src/HOL/Set.thy
author traytel
Fri, 28 Feb 2014 17:54:52 +0100
changeset 55811 aa1acc25126b
parent 55775 1557a391a858
child 56014 aaa3f2365fc5
permissions -rw-r--r--
load Metis a little later
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32139
e271a64f03ff moved complete_lattice &c. into separate theory
haftmann
parents: 32135
diff changeset
     1
(*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel *)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     3
header {* Set theory for higher-order logic *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     4
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15120
diff changeset
     5
theory Set
30304
d8e4cd2ac2a1 set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
haftmann
parents: 29901
diff changeset
     6
imports Lattices
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15120
diff changeset
     7
begin
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     8
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
     9
subsection {* Sets as predicates *}
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    10
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    11
typedecl 'a set
3820
46b255e140dc fixed infix syntax;
wenzelm
parents: 3370
diff changeset
    12
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    13
axiomatization Collect :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set" -- "comprehension"
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    14
  and member :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" -- "membership"
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    15
where
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    16
  mem_Collect_eq [iff, code_unfold]: "member a (Collect P) = P a"
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    17
  and Collect_mem_eq [simp]: "Collect (\<lambda>x. member x A) = A"
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    18
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20380
diff changeset
    19
notation
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    20
  member  ("op :") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    21
  member  ("(_/ : _)" [51, 51] 50)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    22
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    23
abbreviation not_member where
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    24
  "not_member x A \<equiv> ~ (x : A)" -- "non-membership"
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    25
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20380
diff changeset
    26
notation
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    27
  not_member  ("op ~:") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    28
  not_member  ("(_/ ~: _)" [51, 51] 50)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    29
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20380
diff changeset
    30
notation (xsymbols)
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    31
  member      ("op \<in>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    32
  member      ("(_/ \<in> _)" [51, 51] 50) and
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    33
  not_member  ("op \<notin>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    34
  not_member  ("(_/ \<notin> _)" [51, 51] 50)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    35
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20380
diff changeset
    36
notation (HTML output)
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    37
  member      ("op \<in>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    38
  member      ("(_/ \<in> _)" [51, 51] 50) and
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
    39
  not_member  ("op \<notin>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
    40
  not_member  ("(_/ \<notin> _)" [51, 51] 50)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
    41
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    42
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    43
text {* Set comprehensions *}
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    44
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    45
syntax
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
    46
  "_Coll" :: "pttrn => bool => 'a set"    ("(1{_./ _})")
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    47
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
    48
  "{x. P}" == "CONST Collect (%x. P)"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
    49
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    50
syntax
51392
635562bc14ef extended set comprehension notation with {pttrn : A . P}
nipkow
parents: 51334
diff changeset
    51
  "_Collect" :: "pttrn => 'a set => bool => 'a set"    ("(1{_ :/ _./ _})")
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    52
syntax (xsymbols)
51392
635562bc14ef extended set comprehension notation with {pttrn : A . P}
nipkow
parents: 51334
diff changeset
    53
  "_Collect" :: "pttrn => 'a set => bool => 'a set"    ("(1{_ \<in>/ _./ _})")
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    54
translations
51392
635562bc14ef extended set comprehension notation with {pttrn : A . P}
nipkow
parents: 51334
diff changeset
    55
  "{p:A. P}" => "CONST Collect (%p. p:A & P)"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    56
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    57
lemma CollectI: "P a \<Longrightarrow> a \<in> {x. P x}"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    58
  by simp
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    59
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    60
lemma CollectD: "a \<in> {x. P x} \<Longrightarrow> P a"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    61
  by simp
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    62
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    63
lemma Collect_cong: "(\<And>x. P x = Q x) ==> {x. P x} = {x. Q x}"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    64
  by simp
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    65
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    66
text {*
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    67
Simproc for pulling @{text "x=t"} in @{text "{x. \<dots> & x=t & \<dots>}"}
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    68
to the front (and similarly for @{text "t=x"}):
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    69
*}
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    70
42455
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42287
diff changeset
    71
simproc_setup defined_Collect ("{x. P x & Q x}") = {*
54998
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
    72
  fn _ => Quantifier1.rearrange_Collect
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
    73
    (fn _ =>
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
    74
      rtac @{thm Collect_cong} 1 THEN
42455
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42287
diff changeset
    75
      rtac @{thm iffI} 1 THEN
42459
38b9f023cc34 misc tuning and simplification;
wenzelm
parents: 42456
diff changeset
    76
      ALLGOALS
38b9f023cc34 misc tuning and simplification;
wenzelm
parents: 42456
diff changeset
    77
        (EVERY' [REPEAT_DETERM o etac @{thm conjE}, DEPTH_SOLVE_1 o ares_tac @{thms conjI}]))
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    78
*}
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
    79
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    80
lemmas CollectE = CollectD [elim_format]
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
    81
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    82
lemma set_eqI:
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    83
  assumes "\<And>x. x \<in> A \<longleftrightarrow> x \<in> B"
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    84
  shows "A = B"
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    85
proof -
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    86
  from assms have "{x. x \<in> A} = {x. x \<in> B}" by simp
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    87
  then show ?thesis by simp
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    88
qed
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    89
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
    90
lemma set_eq_iff:
41107
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    91
  "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)"
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    92
  by (auto intro:set_eqI)
8795cd75965e moved most fundamental lemmas upwards
haftmann
parents: 41082
diff changeset
    93
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    94
text {* Lifting of predicate class instances *}
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    95
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    96
instantiation set :: (type) boolean_algebra
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    97
begin
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    98
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
    99
definition less_eq_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   100
  "A \<le> B \<longleftrightarrow> (\<lambda>x. member x A) \<le> (\<lambda>x. member x B)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   101
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   102
definition less_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   103
  "A < B \<longleftrightarrow> (\<lambda>x. member x A) < (\<lambda>x. member x B)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   104
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   105
definition inf_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   106
  "A \<sqinter> B = Collect ((\<lambda>x. member x A) \<sqinter> (\<lambda>x. member x B))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   107
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   108
definition sup_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   109
  "A \<squnion> B = Collect ((\<lambda>x. member x A) \<squnion> (\<lambda>x. member x B))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   110
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   111
definition bot_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   112
  "\<bottom> = Collect \<bottom>"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   113
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   114
definition top_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   115
  "\<top> = Collect \<top>"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   116
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   117
definition uminus_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   118
  "- A = Collect (- (\<lambda>x. member x A))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   119
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   120
definition minus_set where
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
   121
  "A - B = Collect ((\<lambda>x. member x A) - (\<lambda>x. member x B))"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   122
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   123
instance proof
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   124
qed (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   125
  bot_set_def top_set_def uminus_set_def minus_set_def
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   126
  less_le_not_le inf_compl_bot sup_compl_top sup_inf_distrib1 diff_eq
46882
6242b4bc05bc tuned simpset
noschinl
parents: 46853
diff changeset
   127
  set_eqI fun_eq_iff
6242b4bc05bc tuned simpset
noschinl
parents: 46853
diff changeset
   128
  del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply)
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   129
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   130
end
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   131
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   132
text {* Set enumerations *}
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   133
32264
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   134
abbreviation empty :: "'a set" ("{}") where
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   135
  "{} \<equiv> bot"
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   136
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   137
definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   138
  insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   139
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   140
syntax
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   141
  "_Finset" :: "args => 'a set"    ("{(_)}")
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   142
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   143
  "{x, xs}" == "CONST insert x {xs}"
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   144
  "{x}" == "CONST insert x {}"
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   145
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   146
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   147
subsection {* Subsets and bounded quantifiers *}
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   148
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   149
abbreviation
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   150
  subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   151
  "subset \<equiv> less"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   152
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   153
abbreviation
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   154
  subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   155
  "subset_eq \<equiv> less_eq"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   156
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   157
notation (output)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   158
  subset  ("op <") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   159
  subset  ("(_/ < _)" [51, 51] 50) and
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   160
  subset_eq  ("op <=") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   161
  subset_eq  ("(_/ <= _)" [51, 51] 50)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   162
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   163
notation (xsymbols)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   164
  subset  ("op \<subset>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   165
  subset  ("(_/ \<subset> _)" [51, 51] 50) and
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   166
  subset_eq  ("op \<subseteq>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   167
  subset_eq  ("(_/ \<subseteq> _)" [51, 51] 50)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   168
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   169
notation (HTML output)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   170
  subset  ("op \<subset>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   171
  subset  ("(_/ \<subset> _)" [51, 51] 50) and
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   172
  subset_eq  ("op \<subseteq>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   173
  subset_eq  ("(_/ \<subseteq> _)" [51, 51] 50)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   174
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   175
