author | traytel |
Fri, 28 Feb 2014 17:54:52 +0100 | |
changeset 55811 | aa1acc25126b |
parent 55642 | 63beb38e9258 |
child 56643 | 41d3596d8a64 |
permissions | -rw-r--r-- |
33192 | 1 |
(* Title: HOL/Nitpick.thy |
2 |
Author: Jasmin Blanchette, TU Muenchen |
|
35807
e4d1b5cbd429
added support for "specification" and "ax_specification" constructs to Nitpick
blanchet
parents:
35699
diff
changeset
|
3 |
Copyright 2008, 2009, 2010 |
33192 | 4 |
|
5 |
Nitpick: Yet another counterexample generator for Isabelle/HOL. |
|
6 |
*) |
|
7 |
||
8 |
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *} |
|
9 |
||
10 |
theory Nitpick |
|
55082 | 11 |
imports BNF_FP_Base Map Record Sledgehammer |
55539
0819931d652d
simplified data structure by reducing the incidence of clumsy indices
blanchet
parents:
55415
diff
changeset
|
12 |
keywords |
0819931d652d
simplified data structure by reducing the incidence of clumsy indices
blanchet
parents:
55415
diff
changeset
|
13 |
"nitpick" :: diag and |
0819931d652d
simplified data structure by reducing the incidence of clumsy indices
blanchet
parents:
55415
diff
changeset
|
14 |
"nitpick_params" :: thy_decl |
33192 | 15 |
begin |
16 |
||
17 |
typedecl bisim_iterator |
|
18 |
||
19 |
axiomatization unknown :: 'a |
|
34938 | 20 |
and is_unknown :: "'a \<Rightarrow> bool" |
33192 | 21 |
and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" |
22 |
and bisim_iterator_max :: bisim_iterator |
|
34938 | 23 |
and Quot :: "'a \<Rightarrow> 'b" |
35671
ed2c3830d881
improved Nitpick's precision for "card" and "setsum" + fix incorrect outcome code w.r.t. "bisim_depth = -1"
blanchet
parents:
35665
diff
changeset
|
24 |
and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" |
33192 | 25 |
|
35665
ff2bf50505ab
added "finitize" option to Nitpick + remove dependency on "Coinductive_List"
blanchet
parents:
35311
diff
changeset
|
26 |
datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)" |
33192 | 27 |
datatype ('a, 'b) pair_box = PairBox 'a 'b |
34124
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
28 |
|
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
29 |
typedecl unsigned_bit |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
30 |
typedecl signed_bit |
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
31 |
|
c4628a1dcf75
added support for binary nat/int representation to Nitpick
blanchet
parents:
33747
diff
changeset
|
32 |
datatype 'a word = Word "('a set)" |
33192 | 33 |
|
34 |
text {* |
|
35 |
Alternative definitions. |
|
36 |
*} |
|
37 |
||
54148 | 38 |
lemma Ex1_unfold [nitpick_unfold]: |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
39 |
"Ex1 P \<equiv> \<exists>x. {x. P x} = {x}" |
33192 | 40 |
apply (rule eq_reflection) |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39223
diff
changeset
|
41 |
apply (simp add: Ex1_def set_eq_iff) |
33192 | 42 |
apply (rule iffI) |
43 |
apply (erule exE) |
|
44 |
apply (erule conjE) |
|
45 |
apply (rule_tac x = x in exI) |
|
46 |
apply (rule allI) |
|
47 |
apply (rename_tac y) |
|
48 |
apply (erule_tac x = y in allE) |
|
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
49 |
by auto |
33192 | 50 |
|
54148 | 51 |
lemma rtrancl_unfold [nitpick_unfold]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>=" |
45140 | 52 |
by (simp only: rtrancl_trancl_reflcl) |
33192 | 53 |
|
54148 | 54 |
lemma rtranclp_unfold [nitpick_unfold]: |
33192 | 55 |
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)" |
56 |
by (rule eq_reflection) (auto dest: rtranclpD) |
|
57 |
||
54148 | 58 |
lemma tranclp_unfold [nitpick_unfold]: |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
59 |
"tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}" |
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
60 |
by (simp add: trancl_def) |
33192 | 61 |
|
54148 | 62 |
lemma [nitpick_simp]: |
47909
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
blanchet
parents:
46950
diff
changeset
|
63 |
"of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))" |
47988 | 64 |
by (cases n) auto |
47909
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
blanchet
parents:
46950
diff
changeset
|
65 |
|
41046 | 66 |
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where |
67 |
"prod A B = {(a, b). a \<in> A \<and> b \<in> B}" |
|
68 |
||
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
69 |
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where |
33192 | 70 |
"refl' r \<equiv> \<forall>x. (x, x) \<in> r" |
71 |
||
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
72 |
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where |
33192 | 73 |
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)" |
74 |
||
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
75 |
definition card' :: "'a set \<Rightarrow> nat" where |
39365
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
blanchet
parents:
39302
diff
changeset
|
76 |
"card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0" |
33192 | 77 |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
78 |
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where |
39365
