author | blanchet |
Tue, 05 Oct 2010 11:45:10 +0200 | |
changeset 39953 | aa54f347e5e2 |
parent 39950 | f3c4849868b8 |
child 40702 | cf26dd7395e4 |
permissions | -rw-r--r-- |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
1 |
(* Title: HOL/Hilbert_Choice.thy |
32988 | 2 |
Author: Lawrence C Paulson, Tobias Nipkow |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
3 |
Copyright 2001 University of Cambridge |
12023 | 4 |
*) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
5 |
|
14760 | 6 |
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *} |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
7 |
|
15131 | 8 |
theory Hilbert_Choice |
29655
ac31940cfb69
Plain, Main form meeting points in import hierarchy
haftmann
parents:
27760
diff
changeset
|
9 |
imports Nat Wellfounded Plain |
39943 | 10 |
uses ("Tools/choice_specification.ML") |
15131 | 11 |
begin |
12298 | 12 |
|
13 |
subsection {* Hilbert's epsilon *} |
|
14 |
||
31454 | 15 |
axiomatization Eps :: "('a => bool) => 'a" where |
22690
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
wenzelm
parents:
21999
diff
changeset
|
16 |
someI: "P x ==> P (Eps P)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
17 |
|
14872
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
wenzelm
parents:
14760
diff
changeset
|
18 |
syntax (epsilon) |
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
wenzelm
parents:
14760
diff
changeset
|
19 |
"_Eps" :: "[pttrn, bool] => 'a" ("(3\<some>_./ _)" [0, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
20 |
syntax (HOL) |
12298 | 21 |
"_Eps" :: "[pttrn, bool] => 'a" ("(3@ _./ _)" [0, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
22 |
syntax |
12298 | 23 |
"_Eps" :: "[pttrn, bool] => 'a" ("(3SOME _./ _)" [0, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
24 |
translations |
22690
0b08f218f260
replaced axioms/finalconsts by proper axiomatization;
wenzelm
parents:
21999
diff
changeset
|
25 |
"SOME x. P" == "CONST Eps (%x. P)" |
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
26 |
|
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13585
diff
changeset
|
27 |
print_translation {* |
35115 | 28 |
[(@{const_syntax Eps}, fn [Abs abs] => |
29 |
let val (x, t) = atomic_abs_tr' abs |
|
30 |
in Syntax.const @{syntax_const "_Eps"} $ x $ t end)] |
|
31 |
*} -- {* to avoid eta-contraction of body *} |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
32 |
|
33057 | 33 |
definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where |
34 |
"inv_into A f == %x. SOME y. y : A & f y = x" |
|
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
35 |
|
32988 | 36 |
abbreviation inv :: "('a => 'b) => ('b => 'a)" where |
33057 | 37 |
"inv == inv_into UNIV" |
14760 | 38 |
|
39 |
||
40 |
subsection {*Hilbert's Epsilon-operator*} |
|
41 |
||
42 |
text{*Easier to apply than @{text someI} if the witness comes from an |
|
43 |
existential formula*} |
|
44 |
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)" |
|
45 |
apply (erule exE) |
|
46 |
apply (erule someI) |
|
47 |
done |
|
48 |
||
49 |
text{*Easier to apply than @{text someI} because the conclusion has only one |
|
50 |
occurrence of @{term P}.*} |
|
51 |
lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" |
|
52 |
by (blast intro: someI) |
|
53 |
||
54 |
text{*Easier to apply than @{text someI2} if the witness comes from an |
|
55 |
existential formula*} |
|
56 |
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)" |
|
57 |
by (blast intro: someI2) |
|
58 |
||
59 |
lemma some_equality [intro]: |
|
60 |
"[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a" |
|
61 |
by (blast intro: someI2) |
|
62 |
||
63 |
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a" |
|
35216 | 64 |
by blast |
14760 | 65 |
|
66 |
lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)" |
|
67 |
by (blast intro: someI) |
|
68 |
||
69 |
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x" |
|
70 |
apply (rule some_equality) |
|
71 |
apply (rule refl, assumption) |
|
72 |
done |
|
73 |
||
74 |
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x" |
|
75 |
apply (rule some_equality) |
|
76 |
apply (rule refl) |
|
77 |
apply (erule sym) |
|
78 |
done |
|
79 |
||
80 |
||
81 |
subsection{*Axiom of Choice, Proved Using the Description Operator*} |
|
82 |
||
39950 | 83 |
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)" |
14760 | 84 |
by (fast elim: someI) |
85 |
||
86 |
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)" |
|
87 |
by (fast elim: someI) |
|
88 |
||
89 |
||
90 |
subsection {*Function Inverse*} |
|
91 |
||
33014 | 92 |
lemma inv_def: "inv f = (%y. SOME x. f x = y)" |
33057 | 93 |
by(simp add: inv_into_def) |
33014 | 94 |
|
33057 | 95 |
lemma inv_into_into: "x : f ` A ==> inv_into A f x : A" |
96 |
apply (simp add: inv_into_def) |
|
32988 | 97 |
apply (fast intro: someI2) |
98 |
done |