abbreviation (input)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   176
  supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   177
  "supset \<equiv> greater"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   178
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   179
abbreviation (input)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   180
  supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   181
  "supset_eq \<equiv> greater_eq"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   182
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   183
notation (xsymbols)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   184
  supset  ("op \<supset>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   185
  supset  ("(_/ \<supset> _)" [51, 51] 50) and
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   186
  supset_eq  ("op \<supseteq>") and
50580
fbb973a53106 made element and subset relations non-associative (just like all orderings)
nipkow
parents: 49757
diff changeset
   187
  supset_eq  ("(_/ \<supseteq> _)" [51, 51] 50)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   188
37387
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 36009
diff changeset
   189
definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 36009
diff changeset
   190
  "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)"   -- "bounded universal quantifiers"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   191
37387
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 36009
diff changeset
   192
definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
3581483cca6c qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
haftmann
parents: 36009
diff changeset
   193
  "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)"   -- "bounded existential quantifiers"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   194
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   195
syntax
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   196
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   197
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   198
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3EX! _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   199
  "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   200
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   201
syntax (HOL)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   202
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   203
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   204
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3?! _:_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   205
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   206
syntax (xsymbols)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   207
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   208
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   209
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   210
  "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   211
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   212
syntax (HTML output)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   213
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   214
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   215
  "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   216
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   217
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   218
  "ALL x:A. P" == "CONST Ball A (%x. P)"
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   219
  "EX x:A. P" == "CONST Bex A (%x. P)"
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   220
  "EX! x:A. P" => "EX! x. x:A & P"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   221
  "LEAST x:A. P" => "LEAST x. x:A & P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   222
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
   223
syntax (output)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   224
  "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   225
  "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   226
  "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   227
  "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19870
diff changeset
   228
  "_setleEx1"   :: "[idt, 'a, bool] => bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   229
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   230
syntax (xsymbols)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   231
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   232
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   233
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   234
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19870
diff changeset
   235
  "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   236
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19637
diff changeset
   237
syntax (HOL output)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   238
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   239
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   240
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   241
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19870
diff changeset
   242
  "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3?! _<=_./ _)" [0, 0, 10] 10)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   243
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   244
syntax (HTML output)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   245
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   246
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   247
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   248
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19870
diff changeset
   249
  "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   250
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   251
translations
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   252
 "\<forall>A\<subset>B. P"   =>  "ALL A. A \<subset> B --> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   253
 "\<exists>A\<subset>B. P"   =>  "EX A. A \<subset> B & P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   254
 "\<forall>A\<subseteq>B. P"   =>  "ALL A. A \<subseteq> B --> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   255
 "\<exists>A\<subseteq>B. P"   =>  "EX A. A \<subseteq> B & P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   256
 "\<exists>!A\<subseteq>B. P"  =>  "EX! A. A \<subseteq> B & P"
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   257
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   258
print_translation {*
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   259
  let
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   260
    val All_binder = Mixfix.binder_name @{const_syntax All};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   261
    val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   262
    val impl = @{const_syntax HOL.implies};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   263
    val conj = @{const_syntax HOL.conj};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   264
    val sbset = @{const_syntax subset};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   265
    val sbset_eq = @{const_syntax subset_eq};
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   266
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   267
    val trans =
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   268
     [((All_binder, impl, sbset), @{syntax_const "_setlessAll"}),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   269
      ((All_binder, impl, sbset_eq), @{syntax_const "_setleAll"}),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   270
      ((Ex_binder, conj, sbset), @{syntax_const "_setlessEx"}),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   271
      ((Ex_binder, conj, sbset_eq), @{syntax_const "_setleEx"})];
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   272
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   273
    fun mk v (v', T) c n P =
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   274
      if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n)
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   275
      then Syntax.const c $ Syntax_Trans.mark_bound_body (v', T) $ n $ P
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   276
      else raise Match;
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   277
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   278
    fun tr' q = (q, fn _ =>
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   279
      (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (@{type_name set}, _)),
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   280
          Const (c, _) $
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   281
            (Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', T)) $ n) $ P] =>
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   282
          (case AList.lookup (op =) trans (q, c, d) of
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   283
            NONE => raise Match
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   284
          | SOME l => mk v (v', T) l n P)
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   285
        | _ => raise Match));
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   286
  in
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   287
    [tr' All_binder, tr' Ex_binder]
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   288
  end
14804
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   289
*}
8de39d3e8eb6 Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents: 14752
diff changeset
   290
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   291
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   292
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   293
  \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   294
  "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   295
  only translated if @{text "[0..n] subset bvs(e)"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   296
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   297
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   298
syntax
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   299
  "_Setcompr" :: "'a => idts => bool => 'a set"    ("(1{_ |/_./ _})")
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   300
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   301
parse_translation {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   302
  let
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   303
    val ex_tr = snd (Syntax_Trans.mk_binder_tr ("EX ", @{const_syntax Ex}));
3947
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
   304
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   305
    fun nvars (Const (@{syntax_const "_idts"}, _) $ _ $ idts) = nvars idts + 1
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   306
      | nvars _ = 1;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   307
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   308
    fun setcompr_tr ctxt [e, idts, b] =
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   309
      let
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38795
diff changeset
   310
        val eq = Syntax.const @{const_syntax HOL.eq} $ Bound (nvars idts) $ e;
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
   311
        val P = Syntax.const @{const_syntax HOL.conj} $ eq $ b;
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   312
        val exP = ex_tr ctxt [idts, P];
44241
7943b69f0188 modernized signature of Term.absfree/absdummy;
wenzelm
parents: 43967
diff changeset
   313
      in Syntax.const @{const_syntax Collect} $ absdummy dummyT exP end;
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   314
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   315
  in [(@{syntax_const "_Setcompr"}, setcompr_tr)] end;
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   316
*}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   317
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   318
print_translation {*
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   319
 [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   320
  Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}]
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   321
*} -- {* to avoid eta-contraction of body *}
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   322
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   323
print_translation {*
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   324
let
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   325
  val ex_tr' = snd (Syntax_Trans.mk_binder_tr' (@{const_syntax Ex}, "DUMMY"));
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   326
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   327
  fun setcompr_tr' ctxt [Abs (abs as (_, _, P))] =
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   328
    let
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   329
      fun check (Const (@{const_syntax Ex}, _) $ Abs (_, _, P), n) = check (P, n + 1)
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
   330
        | check (Const (@{const_syntax HOL.conj}, _) $
38864
4abe644fcea5 formerly unnamed infix equality now named HOL.eq
haftmann
parents: 38795
diff changeset
   331
              (Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) =
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   332
            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
33038
8f9594c31de4 dropped redundant gen_ prefix
haftmann
parents: 33037
diff changeset
   333
            subset (op =) (0 upto (n - 1), add_loose_bnos (e, 0, []))
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   334
        | check _ = false;
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   335
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   336
        fun tr' (_ $ abs) =
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
   337
          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' ctxt [abs]
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   338
          in Syntax.const @{syntax_const "_Setcompr"} $ e $ idts $ Q end;
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   339
    in
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   340
      if check (P, 0) then tr' P
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   341
      else
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   342
        let
42284
326f57825e1a explicit structure Syntax_Trans;
wenzelm
parents: 42163
diff changeset
   343
          val (x as _ $ Free(xN, _), t) = Syntax_Trans.atomic_abs_tr' abs;
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   344
          val M = Syntax.const @{syntax_const "_Coll"} $ x $ t;
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   345
        in
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   346
          case t of
38795
848be46708dc formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents: 38786
diff changeset
   347
            Const (@{const_syntax HOL.conj}, _) $
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
   348
              (Const (@{const_syntax Set.member}, _) $
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   349
                (Const (@{syntax_const "_bound"}, _) $ Free (yN, _)) $ A) $ P =>
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   350
