auto | 
| 19736 | 175 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 176 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 177 | lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C" | 
| 19736 | 178 | by (auto simp add: elt_set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 179 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 180 | lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A + B" | 
| 44142 | 181 | apply (auto simp add: set_plus_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 182 | apply (rule_tac x = 0 in bexI) | 
| 19736 | 183 | apply (rule_tac x = x in bexI) | 
| 184 | apply (auto simp add: add_ac) | |
| 185 | done | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 186 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 187 | lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C" | 
| 19736 | 188 | by (auto simp add: elt_set_plus_def add_ac diff_minus) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 189 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 190 | lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C" | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 191 | apply (auto simp add: elt_set_plus_def add_ac diff_minus) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 192 | apply (subgoal_tac "a = (a + - b) + b") | 
| 19736 | 193 | apply (rule bexI, assumption, assumption) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 194 | apply (auto simp add: add_ac) | 
| 19736 | 195 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 196 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 197 | lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)" | 
| 19736 | 198 | by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus, | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 199 | assumption) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 200 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 201 | lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C * D" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 202 | by (auto simp add: set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 203 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 204 | lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C" | 
| 19736 | 205 | by (auto simp add: elt_set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 206 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 207 | lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) * | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 208 | (b *o D) = (a * b) *o (C * D)" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 209 | apply (auto simp add: elt_set_times_def set_times_def) | 
| 19736 | 210 | apply (rule_tac x = "ba * bb" in exI) | 
| 211 | apply (auto simp add: mult_ac) | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 212 | apply (rule_tac x = "aa * a" in exI) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 213 | apply (auto simp add: mult_ac) | 
| 19736 | 214 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 215 | |
| 19736 | 216 | lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) = | 
| 217 | (a * b) *o C" | |
| 218 | by (auto simp add: elt_set_times_def mult_assoc) | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 219 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 220 | lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) * C = | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 221 | a *o (B * C)" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 222 | apply (auto simp add: elt_set_times_def set_times_def) | 
| 19736 | 223 | apply (blast intro: mult_ac) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 224 | apply (rule_tac x = "a * aa" in exI) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 225 | apply (rule conjI) | 
| 19736 | 226 | apply (rule_tac x = "aa" in bexI) | 
| 227 | apply auto | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 228 | apply (rule_tac x = "ba" in bexI) | 
| 19736 | 229 | apply (auto simp add: mult_ac) | 
| 230 | done | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 231 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 232 | theorem set_times_rearrange4: "C * ((a::'a::comm_monoid_mult) *o D) = | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 233 | a *o (C * D)" | 
| 44142 | 234 | apply (auto simp add: elt_set_times_def set_times_def | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 235 | mult_ac) | 
| 19736 | 236 | apply (rule_tac x = "aa * ba" in exI) | 
| 237 | apply (auto simp add: mult_ac) | |
| 238 | done | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 239 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 240 | theorems set_times_rearranges = set_times_rearrange set_times_rearrange2 | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 241 | set_times_rearrange3 set_times_rearrange4 | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 242 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 243 | lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D" | 
| 19736 | 244 | by (auto simp add: elt_set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 245 | |
| 19736 | 246 | lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==>
 | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 247 | C * E <= D * F" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 248 | by (auto simp add: set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 249 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 250 | lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C * D" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 251 | by (auto simp add: elt_set_times_def set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 252 | |
| 19736 | 253 | lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==> | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 254 | a *o D <= D * C" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 255 | by (auto simp add: elt_set_times_def set_times_def mult_ac) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 256 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 257 | lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C * D" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 258 | apply (subgoal_tac "a *o B <= a *o D") | 
| 19736 | 259 | apply (erule order_trans) | 
| 260 | apply (erule set_times_mono3) | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 261 | apply (erule set_times_mono) | 
| 19736 | 262 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 263 | |
| 19736 | 264 | lemma set_times_mono_b: "C <= D ==> x : a *o C | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 265 | ==> x : a *o D" | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 266 | apply (frule set_times_mono) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 267 | apply auto | 
| 19736 | 268 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 269 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 270 | lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C * E ==> | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 271 | x : D * F" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 272 | apply (frule set_times_mono2) | 
| 19736 | 273 | prefer 2 | 
| 274 | apply force | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 275 | apply assumption | 
| 19736 | 276 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 277 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 278 | lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C * D" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 279 | apply (frule set_times_mono3) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 280 | apply auto | 
| 19736 | 281 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 282 | |
| 19736 | 283 | lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==> | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 284 | x : a *o D ==> x : D * C" | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 285 | apply (frule set_times_mono4) | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 286 | apply auto | 
| 19736 | 287 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 288 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 289 | lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C" | 