|
14760 | 99 |
|
32988 | 100 |
lemma inv_id [simp]: "inv id = id" |
33057 | 101 |
by (simp add: inv_into_def id_def) |
14760 | 102 |
|
33057 | 103 |
lemma inv_into_f_f [simp]: |
104 |
"[| inj_on f A; x : A |] ==> inv_into A f (f x) = x" |
|
105 |
apply (simp add: inv_into_def inj_on_def) |
|
32988 | 106 |
apply (blast intro: someI2) |
14760 | 107 |
done |
108 |
||
32988 | 109 |
lemma inv_f_f: "inj f ==> inv f (f x) = x" |
35216 | 110 |
by simp |
32988 | 111 |
|
33057 | 112 |
lemma f_inv_into_f: "y : f`A ==> f (inv_into A f y) = y" |
113 |
apply (simp add: inv_into_def) |
|
32988 | 114 |
apply (fast intro: someI2) |
115 |
done |
|
116 |
||
33057 | 117 |
lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x" |
32988 | 118 |
apply (erule subst) |
33057 | 119 |
apply (fast intro: inv_into_f_f) |
32988 | 120 |
done |
121 |
||
122 |
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x" |
|
33057 | 123 |
by (simp add:inv_into_f_eq) |
32988 | 124 |
|
125 |
lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g" |
|
33057 | 126 |
by (blast intro: ext inv_into_f_eq) |
14760 | 127 |
|
128 |
text{*But is it useful?*} |
|
129 |
lemma inj_transfer: |
|
130 |
assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)" |
|
131 |
shows "P x" |
|
132 |
proof - |
|
133 |
have "f x \<in> range f" by auto |
|
134 |
hence "P(inv f (f x))" by (rule minor) |
|
33057 | 135 |
thus "P x" by (simp add: inv_into_f_f [OF injf]) |
14760 | 136 |
qed |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
137 |
|
14760 | 138 |
lemma inj_iff: "(inj f) = (inv f o f = id)" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
139 |
apply (simp add: o_def fun_eq_iff) |
33057 | 140 |
apply (blast intro: inj_on_inverseI inv_into_f_f) |
14760 | 141 |
done |
142 |
||
23433 | 143 |
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id" |
144 |
by (simp add: inj_iff) |
|
145 |
||
146 |
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g" |
|
147 |
by (simp add: o_assoc[symmetric]) |
|
148 |
||
33057 | 149 |
lemma inv_into_image_cancel[simp]: |
150 |
"inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S" |
|
32988 | 151 |
by(fastsimp simp: image_def) |
152 |
||
14760 | 153 |
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)" |
33057 | 154 |
by (blast intro: surjI inv_into_f_f) |
14760 | 155 |
|
156 |
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y" |
|
33057 | 157 |
by (simp add: f_inv_into_f surj_range) |
14760 | 158 |
|
33057 | 159 |
lemma inv_into_injective: |
160 |
assumes eq: "inv_into A f x = inv_into A f y" |
|
32988 | 161 |
and x: "x: f`A" |
162 |
and y: "y: f`A" |
|
14760 | 163 |
shows "x=y" |
164 |
proof - |
|
33057 | 165 |
have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp |
166 |
thus ?thesis by (simp add: f_inv_into_f x y) |
|
14760 | 167 |
qed |
168 |
||
33057 | 169 |
lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B" |
170 |
by (blast intro: inj_onI dest: inv_into_injective injD) |
|
32988 | 171 |
|
33057 | 172 |
lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A" |
173 |
by (auto simp add: bij_betw_def inj_on_inv_into) |
|
14760 | 174 |
|
175 |
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)" |
|
33057 | 176 |
by (simp add: inj_on_inv_into surj_range) |
14760 | 177 |
|
178 |
lemma surj_iff: "(surj f) = (f o inv f = id)" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
179 |
apply (simp add: o_def fun_eq_iff) |
14760 | 180 |
apply (blast intro: surjI surj_f_inv_f) |
181 |
done |
|
182 |
||
183 |
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g" |
|
184 |
apply (rule ext) |
|
185 |
apply (drule_tac x = "inv f x" in spec) |
|
186 |
apply (simp add: surj_f_inv_f) |
|
187 |
done |
|
188 |
||
189 |
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)" |
|
190 |
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) |
|
12372 | 191 |
|
14760 | 192 |
lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g" |
193 |
apply (rule ext) |
|
33057 | 194 |
apply (auto simp add: inv_into_def) |
14760 | 195 |
done |
196 |
||
197 |
lemma inv_inv_eq: "bij f ==> inv (inv f) = f" |
|
198 |
apply (rule inv_equality) |
|
199 |
apply (auto simp add: bij_def surj_f_inv_f) |
|
200 |
done |
|
201 |
||
202 |
(** bij(inv f) implies little about f. Consider f::bool=>bool such that |
|
203 |
f(True)=f(False)=True. Then it's consistent with axiom someI that |
|
204 |
inv f could be any function at all, including the identity function. |
|
205 |
If inv f=id then inv f is a bijection, but inj f, surj(f) and |
|
206 |
inv(inv f)=f all fail. |
|
207 |
**) |
|
208 |
||
33057 | 209 |
lemma inv_into_comp: |
32988 | 210 |
"[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> |
33057 | 211 |
inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x" |
212 |
apply (rule inv_into_f_eq) |
|
32988 | 213 |
apply (fast intro: comp_inj_on) |
33057 | 214 |