            if xN = yN then Syntax.const @{syntax_const "_Collect"} $ x $ A $ P else M
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   351
          | _ => M
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   352
        end
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   353
    end;
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34999
diff changeset
   354
  in [(@{const_syntax Collect}, setcompr_tr')] end;
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   355
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   356
42455
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42287
diff changeset
   357
simproc_setup defined_Bex ("EX x:A. P x & Q x") = {*
54998
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   358
  fn _ => Quantifier1.rearrange_bex
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   359
    (fn ctxt =>
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   360
      unfold_tac ctxt @{thms Bex_def} THEN
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   361
      Quantifier1.prove_one_point_ex_tac)
42455
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42287
diff changeset
   362
*}
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42287
diff changeset
   363
6702c984bf5a modernized Quantifier1 simproc setup;
wenzelm
parents: 42287
diff changeset
   364
simproc_setup defined_All ("ALL x:A. P x --> Q x") = {*
54998
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   365
  fn _ => Quantifier1.rearrange_ball
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   366
    (fn ctxt =>
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   367
      unfold_tac ctxt @{thms Ball_def} THEN
8601434fa334 tuned signature;
wenzelm
parents: 54147
diff changeset
   368
      Quantifier1.prove_one_point_all_tac)
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   369
*}
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   370
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   371
lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   372
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   373
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   374
lemmas strip = impI allI ballI
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   375
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   376
lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   377
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   378
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   379
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   380
  Gives better instantiation for bound:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   381
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   382
51703
f2e92fc0c8aa modifiers for classical wrappers operate on Proof.context instead of claset;
wenzelm
parents: 51392
diff changeset
   383
setup {*
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   384
  map_theory_claset (fn ctxt =>
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51703
diff changeset
   385
    ctxt addbefore ("bspec", fn _ => dtac @{thm bspec} THEN' assume_tac))
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   386
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   387
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   388
ML {*
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   389
structure Simpdata =
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   390
struct
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   391
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   392
open Simpdata;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   393
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   394
val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   395
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   396
end;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   397
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   398
open Simpdata;
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   399
*}
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   400
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   401
declaration {* fn _ =>
45625
750c5a47400b modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents: 45607
diff changeset
   402
  Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs))
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   403
*}
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   404
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   405
lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   406
  by (unfold Ball_def) blast
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   407
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   408
lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   409
  -- {* Normally the best argument order: @{prop "P x"} constrains the
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   410
    choice of @{prop "x:A"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   411
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   412
13113
5eb9be7b72a5 rev_bexI [intro?];
wenzelm
parents: 13103
diff changeset
   413
lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   414
  -- {* The best argument order when there is only one @{prop "x:A"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   415
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   416
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   417
lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   418
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   419
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   420
lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   421
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   422
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   423
lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   424
  -- {* Trival rewrite rule. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   425
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   426
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   427
lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   428
  -- {* Dual form for existentials. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   429
  by (simp add: Bex_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   430
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   431
lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   432
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   433
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   434
lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   435
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   436
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   437
lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   438
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   439
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   440
lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   441
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   442
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   443
lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   444
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   445
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   446
lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   447
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   448
43818
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   449
lemma ball_conj_distrib:
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   450
  "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))"
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   451
  by blast
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   452
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   453
lemma bex_disj_distrib:
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   454
  "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))"
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   455
  by blast
fcc5d3ffb6f5 tuned lemma positions and proofs
haftmann
parents: 42459
diff changeset
   456
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   457
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   458
text {* Congruence rules *}
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   459
16636
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   460
lemma ball_cong:
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   461
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   462
    (ALL x:A. P x) = (ALL x:B. Q x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   463
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   464
16636
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   465
lemma strong_ball_cong [cong]:
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   466
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   467
    (ALL x:A. P x) = (ALL x:B. Q x)"
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   468
  by (simp add: simp_implies_def Ball_def)
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   469
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   470
lemma bex_cong:
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   471
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   472
    (EX x:A. P x) = (EX x:B. Q x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   473
  by (simp add: Bex_def cong: conj_cong)
1273
6960ec882bca added 8bit pragmas
regensbu
parents: 1068
diff changeset
   474
16636
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   475
lemma strong_bex_cong [cong]:
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   476
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   477
    (EX x:A. P x) = (EX x:B. Q x)"
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   478
  by (simp add: simp_implies_def Bex_def cong: conj_cong)
1ed737a98198 Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents: 15950
diff changeset
   479
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   480
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   481
subsection {* Basic operations *}
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   482
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   483
subsubsection {* Subsets *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   484
33022
c95102496490 Removal of the unused atpset concept, the atp attribute and some related code.
paulson
parents: 32888
diff changeset
   485
lemma subsetI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B) \<Longrightarrow> A \<subseteq> B"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   486
  by (simp add: less_eq_set_def le_fun_def)
30352
047f183c43b0 restructured theory Set.thy
haftmann
parents: 30304
diff changeset
   487
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   488
text {*
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   489
  \medskip Map the type @{text "'a set => anything"} to just @{typ
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   490
  'a}; for overloading constants whose first argument has type @{typ
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   491
  "'a set"}.
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   492
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   493
30596
140b22f22071 tuned some theorem and attribute bindings
haftmann
parents: 30531
diff changeset
   494
lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   495
  by (simp add: less_eq_set_def le_fun_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   496
  -- {* Rule in Modus Ponens style. *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   497
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   498
lemma rev_subsetD [intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   499
  -- {* The same, with reversed premises for use with @{text erule} --
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   500
      cf @{text rev_mp}. *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   501
  by (rule subsetD)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   502
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   503
text {*
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   504
  \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   505
*}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   506
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   507
lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   508
  -- {* Classical elimination rule. *}
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   509
  by (auto simp add: less_eq_set_def le_fun_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   510
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   511
lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   512
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   513
lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   514
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   515
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   516
lemma subset_refl: "A \<subseteq> A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   517
  by (fact order_refl) (* already [iff] *)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   518
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   519
lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   520
  by (fact order_trans)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   521
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   522
lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   523
  by (rule subsetD)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   524
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   525
lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   526
  by (rule subsetD)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   527
46146
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   528
lemma subset_not_subset_eq [code]:
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   529
  "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   530
  by (fact less_le_not_le)
6baea4fca6bd incorporated various theorems from theory More_Set into corpus
haftmann
parents: 46137
diff changeset
   531
33044
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   532
lemma eq_mem_trans: "a=b ==> b \<in> A ==> a \<in> A"
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   533
  by simp
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   534
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   535
lemmas basic_trans_rules [trans] =
33044
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 33022
diff changeset
   536
  order_trans_rules set_rev_mp set_mp eq_mem_trans
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   537
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   538
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   539
subsubsection {* Equality *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   540
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   541
lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   542
  -- {* Anti-symmetry of the subset relation. *}
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39213
diff changeset
   543
  by (iprover intro: set_eqI subsetD)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   544
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   545
text {*
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   546
  \medskip Equality rules from ZF set theory -- are they appropriate
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   547
  here?