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
blanchet
parents:
39302
diff
changeset
|
79 |
"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0" |
33192 | 80 |
|
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
44016
diff
changeset
|
81 |
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where |
33192 | 82 |
"fold_graph' f z {} z" | |
83 |
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)" |
|
84 |
||
85 |
text {* |
|
86 |
The following lemmas are not strictly necessary but they help the |
|
47909
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
blanchet
parents:
46950
diff
changeset
|
87 |
\textit{specialize} optimization. |
33192 | 88 |
*} |
89 |
||
54148 | 90 |
lemma The_psimp [nitpick_psimp]: |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
91 |
"P = (op =) x \<Longrightarrow> The P = x" |
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45140
diff
changeset
|
92 |
by auto |
33192 | 93 |
|
54148 | 94 |
lemma Eps_psimp [nitpick_psimp]: |
33192 | 95 |
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x" |
47988 | 96 |
apply (cases "P (Eps P)") |
33192 | 97 |
apply auto |
98 |
apply (erule contrapos_np) |
|
99 |
by (rule someI) |
|
100 |
||
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
55199
diff
changeset
|
101 |
lemma case_unit_unfold [nitpick_unfold]: |
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
55199
diff
changeset
|
102 |
"case_unit x u \<equiv> x" |
33192 | 103 |
apply (subgoal_tac "u = ()") |
55642
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents:
55539
diff
changeset
|
104 |
apply (simp only: unit.case) |
33192 | 105 |
by simp |
106 |
||
55642
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents:
55539
diff
changeset
|
107 |
declare unit.case [nitpick_simp del] |
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33192
diff
changeset
|
108 |
|
55415 | 109 |
lemma case_nat_unfold [nitpick_unfold]: |
110 |
"case_nat x f n \<equiv> if n = 0 then x else f (n - 1)" |
|
33192 | 111 |
apply (rule eq_reflection) |
47988 | 112 |
by (cases n) auto |
33192 | 113 |
|
55642
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
blanchet
parents:
55539
diff
changeset
|
114 |
declare nat.case [nitpick_simp del] |
33556
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
blanchet
parents:
33192
diff
changeset
|
115 |
|
54148 | 116 |
lemma list_size_simp [nitpick_simp]: |
33192 | 117 |
"list_size f xs = (if xs = [] then 0 |
118 |
else Suc (f (hd xs) + list_size f (tl xs)))" |
|
119 |
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))" |
|
47988 | 120 |
by (cases xs) auto |
33192 | 121 |
|
122 |
text {* |
|
123 |
Auxiliary definitions used to provide an alternative representation for |
|
124 |
@{text rat} and @{text real}. |
|
125 |
*} |
|
126 |
||
127 |
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
128 |
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))" |
|
129 |
by auto |
|
130 |
termination |
|
131 |
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))") |
|
132 |
apply auto |
|
133 |
apply (metis mod_less_divisor xt1(9)) |
|
134 |
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10)) |
|
135 |
||
136 |
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
137 |
"nat_lcm x y = x * y div (nat_gcd x y)" |
|
138 |
||
139 |
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where |
|
140 |
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))" |
|
141 |
||
142 |
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where |
|
143 |
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))" |
|
144 |
||
145 |
definition Frac :: "int \<times> int \<Rightarrow> bool" where |
|
146 |
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1" |
|
147 |
||
148 |
axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a" |
|
149 |
and Rep_Frac :: "'a \<Rightarrow> int \<times> int" |
|
150 |
||
151 |
definition zero_frac :: 'a where |
|
152 |
"zero_frac \<equiv> Abs_Frac (0, 1)" |
|
153 |
||
154 |
definition one_frac :: 'a where |
|
155 |
"one_frac \<equiv> Abs_Frac (1, 1)" |
|
156 |
||
157 |
definition num :: "'a \<Rightarrow> int" where |
|
158 |
"num \<equiv> fst o Rep_Frac" |
|
159 |
||
160 |
definition denom :: "'a \<Rightarrow> int" where |
|
161 |
"denom \<equiv> snd o Rep_Frac" |
|
162 |
||
163 |
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where |
|
164 |
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b) |
|
165 |
else if a = 0 \<or> b = 0 then (0, 1) |
|
166 |
else let c = int_gcd a b in (a div c, b div c))" |
|
167 |
by pat_completeness auto |
|
168 |
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto |
|
169 |
||
170 |
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where |
|
171 |
"frac a b \<equiv> Abs_Frac (norm_frac a b)" |
|
172 |
||
173 |
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
174 |
[nitpick_simp]: |
|
175 |
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in |
|
176 |
frac (num q * (d div denom q) + num r * (d div denom r)) d)" |
|
177 |
||
178 |
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
179 |
[nitpick_simp]: |
|
180 |
"times_frac q r = frac (num q * num r) (denom q * denom r)" |