apply (simp add: inv_into_into) |
215 |
apply (simp add: f_inv_into_f inv_into_into) |
|
32988 | 216 |
done |
217 |
||
14760 | 218 |
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f" |
219 |
apply (rule inv_equality) |
|
220 |
apply (auto simp add: bij_def surj_f_inv_f) |
|
221 |
done |
|
222 |
||
223 |
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A" |
|
224 |
by (simp add: image_eq_UN surj_f_inv_f) |
|
225 |
||
226 |
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A" |
|
227 |
by (simp add: image_eq_UN) |
|
228 |
||
229 |
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X" |
|
230 |
by (auto simp add: image_def) |
|
231 |
||
232 |
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}" |
|
233 |
apply auto |
|
234 |
apply (force simp add: bij_is_inj) |
|
235 |
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) |
|
236 |
done |
|
237 |
||
238 |
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" |
|
239 |
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) |
|
33057 | 240 |
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric]) |
14760 | 241 |
done |
242 |
||
31380 | 243 |
lemma finite_fun_UNIVD1: |
244 |
assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)" |
|
245 |
and card: "card (UNIV :: 'b set) \<noteq> Suc 0" |
|
246 |
shows "finite (UNIV :: 'a set)" |
|
247 |
proof - |
|
248 |
from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2) |
|
249 |
with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)" |
|
250 |
by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff) |
|
251 |
then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto |
|
252 |
then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq) |
|
253 |
from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI) |
|
254 |
moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" |
|
255 |
proof (rule UNIV_eq_I) |
|
256 |
fix x :: 'a |
|
33057 | 257 |
from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def) |
31380 | 258 |
thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast |
259 |
qed |
|
260 |
ultimately show "finite (UNIV :: 'a set)" by simp |
|
261 |
qed |
|
14760 | 262 |
|
263 |
||
264 |
subsection {*Other Consequences of Hilbert's Epsilon*} |
|
265 |
||
266 |
text {*Hilbert's Epsilon and the @{term split} Operator*} |
|
267 |
||
268 |
text{*Looping simprule*} |
|
269 |
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))" |
|
26347 | 270 |
by simp |
14760 | 271 |
|
272 |
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))" |
|
26347 | 273 |
by (simp add: split_def) |
14760 | 274 |
|
275 |
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)" |
|
26347 | 276 |
by blast |
14760 | 277 |
|
278 |
||
279 |
text{*A relation is wellfounded iff it has no infinite descending chain*} |
|
280 |
lemma wf_iff_no_infinite_down_chain: |
|
281 |
"wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))" |
|
282 |
apply (simp only: wf_eq_minimal) |
|
283 |
apply (rule iffI) |
|
284 |
apply (rule notI) |
|
285 |
apply (erule exE) |
|
286 |
apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast) |
|
287 |
apply (erule contrapos_np, simp, clarify) |
|
288 |
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q") |
|
289 |
apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI) |
|
290 |
apply (rule allI, simp) |
|
291 |
apply (rule someI2_ex, blast, blast) |
|
292 |
apply (rule allI) |
|
293 |
apply (induct_tac "n", simp_all) |
|
294 |
apply (rule someI2_ex, blast+) |
|
295 |
done |
|
296 |
||
27760 | 297 |
lemma wf_no_infinite_down_chainE: |
298 |
assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r" |
|
299 |
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast |
|
300 |
||
301 |
||
14760 | 302 |
text{*A dynamically-scoped fact for TFL *} |
12298 | 303 |
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)" |
304 |
by (blast intro: someI) |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
305 |
|
12298 | 306 |
|
307 |
subsection {* Least value operator *} |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
308 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35216
diff
changeset
|
309 |
definition |
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35216
diff
changeset
|
310 |
LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where |
14760 | 311 |
"LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
312 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
313 |
syntax |
12298 | 314 |
"_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" ("LEAST _ WRT _. _" [0, 4, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
315 |
translations |
35115 | 316 |
"LEAST x WRT m. P" == "CONST LeastM m (%x. P)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
317 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
318 |
lemma LeastMI2: |
12298 | 319 |
"P x ==> (!!y. P y ==> m x <= m y) |
320 |