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   548
*}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   549
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   550
lemma equalityD1: "A = B ==> A \<subseteq> B"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   551
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   552
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   553
lemma equalityD2: "A = B ==> B \<subseteq> A"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   554
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   555
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   556
text {*
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   557
  \medskip Be careful when adding this to the claset as @{text
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   558
  subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   559
  \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
30352
047f183c43b0 restructured theory Set.thy
haftmann
parents: 30304
diff changeset
   560
*}
047f183c43b0 restructured theory Set.thy
haftmann
parents: 30304
diff changeset
   561
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   562
lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   563
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   564
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   565
lemma equalityCE [elim]:
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   566
    "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   567
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   568
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   569
lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   570
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   571
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   572
lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   573
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   574
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   575
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   576
subsubsection {* The empty set *}
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   577
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   578
lemma empty_def:
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   579
  "{} = {x. False}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   580
  by (simp add: bot_set_def bot_fun_def)
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   581
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   582
lemma empty_iff [simp]: "(c : {}) = False"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   583
  by (simp add: empty_def)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   584
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   585
lemma emptyE [elim!]: "a : {} ==> P"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   586
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   587
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   588
lemma empty_subsetI [iff]: "{} \<subseteq> A"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   589
    -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   590
  by blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   591
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   592
lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   593
  by blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   594
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   595
lemma equals0D: "A = {} ==> a \<notin> A"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   596
    -- {* Use for reasoning about disjointness: @{text "A Int B = {}"} *}
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   597
  by blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   598
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   599
lemma ball_empty [simp]: "Ball {} P = True"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   600
  by (simp add: Ball_def)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   601
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   602
lemma bex_empty [simp]: "Bex {} P = False"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   603
  by (simp add: Bex_def)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   604
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   605
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   606
subsubsection {* The universal set -- UNIV *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   607
32264
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   608
abbreviation UNIV :: "'a set" where
0be31453f698 Set.UNIV and Set.empty are mere abbreviations for top and bot
haftmann
parents: 32139
diff changeset
   609
  "UNIV \<equiv> top"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   610
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   611
lemma UNIV_def:
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   612
  "UNIV = {x. True}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   613
  by (simp add: top_set_def top_fun_def)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   614
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   615
lemma UNIV_I [simp]: "x : UNIV"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   616
  by (simp add: UNIV_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   617
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   618
declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   619
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   620
lemma UNIV_witness [intro?]: "EX x. x : UNIV"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   621
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   622
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   623
lemma subset_UNIV: "A \<subseteq> UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
   624
  by (fact top_greatest) (* already simp *)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   625
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   626
text {*
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   627
  \medskip Eta-contracting these two rules (to remove @{text P})
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   628
  causes them to be ignored because of their interaction with
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   629
  congruence rules.
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   630
*}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   631
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   632
lemma ball_UNIV [simp]: "Ball UNIV P = All P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   633
  by (simp add: Ball_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   634
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   635
lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   636
  by (simp add: Bex_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   637
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   638
lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   639
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   640
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   641
lemma UNIV_not_empty [iff]: "UNIV ~= {}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   642
  by (blast elim: equalityE)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   643
51334
fd531bd984d8 more lemmas about intervals
nipkow
parents: 51173
diff changeset
   644
lemma empty_not_UNIV[simp]: "{} \<noteq> UNIV"
fd531bd984d8 more lemmas about intervals
nipkow
parents: 51173
diff changeset
   645
by blast
fd531bd984d8 more lemmas about intervals
nipkow
parents: 51173
diff changeset
   646
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   647
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   648
subsubsection {* The Powerset operator -- Pow *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   649
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   650
definition Pow :: "'a set => 'a set set" where
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   651
  Pow_def: "Pow A = {B. B \<le> A}"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   652
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   653
lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   654
  by (simp add: Pow_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   655
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   656
lemma PowI: "A \<subseteq> B ==> A \<in> Pow B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   657
  by (simp add: Pow_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   658
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   659
lemma PowD: "A \<in> Pow B ==> A \<subseteq> B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   660
  by (simp add: Pow_def)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   661
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   662
lemma Pow_bottom: "{} \<in> Pow B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   663
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   664
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   665
lemma Pow_top: "A \<in> Pow A"
34209
c7f621786035 killed a few warnings
krauss
parents: 33935
diff changeset
   666
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   667
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
   668
lemma Pow_not_empty: "Pow A \<noteq> {}"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
   669
  using Pow_top by blast
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   670
41076
a7fba340058c primitive definitions of bot/top/inf/sup for bool and fun are named with canonical suffix `_def` rather than `_eq`;
haftmann
parents: 40872
diff changeset
   671
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   672
subsubsection {* Set complement *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   673
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   674
lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   675
  by (simp add: fun_Compl_def uminus_set_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   676
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   677
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   678
  by (simp add: fun_Compl_def uminus_set_def) blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   679
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   680
text {*
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   681
  \medskip This form, with negated conclusion, works well with the
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   682
  Classical prover.  Negated assumptions behave like formulae on the
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   683
  right side of the notional turnstile ... *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   684
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   685
lemma ComplD [dest!]: "c : -A ==> c~:A"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   686
  by simp
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   687
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   688
lemmas ComplE = ComplD [elim_format]
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   689
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   690
lemma Compl_eq: "- A = {x. ~ x : A}"
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   691
  by blast
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   692
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   693
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   694
subsubsection {* Binary intersection *}
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   695
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   696
abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   697
  "op Int \<equiv> inf"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   698
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   699
notation (xsymbols)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   700
  inter  (infixl "\<inter>" 70)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   701
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   702
notation (HTML output)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   703
  inter  (infixl "\<inter>" 70)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   704
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   705
lemma Int_def:
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   706
  "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   707
  by (simp add: inf_set_def inf_fun_def)
41082
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   708
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   709
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   710
  by (unfold Int_def) blast
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   711
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   712
lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   713
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   714
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   715
lemma IntD1: "c : A Int B ==> c:A"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   716
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   717
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   718
lemma IntD2: "c : A Int B ==> c:B"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   719
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   720
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   721
lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   722
  by simp
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   723
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   724
lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   725
  by (fact mono_inf)
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   726
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   727
9ff94e7cc3b3 bot comes before top, inf before sup etc.
haftmann
parents: 41076
diff changeset
   728
subsubsection {* Binary union *}
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   729
32683
7c1fe854ca6a inter and union are mere abbreviations for inf and sup
haftmann
parents: 32456
diff changeset
   730
abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where
41076
a7fba340058c primitive definitions of bot/top/inf/sup for bool and fun are named with canonical suffix `_def` rather than `_eq`;
haftmann
parents: 40872
diff changeset
   731
  "union \<equiv> sup"
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   732
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   733
notation (xsymbols)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   734
  union  (infixl "\<union>" 65)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   735
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   736
notation (HTML output)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   737
  union  (infixl "\<union>" 65)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   738
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   739
lemma Un_def:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
   740
  "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   741
  by (simp add: sup_set_def sup_fun_def)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   742
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   743
lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   744
  by (unfold Un_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   745
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   746
lemma UnI1 [elim?]: "c:A ==> c : A Un B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   747
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   748
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   749
lemma UnI2 [elim?]: "c:B ==> c : A Un B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   750
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   751
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   752
text {*
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   753
  \medskip Classical introduction rule: no commitment to @{prop A} vs
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   754
  @{prop B}.
