| author | wenzelm | 
| Mon, 11 Jul 2016 10:43:27 +0200 | |
| changeset 63433 | aa03b0487bf5 | 
| parent 61890 | f6ded81f5690 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 1 | theory Collecting | 
| 49487 | 2 | imports Complete_Lattice Big_Step ACom | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 3 | begin | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 4 | |
| 51389 | 5 | subsection "The generic Step function" | 
| 6 | ||
| 7 | notation | |
| 8 | sup (infixl "\<squnion>" 65) and | |
| 9 | inf (infixl "\<sqinter>" 70) and | |
| 10 |   bot ("\<bottom>") and
 | |
| 11 |   top ("\<top>")
 | |
| 12 | ||
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 13 | context | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 14 | fixes f :: "vname \<Rightarrow> aexp \<Rightarrow> 'a \<Rightarrow> 'a::sup" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 15 | fixes g :: "bexp \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 16 | begin | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 17 | fun Step :: "'a \<Rightarrow> 'a acom \<Rightarrow> 'a acom" where | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 18 | "Step S (SKIP {Q}) = (SKIP {S})" |
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 19 | "Step S (x ::= e {Q}) =
 | 
| 51390 | 20 |   x ::= e {f x e S}" |
 | 
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
52019diff
changeset | 21 | "Step S (C1;; C2) = Step S C1;; Step (post C1) C2" | | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 22 | "Step S (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) =
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 23 |   IF b THEN {g b S} Step P1 C1 ELSE {g (Not b) S} Step P2 C2
 | 
| 51390 | 24 |   {post C1 \<squnion> post C2}" |
 | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 25 | "Step S ({I} WHILE b DO {P} C {Q}) =
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 26 |   {S \<squnion> post C} WHILE b DO {g b I} Step P C {g (Not b) I}"
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 27 | end | 
| 51389 | 28 | |
| 51390 | 29 | lemma strip_Step[simp]: "strip(Step f g S C) = strip C" | 
| 30 | by(induct C arbitrary: S) auto | |
| 51389 | 31 | |
| 32 | ||
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 33 | subsection "Collecting Semantics of Commands" | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 34 | |
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 35 | subsubsection "Annotated commands as a complete lattice" | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 36 | |
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 37 | instantiation acom :: (order) order | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 38 | begin | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 39 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 40 | definition less_eq_acom :: "('a::order)acom \<Rightarrow> 'a acom \<Rightarrow> bool" where
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 41 | "C1 \<le> C2 \<longleftrightarrow> strip C1 = strip C2 \<and> (\<forall>p<size(annos C1). anno C1 p \<le> anno C2 p)" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 42 | |
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 43 | definition less_acom :: "'a acom \<Rightarrow> 'a acom \<Rightarrow> bool" where | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 44 | "less_acom x y = (x \<le> y \<and> \<not> y \<le> x)" | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 45 | |
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 46 | instance | 
| 61179 | 47 | proof (standard, goal_cases) | 
| 48 | case 1 show ?case by(simp add: less_acom_def) | |
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 49 | next | 
| 61179 | 50 | case 2 thus ?case by(auto simp: less_eq_acom_def) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 51 | next | 
| 61179 | 52 | case 3 thus ?case by(fastforce simp: less_eq_acom_def size_annos) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 53 | next | 
| 61179 | 54 | case 4 thus ?case | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 55 | by(fastforce simp: le_antisym less_eq_acom_def size_annos | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 56 | eq_acom_iff_strip_anno) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 57 | qed | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 58 | |
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 59 | end | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 60 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 61 | lemma less_eq_acom_annos: | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 62 | "C1 \<le> C2 \<longleftrightarrow> strip C1 = strip C2 \<and> list_all2 (op \<le>) (annos C1) (annos C2)" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 63 | by(auto simp add: less_eq_acom_def anno_def list_all2_conv_all_nth size_annos_same2) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 64 | |
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 65 | lemma SKIP_le[simp]: "SKIP {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = SKIP {S'} \<and> S \<le> S')"
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 66 | by (cases c) (auto simp:less_eq_acom_def anno_def) | 
| 45903 | 67 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 68 | lemma Assign_le[simp]: "x ::= e {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = x ::= e {S'} \<and> S \<le> S')"
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 69 | by (cases c) (auto simp:less_eq_acom_def anno_def) | 
| 45903 | 70 | |
| 52046 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 nipkow parents: 
52019diff
changeset | 71 | lemma Seq_le[simp]: "C1;;C2 \<le> C \<longleftrightarrow> (\<exists>C1' C2'. C = C1';;C2' \<and> C1 \<le> C1' \<and> C2 \<le> C2')" | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 72 | apply (cases C) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 73 | apply(auto simp: less_eq_acom_annos list_all2_append size_annos_same2) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 74 | done | 