|
181 |
||
182 |
definition uminus_frac :: "'a \<Rightarrow> 'a" where |
|
183 |
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)" |
|
184 |
||
185 |
definition number_of_frac :: "int \<Rightarrow> 'a" where |
|
186 |
"number_of_frac n \<equiv> Abs_Frac (n, 1)" |
|
187 |
||
188 |
definition inverse_frac :: "'a \<Rightarrow> 'a" where |
|
189 |
"inverse_frac q \<equiv> frac (denom q) (num q)" |
|
190 |
||
37397
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
blanchet
parents:
37213
diff
changeset
|
191 |
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where |
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
blanchet
parents:
37213
diff
changeset
|
192 |
[nitpick_simp]: |
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
blanchet
parents:
37213
diff
changeset
|
193 |
"less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0" |
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
blanchet
parents:
37213
diff
changeset
|
194 |
|
33192 | 195 |
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where |
196 |
[nitpick_simp]: |
|
197 |
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0" |
|
198 |
||
199 |
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where |
|
200 |
"of_frac q \<equiv> of_int (num q) / of_int (denom q)" |
|
201 |
||
55017 | 202 |
axiomatization wf_wfrec :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
203 |
||
204 |
definition wf_wfrec' :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where |
|
205 |
[nitpick_simp]: "wf_wfrec' R F x = F (cut (wf_wfrec R F) R x) x" |
|
206 |
||
207 |
definition wfrec' :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where |
|
208 |
"wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x |
|
209 |
else THE y. wfrec_rel R (%f x. F (cut f R x) x) x y" |
|
210 |
||
48891 | 211 |
ML_file "Tools/Nitpick/kodkod.ML" |
212 |
ML_file "Tools/Nitpick/kodkod_sat.ML" |
|
213 |
ML_file "Tools/Nitpick/nitpick_util.ML" |
|
214 |
ML_file "Tools/Nitpick/nitpick_hol.ML" |
|
215 |
ML_file "Tools/Nitpick/nitpick_mono.ML" |
|
216 |
ML_file "Tools/Nitpick/nitpick_preproc.ML" |
|
217 |
ML_file "Tools/Nitpick/nitpick_scope.ML" |
|
218 |
ML_file "Tools/Nitpick/nitpick_peephole.ML" |
|
219 |
ML_file "Tools/Nitpick/nitpick_rep.ML" |
|
220 |
ML_file "Tools/Nitpick/nitpick_nut.ML" |
|
221 |
ML_file "Tools/Nitpick/nitpick_kodkod.ML" |
|
222 |
ML_file "Tools/Nitpick/nitpick_model.ML" |
|
223 |
ML_file "Tools/Nitpick/nitpick.ML" |
|
55199 | 224 |
ML_file "Tools/Nitpick/nitpick_commands.ML" |
48891 | 225 |
ML_file "Tools/Nitpick/nitpick_tests.ML" |
33192 | 226 |
|
44016
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
227 |
setup {* |
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
228 |
Nitpick_HOL.register_ersatz_global |
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
229 |
[(@{const_name card}, @{const_name card'}), |
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
230 |
(@{const_name setsum}, @{const_name setsum'}), |
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
231 |
(@{const_name fold_graph}, @{const_name fold_graph'}), |
55017 | 232 |
(@{const_name wf}, @{const_name wf'}), |
233 |
(@{const_name wf_wfrec}, @{const_name wf_wfrec'}), |
|
234 |
(@{const_name wfrec}, @{const_name wfrec'})] |
|
44016
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
krauss
parents:
44013
diff
changeset
|
235 |
*} |
33561
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
blanchet
parents:
33556
diff
changeset
|
236 |
|
39365
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
blanchet
parents:
39302
diff
changeset
|
237 |
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The |
44013
5cfc1c36ae97
moved recdef package to HOL/Library/Old_Recdef.thy
krauss
parents:
42064
diff
changeset
|
238 |
FunBox PairBox Word prod refl' wf' card' setsum' |
41052
3db267a01c1d
remove the "fin_fun" optimization in Nitpick -- it was always a hack and didn't help much
blanchet
parents:
41046
diff
changeset
|
239 |
fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac |
3db267a01c1d
remove the "fin_fun" optimization in Nitpick -- it was always a hack and didn't help much
blanchet
parents:
41046
diff
changeset
|
240 |
one_frac num denom norm_frac frac plus_frac times_frac uminus_frac |
55017 | 241 |
number_of_frac inverse_frac less_frac less_eq_frac of_frac wf_wfrec wf_wfrec |
242 |
wfrec' |
|
46324 | 243 |
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word |
41797 | 244 |
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold |
44013
5cfc1c36ae97
moved recdef package to HOL/Library/Old_Recdef.thy
krauss
parents:
42064
diff
changeset
|
245 |
prod_def refl'_def wf'_def card'_def setsum'_def |
55415 | 246 |
fold_graph'_def The_psimp Eps_psimp case_unit_unfold case_nat_unfold |
41046 | 247 |
list_size_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def |
248 |
zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def |
|
249 |
plus_frac_def times_frac_def uminus_frac_def number_of_frac_def |
|
55017 | 250 |
inverse_frac_def less_frac_def less_eq_frac_def of_frac_def wf_wfrec'_def |
251 |
wfrec'_def |
|
33192 | 252 |
|
253 |
end |