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   755
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   756
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   757
lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   758
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   759
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   760
lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   761
  by (unfold Un_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   762
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   763
lemma insert_def: "insert a B = {x. x = a} \<union> B"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   764
  by (simp add: insert_compr Un_def)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   765
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   766
lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
32683
7c1fe854ca6a inter and union are mere abbreviations for inf and sup
haftmann
parents: 32456
diff changeset
   767
  by (fact mono_sup)
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   768
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   769
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   770
subsubsection {* Set difference *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   771
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   772
lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
   773
  by (simp add: minus_set_def fun_diff_def)
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   774
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   775
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   776
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   777
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   778
lemma DiffD1: "c : A - B ==> c : A"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   779
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   780
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   781
lemma DiffD2: "c : A - B ==> c : B ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   782
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   783
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   784
lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   785
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   786
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   787
lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   788
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   789
lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   790
by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   791
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   792
31456
55edadbd43d5 insert now qualified and with authentic syntax
haftmann
parents: 31197
diff changeset
   793
subsubsection {* Augmenting a set -- @{const insert} *}
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   794
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   795
lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   796
  by (unfold insert_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   797
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   798
lemma insertI1: "a : insert a B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   799
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   800
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   801
lemma insertI2: "a : B ==> a : insert b B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   802
  by simp
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   803
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   804
lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   805
  by (unfold insert_def) blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   806
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   807
lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   808
  -- {* Classical introduction rule. *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   809
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   810
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   811
lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   812
  by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   813
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   814
lemma set_insert:
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   815
  assumes "x \<in> A"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   816
  obtains B where "A = insert x B" and "x \<notin> B"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   817
proof
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   818
  from assms show "A = insert x (A - {x})" by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   819
next
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   820
  show "x \<notin> A - {x}" by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   821
qed
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   822
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   823
lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   824
by auto
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   825
44744
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   826
lemma insert_eq_iff: assumes "a \<notin> A" "b \<notin> B"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   827
shows "insert a A = insert b B \<longleftrightarrow>
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   828
  (if a=b then A=B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   829
  (is "?L \<longleftrightarrow> ?R")
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   830
proof
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   831
  assume ?L
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   832
  show ?R
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   833
  proof cases
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   834
    assume "a=b" with assms `?L` show ?R by (simp add: insert_ident)
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   835
  next
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   836
    assume "a\<noteq>b"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   837
    let ?C = "A - {b}"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   838
    have "A = insert b ?C \<and> b \<notin> ?C \<and> B = insert a ?C \<and> a \<notin> ?C"
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   839
      using assms `?L` `a\<noteq>b` by auto
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   840
    thus ?R using `a\<noteq>b` by auto
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   841
  qed
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   842
next
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
   843
  assume ?R thus ?L by (auto split: if_splits)
44744
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   844
qed
bdf8eb8f126b added new lemmas
nipkow
parents: 44490
diff changeset
   845
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   846
subsubsection {* Singletons, using insert *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   847
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   848
lemma singletonI [intro!]: "a : {a}"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   849
    -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   850
  by (rule insertI1)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   851
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   852
lemma singletonD [dest!]: "b : {a} ==> b = a"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   853
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   854
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   855
lemmas singletonE = singletonD [elim_format]
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   856
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   857
lemma singleton_iff: "(b : {a}) = (b = a)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   858
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   859
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   860
lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   861
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   862
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   863
lemma singleton_insert_inj_eq [iff]:
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   864
     "({b} = insert a A) = (a = b & A \<subseteq> {b})"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   865
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   866
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   867
lemma singleton_insert_inj_eq' [iff]:
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   868
     "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   869
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   870
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   871
lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   872
  by fast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   873
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   874
lemma singleton_conv [simp]: "{x. x = a} = {a}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   875
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   876
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   877
lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   878
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   879
46504
cd4832aa2229 removing unnecessary premise from diff_single_insert
bulwahn
parents: 46459
diff changeset
   880
lemma diff_single_insert: "A - {x} \<subseteq> B ==> A \<subseteq> insert x B"
30531
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   881
  by blast
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   882
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   883
lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   884
  by (blast elim: equalityE)
ab3d61baf66a reverted to old version of Set.thy -- strange effects have to be traced first
haftmann
parents: 30352
diff changeset
   885
53364
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   886
lemma Un_singleton_iff:
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   887
  "(A \<union> B = {x}) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   888
by auto
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   889
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   890
lemma singleton_Un_iff:
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   891
  "({x} = A \<union> B) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
a4fff0c0599c added lemmas
nipkow
parents: 52143
diff changeset
   892
by auto
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   893
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   894
subsubsection {* Image of a set under a function *}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   895
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   896
text {*
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   897
  Frequently @{term b} does not have the syntactic form of @{term "f x"}.
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   898
*}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   899
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   900
definition image :: "('a => 'b) => 'a set => 'b set" (infixr "`" 90) where
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   901
  image_def: "f ` A = {y. EX x:A. y = f(x)}"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   902
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   903
abbreviation
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   904
  range :: "('a => 'b) => 'b set" where -- "of function"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   905
  "range f == f ` UNIV"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   906
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   907
lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   908
  by (unfold image_def) blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   909
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   910
lemma imageI: "x : A ==> f x : f ` A"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   911
  by (rule image_eqI) (rule refl)
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   912
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   913
lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   914
  -- {* This version's more effective when we already have the
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   915
    required @{term x}. *}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   916
  by (unfold image_def) blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   917
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   918
lemma imageE [elim!]:
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   919
  "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   920
  -- {* The eta-expansion gives variable-name preservation. *}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   921
  by (unfold image_def) blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   922
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   923
lemma Compr_image_eq:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   924
  "{x \<in> f ` A. P x} = f ` {x \<in> A. P (f x)}"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   925
  by auto
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50580
diff changeset
   926
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   927
lemma image_Un: "f`(A Un B) = f`A Un f`B"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   928
  by blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   929
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   930
lemma image_iff: "(z : f`A) = (EX x:A. z = f x)"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   931
  by blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   932
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
   933
lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)"
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   934
  -- {* This rewrite rule would confuse users if made default. *}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   935
  by blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   936
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   937
lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   938
  apply safe
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   939
   prefer 2 apply fast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   940
  apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   941
  done
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   942
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   943
lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   944
  -- {* Replaces the three steps @{text subsetI}, @{text imageE},
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   945
    @{text hypsubst}, but breaks too many existing proofs. *}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   946
  by blast
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   947
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   948
text {*
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   949
  \medskip Range of a function -- just a translation for image!
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   950
*}
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   951
43898
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
   952
lemma image_ident [simp]: "(%x. x) ` Y = Y"
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
   953
  by blast
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
   954
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   955
lemma range_eqI: "b = f x ==> b \<in> range f"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   956
  by simp
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   957
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   958
lemma rangeI: "f x \<in> range f"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   959
  by simp
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   960
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   961
lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P"
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   962
  by blast
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
   963
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   964
subsubsection {* Some rules with @{text "if"} *}
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   965
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   966
text{* Elimination of @{text"{x. \<dots> & x=t & \<dots>}"}. *}
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   967
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   968
lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})"
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   969
  by auto
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   970
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   971
lemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})"
32117
0762b9ad83df Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
haftmann
parents: 32115
diff changeset
   972
  by auto
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   973
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   974
text {*
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   975
  Rewrite rules for boolean case-splitting: faster than @{text
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   976
  "split_if [split]"}.
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   977
*}
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   978
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   979
lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   980
  by (rule split_if)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   981
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   982
lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   983
  by (rule split_if)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   984
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   985
text {*
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   986
  Split ifs on either side of the membership relation.  Not for @{text
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   987
  "[simp]"} -- can cause goals to blow up!
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   988
*}
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   989
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   990
lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   991
  by (rule split_if)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   992
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   993
lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   994
  by (rule split_if [where P="%S. a : S"])
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   995
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   996
lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   997
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
   998
(*Would like to add these, but the existing code only searches for the
37677
c5a8b612e571 qualified constants Set.member and Set.Collect
haftmann
parents: 37387
diff changeset
   999
  outer-level constant, which in this case is just Set.member; we instead need
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1000
  to use term-nets to associate patterns with rules.  Also, if a rule fails to
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1001
  apply, then the formula should be kept.