| 49095 | 75 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 76 | lemma If_le[simp]: "IF b THEN {p1} C1 ELSE {p2} C2 {S} \<le> C \<longleftrightarrow>
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 77 |   (\<exists>p1' p2' C1' C2' S'. C = IF b THEN {p1'} C1' ELSE {p2'} C2' {S'} \<and>
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 78 | p1 \<le> p1' \<and> p2 \<le> p2' \<and> C1 \<le> C1' \<and> C2 \<le> C2' \<and> S \<le> S')" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 79 | apply (cases C) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 80 | apply(auto simp: less_eq_acom_annos list_all2_append size_annos_same2) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 81 | done | 
| 45903 | 82 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 83 | lemma While_le[simp]: "{I} WHILE b DO {p} C {P} \<le> W \<longleftrightarrow>
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 84 |   (\<exists>I' p' C' P'. W = {I'} WHILE b DO {p'} C' {P'} \<and> C \<le> C' \<and> p \<le> p' \<and> I \<le> I' \<and> P \<le> P')"
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 85 | apply (cases W) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 86 | apply(auto simp: less_eq_acom_annos list_all2_append size_annos_same2) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 87 | done | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 88 | |
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 89 | lemma mono_post: "C \<le> C' \<Longrightarrow> post C \<le> post C'" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 90 | using annos_ne[of C'] | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 91 | by(auto simp: post_def less_eq_acom_def last_conv_nth[OF annos_ne] anno_def | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 92 | dest: size_annos_same) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 93 | |
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 94 | definition Inf_acom :: "com \<Rightarrow> 'a::complete_lattice acom set \<Rightarrow> 'a acom" where | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 95 | "Inf_acom c M = annotate (\<lambda>p. INF C:M. anno C p) c" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 96 | |
| 61890 
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
 haftmann parents: 
61670diff
changeset | 97 | global_interpretation | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 98 |   Complete_Lattice "{C. strip C = c}" "Inf_acom c" for c
 | 
| 61179 | 99 | proof (standard, goal_cases) | 
| 100 | case 1 thus ?case | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 101 | by(auto simp: Inf_acom_def less_eq_acom_def size_annos intro:INF_lower) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 102 | next | 
| 61179 | 103 | case 2 thus ?case | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 104 | by(auto simp: Inf_acom_def less_eq_acom_def size_annos intro:INF_greatest) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 105 | next | 
| 61179 | 106 | case 3 thus ?case by(auto simp: Inf_acom_def) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 107 | qed | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 108 | |
| 49487 | 109 | |
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 110 | subsubsection "Collecting semantics" | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 111 | |
| 51390 | 112 | definition "step = Step (\<lambda>x e S. {s(x := aval e s) |s. s : S}) (\<lambda>b S. {s:S. bval b s})"
 | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 113 | |
| 46070 | 114 | definition CS :: "com \<Rightarrow> state set acom" where | 
| 48759 
ff570720ba1c
Improved complete lattice formalisation - no more index set.
 nipkow parents: 
47818diff
changeset | 115 | "CS c = lfp c (step UNIV)" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 116 | |
| 51390 | 117 | lemma mono2_Step: fixes C1 C2 :: "'a::semilattice_sup acom" | 
| 118 | assumes "!!x e S1 S2. S1 \<le> S2 \<Longrightarrow> f x e S1 \<le> f x e S2" | |
| 119 | "!!b S1 S2. S1 \<le> S2 \<Longrightarrow> g b S1 \<le> g b S2" | |
| 120 | shows "C1 \<le> C2 \<Longrightarrow> S1 \<le> S2 \<Longrightarrow> Step f g S1 C1 \<le> Step f g S2 C2" | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 121 | proof(induction S1 C1 arbitrary: C2 S2 rule: Step.induct) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 122 | case 1 thus ?case by(auto) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 123 | next | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 124 | case 2 thus ?case by (auto simp: assms(1)) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 125 | next | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 126 | case 3 thus ?case by(auto simp: mono_post) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 127 | next | 
| 51390 | 128 | case 4 thus ?case | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 129 | by(auto simp: subset_iff assms(2)) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 130 | (metis mono_post le_supI1 le_supI2)+ | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 131 | next | 
| 51390 | 132 | case 5 thus ?case | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 133 | by(auto simp: subset_iff assms(2)) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 134 | (metis mono_post le_supI1 le_supI2)+ | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 135 | qed | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 136 | |
| 51390 | 137 | lemma mono2_step: "C1 \<le> C2 \<Longrightarrow> S1 \<subseteq> S2 \<Longrightarrow> step S1 C1 \<le> step S2 C2" | 
| 138 | unfolding step_def by(rule mono2_Step) auto | |
| 139 | ||
| 45655 
a49f9428aba4
simplified Collecting1 and renamed: step -> step', step_cs -> step
 nipkow parents: 
45623diff
changeset | 140 | lemma mono_step: "mono (step S)" | 
| 46334 | 141 | by(blast intro: monoI mono2_step) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 142 | |
| 49095 | 143 | lemma strip_step: "strip(step S C) = strip C" | 
| 51390 | 144 | by (induction C arbitrary: S) (auto simp: step_def) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 145 | |
| 48759 
ff570720ba1c
Improved complete lattice formalisation - no more index set.