| 19736 | 290 | by (auto simp add: elt_set_times_def) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 291 | |
| 19736 | 292 | lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)= | 
| 293 | (a * b) +o (a *o C)" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
21404diff
changeset | 294 | by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 295 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 296 | lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B + C) = | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 297 | (a *o B) + (a *o C)" | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 298 | apply (auto simp add: set_plus_def elt_set_times_def ring_distribs) | 
| 19736 | 299 | apply blast | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 300 | apply (rule_tac x = "b + bb" in exI) | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
21404diff
changeset | 301 | apply (auto simp add: ring_distribs) | 
| 19736 | 302 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 303 | |
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 304 | lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) * D <= | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 305 | a *o D + C * D" | 
| 44142 | 306 | apply (auto simp add: | 
| 26814 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 307 | elt_set_plus_def elt_set_times_def set_times_def | 
| 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 berghofe parents: 
25764diff
changeset | 308 | set_plus_def ring_distribs) | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 309 | apply auto | 
| 19736 | 310 | done | 
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 311 | |
| 19380 | 312 | theorems set_times_plus_distribs = | 
| 313 | set_times_plus_distrib | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 314 | set_times_plus_distrib2 | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 315 | |
| 19736 | 316 | lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==> | 
| 317 | - a : C" | |
| 318 | by (auto simp add: elt_set_times_def) | |
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 319 | |
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 320 | lemma set_neg_intro2: "(a::'a::ring_1) : C ==> | 
| 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 321 | - a : (- 1) *o C" | 
| 19736 | 322 | by (auto simp add: elt_set_times_def) | 
| 323 | ||
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 324 | lemma set_plus_image: | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 325 | fixes S T :: "'n::semigroup_add set" shows "S + T = (\<lambda>(x, y). x + y) ` (S \<times> T)" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44142diff
changeset | 326 | unfolding set_plus_def by (fastforce simp: image_iff) | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 327 | |
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 328 | lemma set_setsum_alt: | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 329 | assumes fin: "finite I" | 
| 47444 
d21c95af2df7
removed "setsum_set", now subsumed by generic setsum
 krauss parents: 
47443diff
changeset | 330 |   shows "setsum S I = {setsum s I |s. \<forall>i\<in>I. s i \<in> S i}"
 | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 331 | (is "_ = ?setsum I") | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 332 | using fin proof induct | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 333 | case (insert x F) | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 334 | have "setsum S (insert x F) = S x + ?setsum F" | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 335 | using insert.hyps by auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 336 |   also have "...= {s x + setsum s F |s. \<forall> i\<in>insert x F. s i \<in> S i}"
 | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 337 | unfolding set_plus_def | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 338 | proof safe | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 339 | fix y s assume "y \<in> S x" "\<forall>i\<in>F. s i \<in> S i" | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 340 | then show "\<exists>s'. y + setsum s F = s' x + setsum s' F \<and> (\<forall>i\<in>insert x F. s' i \<in> S i)" | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 341 | using insert.hyps | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 342 | by (intro exI[of _ "\<lambda>i. if i \<in> F then s i else y"]) (auto simp add: set_plus_def) | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 343 | qed auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 344 | finally show ?case | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 345 | using insert.hyps by auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 346 | qed auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 347 | |
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 348 | lemma setsum_set_cond_linear: | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 349 |   fixes f :: "('a::comm_monoid_add) set \<Rightarrow> ('b::comm_monoid_add) set"
 | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 350 |   assumes [intro!]: "\<And>A B. P A  \<Longrightarrow> P B  \<Longrightarrow> P (A + B)" "P {0}"
 | 
| 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 351 |     and f: "\<And>A B. P A  \<Longrightarrow> P B \<Longrightarrow> f (A + B) = f A + f B" "f {0} = {0}"
 | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 352 | assumes all: "\<And>i. i \<in> I \<Longrightarrow> P (S i)" | 
| 47444 
d21c95af2df7
removed "setsum_set", now subsumed by generic setsum
 krauss parents: 
47443diff
changeset | 353 | shows "f (setsum S I) = setsum (f \<circ> S) I" | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 354 | proof cases | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 355 | assume "finite I" from this all show ?thesis | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 356 | proof induct | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 357 | case (insert x F) | 
| 47444 
d21c95af2df7
removed "setsum_set", now subsumed by generic setsum
 krauss parents: 
47443diff
changeset | 358 | from `finite F` `\<And>i. i \<in> insert x F \<Longrightarrow> P (S i)` have "P (setsum S F)" | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 359 | by induct auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 360 | with insert show ?case | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 361 | by (simp, subst f) auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 362 | qed (auto intro!: f) | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 363 | qed (auto intro!: f) | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 364 | |
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 365 | lemma setsum_set_linear: | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 366 |   fixes f :: "('a::comm_monoid_add) set => ('b::comm_monoid_add) set"
 | 
| 47445 
69e96e5500df
Set_Algebras: removed syntax \<oplus> and \<otimes>, in favour of plain + and *
 krauss parents: 
47444diff
changeset | 367 |   assumes "\<And>A B. f(A) + f(B) = f(A + B)" "f {0} = {0}"
 | 
| 47444 
d21c95af2df7
removed "setsum_set", now subsumed by generic setsum
 krauss parents: 
47443diff
changeset | 368 | shows "f (setsum S I) = setsum (f \<circ> S) I" | 
| 40887 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 369 | using setsum_set_cond_linear[of "\<lambda>x. True" f I S] assms by auto | 
| 
ee8d0548c148
Prove rel_interior_convex_hull_union (by Grechuck Bogdan).
 hoelzl parents: 
39302diff
changeset | 370 | |
| 47446 | 371 | lemma set_times_Un_distrib: | 
| 372 | "A * (B \<union> C) = A * B \<union> A * C" | |
| 373 | "(A \<union> B) * C = A * C \<union> B * C" | |
| 374 | by (auto simp: set_times_def) | |
| 375 | ||
| 376 | lemma set_times_UNION_distrib: | |
| 377 | "A * UNION I M = UNION I (%i. A * M i)" | |
| 378 | "UNION I M * A = UNION I (%i. M i * A)" | |
| 379 | by (auto simp: set_times_def) | |
| 380 | ||
| 16908 
d374530bfaaa
Added two new theories to HOL/Library: SetsAndFunctions.thy and BigO.thy
 avigad parents: diff
changeset | 381 | end |