34974
18b41bba42b5 new theory Algebras.thy for generic algebraic structures
haftmann
parents: 34209
diff changeset
  1002
  [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]),
32081
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1003
   ("Int", [IntD1,IntD2]),
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1004
   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1005
 *)
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1006
1b7a901e2edc refined outline structure
haftmann
parents: 32078
diff changeset
  1007
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1008
subsection {* Further operations and lemmas *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1009
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1010
subsubsection {* The ``proper subset'' relation *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1011
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1012
lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1013
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1014
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1015
lemma psubsetE [elim!]:
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1016
    "[|A \<subset> B;  [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1017
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1018
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1019
lemma psubset_insert_iff:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1020
  "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1021
  by (auto simp add: less_le subset_insert_iff)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1022
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1023
lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1024
  by (simp only: less_le)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1025
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1026
lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1027
  by (simp add: psubset_eq)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1028
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1029
lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1030
apply (unfold less_le)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1031
apply (auto dest: subset_antisym)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1032
done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1033
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1034
lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1035
apply (unfold less_le)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1036
apply (auto dest: subsetD)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1037
done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1038
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1039
lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1040
  by (auto simp add: psubset_eq)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1041
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1042
lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1043
  by (auto simp add: psubset_eq)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1044
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1045
lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1046
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1047
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1048
lemma atomize_ball:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1049
    "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1050
  by (simp only: Ball_def atomize_all atomize_imp)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1051
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1052
lemmas [symmetric, rulify] = atomize_ball
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1053
  and [symmetric, defn] = atomize_ball
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1054
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1055
lemma image_Pow_mono:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1056
  assumes "f ` A \<le> B"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1057
  shows "(image f) ` (Pow A) \<le> Pow B"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1058
using assms by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1059
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1060
lemma image_Pow_surj:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1061
  assumes "f ` A = B"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1062
  shows "(image f) ` (Pow A) = Pow B"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1063
using assms unfolding Pow_def proof(auto)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1064
  fix Y assume *: "Y \<le> f ` A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1065
  obtain X where X_def: "X = {x \<in> A. f x \<in> Y}" by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1066
  have "f ` X = Y \<and> X \<le> A" unfolding X_def using * by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1067
  thus "Y \<in> (image f) ` {X. X \<le> A}" by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1068
qed
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 39910
diff changeset
  1069
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1070
subsubsection {* Derived rules involving subsets. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1071
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1072
text {* @{text insert}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1073
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1074
lemma subset_insertI: "B \<subseteq> insert a B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1075
  by (rule subsetI) (erule insertI2)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1076
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1077
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1078
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1079
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1080
lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1081
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1082
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1083
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1084
text {* \medskip Finite Union -- the least upper bound of two sets. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1085
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1086
lemma Un_upper1: "A \<subseteq> A \<union> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1087
  by (fact sup_ge1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1088
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1089
lemma Un_upper2: "B \<subseteq> A \<union> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1090
  by (fact sup_ge2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1091
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1092
lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1093
  by (fact sup_least)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1094
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1095
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1096
text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1097
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1098
lemma Int_lower1: "A \<inter> B \<subseteq> A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1099
  by (fact inf_le1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1100
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1101
lemma Int_lower2: "A \<inter> B \<subseteq> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1102
  by (fact inf_le2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1103
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1104
lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1105
  by (fact inf_greatest)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1106
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1107
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1108
text {* \medskip Set difference. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1109
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1110
lemma Diff_subset: "A - B \<subseteq> A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1111
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1112
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1113
lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1114
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1115
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1116
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1117
subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1118
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1119
text {* @{text "{}"}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1120
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1121
lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1122
  -- {* supersedes @{text "Collect_False_empty"} *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1123
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1124
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1125
lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1126
  by (fact bot_unique)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1127
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1128
lemma not_psubset_empty [iff]: "\<not> (A < {})"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1129
  by (fact not_less_bot) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1130
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1131
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1132
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1133
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1134
lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1135
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1136
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1137
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1138
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1139
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1140
lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1141
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1142
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1143
lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1144
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1145
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1146
lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1147
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1148
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1149
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1150
text {* \medskip @{text insert}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1151
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1152
lemma insert_is_Un: "insert a A = {a} Un A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1153
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1154
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1155
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1156
lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1157
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1158
45607
16b4f5774621 eliminated obsolete "standard";
wenzelm
parents: 45152
diff changeset
  1159
lemmas empty_not_insert = insert_not_empty [symmetric]
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1160
declare empty_not_insert [simp]
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1161
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1162
lemma insert_absorb: "a \<in> A ==> insert a A = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1163
  -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1164
  -- {* with \emph{quadratic} running time *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1165
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1166
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1167
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1168
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1169
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1170
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1171
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1172
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1173
lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1174
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1175
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1176
lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1177
  -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1178
  apply (rule_tac x = "A - {a}" in exI, blast)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1179
  done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1180
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1181
lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1182
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1183
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1184
lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1185
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1186
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1187
lemma insert_disjoint [simp]:
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1188
 "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1189
 "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1190
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1191
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1192
lemma disjoint_insert [simp]:
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1193
 "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1194
 "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1195
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1196
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1197
text {* \medskip @{text image}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1198
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1199
lemma image_empty [simp]: "f`{} = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1200
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1201
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1202
lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1203
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1204
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1205
lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1206
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1207
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1208
lemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1209
by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1210
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1211
lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1212
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1213
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1214
lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1215
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1216
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1217
lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1218
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1219
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1220
lemma empty_is_image[iff]: "({} = f ` A) = (A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1221
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1222
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1223
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1224
lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1225
  -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1226
      with its implicit quantifier and conjunction.  Also image enjoys better
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1227
      equational properties than does the RHS. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1228
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1229
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1230
lemma if_image_distrib [simp]:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1231
  "(\<lambda>x. if P x then f x else g x) ` S
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1232
    = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1233
  by (auto simp add: image_def)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1234
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1235
lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1236
  by (simp add: image_def)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1237
43898
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1238
lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1239
by blast
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1240
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1241
lemma image_diff_subset: "f`A - f`B <= f`(A - B)"
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1242
by blast
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1243
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1244
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1245
text {* \medskip @{text range}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1246
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1247
lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1248
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1249
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1250
lemma range_composition: "range (\<lambda>x. f (g x)) = f`range g"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1251
by (subst image_image, simp)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1252
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1253
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1254
text {* \medskip @{text Int} *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1255
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1256
lemma Int_absorb: "A \<inter> A = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1257
  by (fact inf_idem) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1258
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1259
lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1260
  by (fact inf_left_idem)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1261
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1262
lemma Int_commute: "A \<inter> B = B \<inter> A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1263
  by (fact inf_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1264
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1265
lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1266
  by (fact inf_left_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1267
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1268
lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1269
  by (fact inf_assoc)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1270
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1271
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1272
  -- {* Intersection is an AC-operator *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1273
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1274
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1275
  by (fact inf_absorb2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1276
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1277
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1278
  by (fact inf_absorb1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1279
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1280
lemma Int_empty_left: "{} \<inter> B = {}"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1281
  by (fact inf_bot_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1282
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1283
lemma Int_empty_right: "A \<inter> {} = {}"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1284
  by (fact inf_bot_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1285
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1286
lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1287
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1288
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1289
lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1290
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1291
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1292
lemma Int_UNIV_left: "UNIV \<inter> B = B"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1293
  by (fact inf_top_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1294
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1295
lemma Int_UNIV_right: "A \<inter> UNIV = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1296
  by (fact inf_top_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1297
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1298
lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1299
  by (fact inf_sup_distrib1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1300
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1301
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1302
  by (fact inf_sup_distrib2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1303
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1304
lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1305
  by (fact inf_eq_top_iff) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1306
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1307
lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1308
  by (fact le_inf_iff)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1309
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1310
lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1311
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1312
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1313
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1314
text {* \medskip @{text Un}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1315
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1316
lemma Un_absorb: "A \<union> A = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1317
  by (fact sup_idem) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1318
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1319
lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1320
  by (fact sup_left_idem)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1321
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1322
lemma Un_commute: "A \<union> B = B \<union> A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1323
  by (fact sup_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1324
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1325
lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1326
  by (fact sup_left_commute)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1327
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1328
lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1329
  by (fact sup_assoc)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1330
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1331
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1332
  -- {* Union is an AC-operator *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1333
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1334
lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1335
  by (fact sup_absorb2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1336
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1337
lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1338
  by (fact sup_absorb1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1339
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1340
lemma Un_empty_left: "{} \<union> B = B"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1341
  by (fact sup_bot_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1342
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1343
lemma Un_empty_right: "A \<union> {} = A"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1344
  by (fact sup_bot_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1345
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1346
lemma Un_UNIV_left: "UNIV \<union> B = UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1347
  by (fact sup_top_left) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1348
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1349
lemma Un_UNIV_right: "A \<union> UNIV = UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1350
  by (fact sup_top_right) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1351
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1352
lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1353
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1354
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1355
lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1356
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1357
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1358
lemma Int_insert_left:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1359
    "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1360
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1361
32456
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1362
lemma Int_insert_left_if0[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1363
    "a \<notin> C \<Longrightarrow> (insert a B) Int C = B \<inter> C"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1364
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1365
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1366
lemma Int_insert_left_if1[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1367
    "a \<in> C \<Longrightarrow> (insert a B) Int C = insert a (B Int C)"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1368
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1369
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1370
lemma Int_insert_right:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1371
    "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1372
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1373
32456
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1374
lemma Int_insert_right_if0[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1375
    "a \<notin> A \<Longrightarrow> A Int (insert a B) = A Int B"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1376
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1377
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1378
lemma Int_insert_right_if1[simp]:
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1379
    "a \<in> A \<Longrightarrow> A Int (insert a B) = insert a (A Int B)"
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1380
  by auto
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 32264
diff changeset
  1381
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1382
lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1383
  by (fact sup_inf_distrib1)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1384
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1385
lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1386
  by (fact sup_inf_distrib2)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1387
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1388
lemma Un_Int_crazy:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1389
    "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1390
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1391
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1392
lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1393
  by (fact le_iff_sup)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1394
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1395
lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1396
  by (fact sup_eq_bot_iff) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1397
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1398
lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1399
  by (fact le_sup_iff)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1400
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1401
lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1402
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1403
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1404
lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1405
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1406
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1407
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1408
text {* \medskip Set complement *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1409
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1410
lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1411
  by (fact inf_compl_bot)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1412
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1413
lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1414
  by (fact compl_inf_bot)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1415
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1416
lemma Compl_partition: "A \<union> -A = UNIV"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1417
  by (fact sup_compl_top)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1418
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1419
lemma Compl_partition2: "-A \<union> A = UNIV"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1420
  by (fact compl_sup_top)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1421
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1422
lemma double_complement: "- (-A) = (A::'a set)"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1423
  by (fact double_compl) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1424
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1425
lemma Compl_Un: "-(A \<union> B) = (-A) \<inter> (-B)"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1426
  by (fact compl_sup) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1427
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1428
lemma Compl_Int: "-(A \<inter> B) = (-A) \<union> (-B)"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1429
  by (fact compl_inf) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1430
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1431
lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1432
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1433
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1434
lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1435
  -- {* Halmos, Naive Set Theory, page 16. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1436
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1437
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1438
lemma Compl_UNIV_eq: "-UNIV = {}"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1439
  by (fact compl_top_eq) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1440
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1441
lemma Compl_empty_eq: "-{} = UNIV"
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1442
  by (fact compl_bot_eq) (* already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1443
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1444
lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1445
  by (fact compl_le_compl_iff) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1446
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1447
lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
45121
5e495ccf6e56 Set.thy: remove redundant [simp] declarations
huffman
parents: 44744
diff changeset
  1448
  by (fact compl_eq_compl_iff) (* FIXME: already simp *)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1449
44490
e3e8d20a6ebc lemma Compl_insert: "- insert x A = (-A) - {x}"
krauss
parents: 44241
diff changeset
  1450
lemma Compl_insert: "- insert x A = (-A) - {x}"
e3e8d20a6ebc lemma Compl_insert: "- insert x A = (-A) - {x}"
krauss
parents: 44241
diff changeset
  1451
  by blast
e3e8d20a6ebc lemma Compl_insert: "- insert x A = (-A) - {x}"
krauss
parents: 44241
diff changeset
  1452
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1453
text {* \medskip Bounded quantifiers.