 nipkow parents: 
47818diff
changeset | 146 | lemma lfp_cs_unfold: "lfp c (step S) = step S (lfp c (step S))" | 
| 45903 | 147 | apply(rule lfp_unfold[OF _ mono_step]) | 
| 148 | apply(simp add: strip_step) | |
| 149 | done | |
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 150 | |
| 46070 | 151 | lemma CS_unfold: "CS c = step UNIV (CS c)" | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 152 | by (metis CS_def lfp_cs_unfold) | 
| 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 153 | |
| 46070 | 154 | lemma strip_CS[simp]: "strip(CS c) = c" | 
| 45903 | 155 | by(simp add: CS_def index_lfp[simplified]) | 
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 156 | |
| 49487 | 157 | |
| 158 | subsubsection "Relation to big-step semantics" | |
| 159 | ||
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 160 | lemma asize_nz: "asize(c::com) \<noteq> 0" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 161 | by (metis length_0_conv length_annos_annotate annos_ne) | 
| 49487 | 162 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 163 | lemma post_Inf_acom: | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 164 | "\<forall>C\<in>M. strip C = c \<Longrightarrow> post (Inf_acom c M) = \<Inter>(post ` M)" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 165 | apply(subgoal_tac "\<forall>C\<in>M. size(annos C) = asize c") | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 166 | apply(simp add: post_anno_asize Inf_acom_def asize_nz neq0_conv[symmetric]) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 167 | apply(simp add: size_annos) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 168 | done | 
| 49487 | 169 | |
| 170 | lemma post_lfp: "post(lfp c f) = (\<Inter>{post C|C. strip C = c \<and> f C \<le> C})"
 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 171 | by(auto simp add: lfp_def post_Inf_acom) | 
| 49487 | 172 | |
| 173 | lemma big_step_post_step: | |
| 174 | "\<lbrakk> (c, s) \<Rightarrow> t; strip C = c; s \<in> S; step S C \<le> C \<rbrakk> \<Longrightarrow> t \<in> post C" | |
| 175 | proof(induction arbitrary: C S rule: big_step_induct) | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 176 | case Skip thus ?case by(auto simp: strip_eq_SKIP step_def post_def) | 
| 49487 | 177 | next | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 178 | case Assign thus ?case | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 179 | by(fastforce simp: strip_eq_Assign step_def post_def) | 
| 49487 | 180 | next | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 181 | case Seq thus ?case | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 182 | by(fastforce simp: strip_eq_Seq step_def post_def last_append annos_ne) | 
| 49487 | 183 | next | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 184 | case IfTrue thus ?case apply(auto simp: strip_eq_If step_def post_def) | 
| 51390 | 185 | by (metis (lifting,full_types) mem_Collect_eq set_mp) | 
| 49487 | 186 | next | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 187 | case IfFalse thus ?case apply(auto simp: strip_eq_If step_def post_def) | 
| 51390 | 188 | by (metis (lifting,full_types) mem_Collect_eq set_mp) | 
| 49487 | 189 | next | 
| 190 | case (WhileTrue b s1 c' s2 s3) | |
| 191 |   from WhileTrue.prems(1) obtain I P C' Q where "C = {I} WHILE b DO {P} C' {Q}" "strip C' = c'"
 | |
| 192 | by(auto simp: strip_eq_While) | |
| 193 | from WhileTrue.prems(3) `C = _` | |
| 51390 | 194 |   have "step P C' \<le> C'"  "{s \<in> I. bval b s} \<le> P"  "S \<le> I"  "step (post C') C \<le> C"
 | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 195 | by (auto simp: step_def post_def) | 
| 49487 | 196 |   have "step {s \<in> I. bval b s} C' \<le> C'"
 | 
| 197 |     by (rule order_trans[OF mono2_step[OF order_refl `{s \<in> I. bval b s} \<le> P`] `step P C' \<le> C'`])
 | |
| 198 |   have "s1: {s:I. bval b s}" using `s1 \<in> S` `S \<subseteq> I` `bval b s1` by auto
 | |
| 199 |   note s2_in_post_C' = WhileTrue.IH(1)[OF `strip C' = c'` this `step {s \<in> I. bval b s} C' \<le> C'`]
 | |
| 200 | from WhileTrue.IH(2)[OF WhileTrue.prems(1) s2_in_post_C' `step (post C') C \<le> C`] | |
| 201 | show ?case . | |
| 202 | next | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 203 | case (WhileFalse b s1 c') thus ?case | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51630diff
changeset | 204 | by (force simp: strip_eq_While step_def post_def) | 
| 49487 | 205 | qed | 
| 206 | ||
| 207 | lemma big_step_lfp: "\<lbrakk> (c,s) \<Rightarrow> t; s \<in> S \<rbrakk> \<Longrightarrow> t \<in> post(lfp c (step S))" | |
| 208 | by(auto simp add: post_lfp intro: big_step_post_step) | |
| 209 | ||
| 210 | lemma big_step_CS: "(c,s) \<Rightarrow> t \<Longrightarrow> t : post(CS c)" | |
| 211 | by(simp add: CS_def big_step_lfp) | |
| 212 | ||
| 45623 
f682f3f7b726
Abstract interpretation is now based uniformly on annotated programs,
 nipkow parents: diff
changeset | 213 | end |