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1454
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1455
  The following are not added to the default simpset because
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1456
  (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1457
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1458
lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1459
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1460
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1461
lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1462
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1463
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1464
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1465
text {* \medskip Set difference. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1466
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1467
lemma Diff_eq: "A - B = A \<inter> (-B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1468
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1469
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1470
lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1471
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1472
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1473
lemma Diff_cancel [simp]: "A - A = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1474
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1475
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1476
lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1477
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1478
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1479
lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1480
  by (blast elim: equalityE)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1481
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1482
lemma empty_Diff [simp]: "{} - A = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1483
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1484
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1485
lemma Diff_empty [simp]: "A - {} = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1486
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1487
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1488
lemma Diff_UNIV [simp]: "A - UNIV = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1489
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1490
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1491
lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1492
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1493
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1494
lemma Diff_insert: "A - insert a B = A - B - {a}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1495
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1496
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1497
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1498
lemma Diff_insert2: "A - insert a B = A - {a} - B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1499
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1500
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1501
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1502
lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1503
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1504
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1505
lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1506
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1507
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1508
lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1509
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1510
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1511
lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1512
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1513
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1514
lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1515
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1516
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1517
lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1518
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1519
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1520
lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1521
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1522
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1523
lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1524
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1525
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1526
lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1527
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1528
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1529
lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1530
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1531
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1532
lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1533
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1534
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1535
lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1536
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1537
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1538
lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1539
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1540
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1541
lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1542
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1543
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1544
lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1545
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1546
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1547
lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1548
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1549
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1550
lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1551
  by auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1552
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1553
lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1554
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1555
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1556
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1557
text {* \medskip Quantification over type @{typ bool}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1558
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1559
lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1560
  by (cases x) auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1561
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1562
lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1563
  by (auto intro: bool_induct)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1564
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1565
lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1566
  by (cases x) auto
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1567
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1568
lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1569
  by (auto intro: bool_contrapos)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1570
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1571
lemma UNIV_bool: "UNIV = {False, True}"
43866
8a50dc70cbff moving UNIV = ... equations to their proper theories
haftmann
parents: 43818
diff changeset
  1572
  by (auto intro: bool_induct)
8a50dc70cbff moving UNIV = ... equations to their proper theories
haftmann
parents: 43818
diff changeset
  1573
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1574
text {* \medskip @{text Pow} *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1575
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1576
lemma Pow_empty [simp]: "Pow {} = {{}}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1577
  by (auto simp add: Pow_def)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1578
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1579
lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
55143
04448228381d explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
wenzelm
parents: 54998
diff changeset
  1580
  by (blast intro: image_eqI [where ?x = "u - {a}" for u])
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1581
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1582
lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
55143
04448228381d explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
wenzelm
parents: 54998
diff changeset
  1583
  by (blast intro: exI [where ?x = "- u" for u])
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1584
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1585
lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1586
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1587
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1588
lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1589
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1590
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1591
lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1592
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1593
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1594
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1595
text {* \medskip Miscellany. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1596
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1597
lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1598
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1599
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1600
lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1601
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1602
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1603
lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1604
  by (unfold less_le) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1605
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1606
lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1607
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1608
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1609
lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1610
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1611
43967
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1612
lemma ball_simps [simp, no_atp]:
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1613
  "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1614
  "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1615
  "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1616
  "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1617
  "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1618
  "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1619
  "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1620
  "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1621
  "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1622
  "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1623
  by auto
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1624
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1625
lemma bex_simps [simp, no_atp]:
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1626
  "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1627
  "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1628
  "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1629
  "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1630
  "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a | (\<exists>x\<in>B. P x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1631
  "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1632
  "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1633
  "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)"
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1634
  by auto
610efb6bda1f more coherent structure in and across theories
haftmann
parents: 43898
diff changeset
  1635
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1636
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1637
subsubsection {* Monotonicity of various operations *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1638
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1639
lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1640
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1641
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1642
lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1643
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1644
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1645
lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1646
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1647
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1648
lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1649
  by (fact sup_mono)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1650
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1651
lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1652
  by (fact inf_mono)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1653
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1654
lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1655
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1656
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1657
lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A"
36009
9cdbc5ffc15c use lattice theorems to prove set theorems
huffman
parents: 35828
diff changeset
  1658
  by (fact compl_mono)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1659
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1660
text {* \medskip Monotonicity of implications. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1661
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1662
lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1663
  apply (rule impI)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1664
  apply (erule subsetD, assumption)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1665
  done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1666
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1667
lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1668
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1669
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1670
lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1671
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1672
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1673
lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1674
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1675
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1676
lemma imp_refl: "P --> P" ..
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1677
33935
b94b4587106a Removed eq_to_mono2, added not_mono.
berghofe
parents: 33533
diff changeset
  1678
lemma not_mono: "Q --> P ==> ~ P --> ~ Q"
b94b4587106a Removed eq_to_mono2, added not_mono.
berghofe
parents: 33533
diff changeset
  1679
  by iprover
b94b4587106a Removed eq_to_mono2, added not_mono.
berghofe
parents: 33533
diff changeset
  1680
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1681
lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1682
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1683
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1684
lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1685
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1686
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1687
lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1688
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1689
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1690
lemma Int_Collect_mono:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1691
    "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1692
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1693
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1694
lemmas basic_monos =
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1695
  subset_refl imp_refl disj_mono conj_mono
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1696
  ex_mono Collect_mono in_mono
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1697
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1698
lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1699
  by iprover
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1700
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1701
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1702
subsubsection {* Inverse image of a function *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1703
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35115
diff changeset
  1704
definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 37677
diff changeset
  1705
  "f -` B == {x. f x : B}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1706
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1707
lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1708
  by (unfold vimage_def) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1709
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1710
lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1711
  by simp
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1712
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1713
lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1714
  by (unfold vimage_def) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1715
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1716
lemma vimageI2: "f a : A ==> a : f -` A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1717
  by (unfold vimage_def) fast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1718
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1719
lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1720
  by (unfold vimage_def) blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1721
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1722
lemma vimageD: "a : f -` A ==> f a : A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1723
  by (unfold vimage_def) fast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1724
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1725
lemma vimage_empty [simp]: "f -` {} = {}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1726
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1727
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1728
lemma vimage_Compl: "f -` (-A) = -(f -` A)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1729
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1730
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1731
lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1732
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1733
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1734
lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1735
  by fast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1736
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1737
lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1738
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1739
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1740
lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1741
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1742
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1743
lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1744
  -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1745
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1746
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1747
lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1748
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1749
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1750
lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1751
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1752
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1753
lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1754
  -- {* monotonicity *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1755
  by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1756
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53364
diff changeset
  1757
lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1758
by (blast intro: sym)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1759
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1760
lemma image_vimage_subset: "f ` (f -` A) <= A"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1761
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1762
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1763
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1764
by blast
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1765
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55143
diff changeset
  1766
lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B"
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55143
diff changeset
  1767
  by blast 
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55143
diff changeset
  1768
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1769
lemma vimage_const [simp]: "((\<lambda>x. c) -` A) = (if c \<in> A then UNIV else {})"
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1770
  by auto
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1771
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
  1772
lemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) =
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1773
   (if c \<in> A then (if d \<in> A then UNIV else B)
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
  1774
    else if d \<in> A then -B else {})"
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 51717
diff changeset
  1775
  by (auto simp add: vimage_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33045
diff changeset
  1776
35576
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1777
lemma vimage_inter_cong:
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1778
  "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S"
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1779
  by auto
5f6bd3ac99f9 Added vimage_inter_cong
hoelzl
parents: 35416
diff changeset
  1780
43898
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1781
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
935359fd8210 moved lemmas to appropriate theory
haftmann
parents: 43866
diff changeset
  1782
  by blast
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1783
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1784
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1785
subsubsection {* Getting the Contents of a Singleton Set *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1786
39910
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1787
definition the_elem :: "'a set \<Rightarrow> 'a" where
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1788
  "the_elem X = (THE x. X = {x})"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1789
39910
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1790
lemma the_elem_eq [simp]: "the_elem {x} = x"
10097e0a9dbd constant `contents` renamed to `the_elem`
haftmann
parents: 39302
diff changeset
  1791
  by (simp add: the_elem_def)
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1792
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1793
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1794
subsubsection {* Least value operator *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1795
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1796
lemma Least_mono:
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1797
  "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1798
    ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1799
    -- {* Courtesy of Stephan Merz *}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1800
  apply clarify
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1801
  apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1802
  apply (rule LeastI2_order)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1803
  apply (auto elim: monoD intro!: order_antisym)
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1804
  done
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1805
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1806
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1807
subsubsection {* Monad operation *}
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1808
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1809
definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1810
  "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}"
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1811
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1812
hide_const (open) bind
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1813
46036
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1814
lemma bind_bind:
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1815
  fixes A :: "'a set"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1816
  shows "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1817
  by (auto simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1818
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1819
lemma empty_bind [simp]:
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1820
  "Set.bind {} f = {}"
46036
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1821
  by (simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1822
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1823
lemma nonempty_bind_const:
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1824
  "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1825
  by (auto simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1826
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1827
lemma bind_const: "Set.bind A (\<lambda>_. B) = (if A = {} then {} else B)"
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1828
  by (auto simp add: bind_def)
6a86cc88b02f fundamental theorems on Set.bind
haftmann
parents: 46026
diff changeset
  1829
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1830
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1831
subsubsection {* Operations for execution *}
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1832
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1833
definition is_empty :: "'a set \<Rightarrow> bool" where
46127
af3b95160b59 cleanup of code declarations
haftmann
parents: 46036
diff changeset
  1834
  [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1835
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1836
hide_const (open) is_empty
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1837
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1838
definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
46127
af3b95160b59 cleanup of code declarations
haftmann
parents: 46036
diff changeset
  1839
  [code_abbrev]: "remove x A = A - {x}"
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1840
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1841
hide_const (open) remove
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1842
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1843
lemma member_remove [simp]:
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1844
  "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y"
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1845
  by (simp add: remove_def)
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1846
49757
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1847
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1848
  [code_abbrev]: "filter P A = {a \<in> A. P a}"
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1849
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1850
hide_const (open) filter
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1851
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1852
lemma member_filter [simp]:
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1853
  "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x"
73ab6d4a9236 rename Set.project to Set.filter - more appropriate name
kuncar
parents: 49660
diff changeset
  1854
  by (simp add: filter_def)
46128
53e7cc599f58 interaction of set operations for execution and membership predicate
haftmann
parents: 46127
diff changeset
  1855
45986
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1856
instantiation set :: (equal) equal
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1857
begin
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1858
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1859
definition
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1860
  "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1861
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1862
instance proof
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1863
qed (auto simp add: equal_set_def)
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1864
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1865
end
c9e50153e5ae moved various set operations to theory Set (resp. Product_Type)
haftmann
parents: 45959
diff changeset
  1866
46127
af3b95160b59 cleanup of code declarations
haftmann
parents: 46036
diff changeset
  1867
45959
184d36538e51 `set` is now a proper type constructor; added operation for set monad
haftmann
parents: 45909
diff changeset
  1868
text {* Misc *}
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1869
45152
e877b76c72bd hide not_member as also member
haftmann
parents: 45121
diff changeset
  1870
hide_const (open) member not_member
32135
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1871
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1872
lemmas equalityI = subset_antisym
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1873
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1874
ML {*
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1875
val Ball_def = @{thm Ball_def}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1876
val Bex_def = @{thm Bex_def}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1877
val CollectD = @{thm CollectD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1878
val CollectE = @{thm CollectE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1879
val CollectI = @{thm CollectI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1880
val Collect_conj_eq = @{thm Collect_conj_eq}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1881
val Collect_mem_eq = @{thm Collect_mem_eq}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1882
val IntD1 = @{thm IntD1}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1883
val IntD2 = @{thm IntD2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1884
val IntE = @{thm IntE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1885
val IntI = @{thm IntI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1886
val Int_Collect = @{thm Int_Collect}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1887
val UNIV_I = @{thm UNIV_I}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1888
val UNIV_witness = @{thm UNIV_witness}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1889
val UnE = @{thm UnE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1890
val UnI1 = @{thm UnI1}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1891
val UnI2 = @{thm UnI2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1892
val ballE = @{thm ballE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1893
val ballI = @{thm ballI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1894
val bexCI = @{thm bexCI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1895
val bexE = @{thm bexE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1896
val bexI = @{thm bexI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1897
val bex_triv = @{thm bex_triv}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1898
val bspec = @{thm bspec}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1899
val contra_subsetD = @{thm contra_subsetD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1900
val equalityCE = @{thm equalityCE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1901
val equalityD1 = @{thm equalityD1}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1902
val equalityD2 = @{thm equalityD2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1903
val equalityE = @{thm equalityE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1904
val equalityI = @{thm equalityI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1905
val imageE = @{thm imageE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1906
val imageI = @{thm imageI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1907
val image_Un = @{thm image_Un}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1908
val image_insert = @{thm image_insert}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1909
val insert_commute = @{thm insert_commute}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1910
val insert_iff = @{thm insert_iff}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1911
val mem_Collect_eq = @{thm mem_Collect_eq}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1912
val rangeE = @{thm rangeE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1913
val rangeI = @{thm rangeI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1914
val range_eqI = @{thm range_eqI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1915
val subsetCE = @{thm subsetCE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1916
val subsetD = @{thm subsetD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1917
val subsetI = @{thm subsetI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1918
val subset_refl = @{thm subset_refl}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1919
val subset_trans = @{thm subset_trans}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1920
val vimageD = @{thm vimageD}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1921
val vimageE = @{thm vimageE}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1922
val vimageI = @{thm vimageI}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1923
val vimageI2 = @{thm vimageI2}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1924
val vimage_Collect = @{thm vimage_Collect}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1925
val vimage_Int = @{thm vimage_Int}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1926
val vimage_Un = @{thm vimage_Un}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1927
*}
f645b51e8e54 set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
haftmann
parents: 32120
diff changeset
  1928
32077
3698947146b2 closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
haftmann
parents: 32064
diff changeset
  1929
end
46853
998ec26044c4 beautified
haftmann
parents: 46504
diff changeset
  1930