==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x) |
|
321 |
==> Q (LeastM m P)" |
|
14760 | 322 |
apply (simp add: LeastM_def) |
14208 | 323 |
apply (rule someI2_ex, blast, blast) |
12298 | 324 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
325 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
326 |
lemma LeastM_equality: |
12298 | 327 |
"P k ==> (!!x. P x ==> m k <= m x) |
328 |
==> m (LEAST x WRT m. P x) = (m k::'a::order)" |
|
14208 | 329 |
apply (rule LeastMI2, assumption, blast) |
12298 | 330 |
apply (blast intro!: order_antisym) |
331 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
332 |
|
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
333 |
lemma wf_linord_ex_has_least: |
14760 | 334 |
"wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k |
335 |
==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)" |
|
12298 | 336 |
apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]]) |
14208 | 337 |
apply (drule_tac x = "m`Collect P" in spec, force) |
12298 | 338 |
done |
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
339 |
|
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
340 |
lemma ex_has_least_nat: |
14760 | 341 |
"P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))" |
12298 | 342 |
apply (simp only: pred_nat_trancl_eq_le [symmetric]) |
343 |
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least]) |
|
16796 | 344 |
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption) |
12298 | 345 |
done |
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
346 |
|
12298 | 347 |
lemma LeastM_nat_lemma: |
14760 | 348 |
"P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))" |
349 |
apply (simp add: LeastM_def) |
|
12298 | 350 |
apply (rule someI_ex) |
351 |
apply (erule ex_has_least_nat) |
|
352 |
done |
|
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
353 |
|
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
354 |
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard] |
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
355 |
|
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
356 |
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)" |
14208 | 357 |
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption) |
11454
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
paulson
parents:
11451
diff
changeset
|
358 |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
359 |
|
12298 | 360 |
subsection {* Greatest value operator *} |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
361 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35216
diff
changeset
|
362 |
definition |
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35216
diff
changeset
|
363 |
GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where |
14760 | 364 |
"GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)" |
12298 | 365 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35216
diff
changeset
|
366 |
definition |
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35216
diff
changeset
|
367 |
Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where |
12298 | 368 |
"Greatest == GreatestM (%x. x)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
369 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
370 |
syntax |
35115 | 371 |
"_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" |
12298 | 372 |
("GREATEST _ WRT _. _" [0, 4, 10] 10) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
373 |
translations |
35115 | 374 |
"GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)" |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
375 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
376 |
lemma GreatestMI2: |
12298 | 377 |
"P x ==> (!!y. P y ==> m y <= m x) |
378 |
==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x) |
|
379 |
==> Q (GreatestM m P)" |
|
14760 | 380 |
apply (simp add: GreatestM_def) |
14208 | 381 |
apply (rule someI2_ex, blast, blast) |
12298 | 382 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
383 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
384 |
lemma GreatestM_equality: |
12298 | 385 |
"P k ==> (!!x. P x ==> m x <= m k) |
386 |
==> m (GREATEST x WRT m. P x) = (m k::'a::order)" |
|
14208 | 387 |
apply (rule_tac m = m in GreatestMI2, assumption, blast) |
12298 | 388 |
apply (blast intro!: order_antisym) |
389 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
390 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
391 |
lemma Greatest_equality: |
12298 | 392 |
"P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k" |
14760 | 393 |
apply (simp add: Greatest_def) |
14208 | 394 |
apply (erule GreatestM_equality, blast) |
12298 | 395 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
396 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
397 |
lemma ex_has_greatest_nat_lemma: |
14760 | 398 |
"P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x)) |
399 |
==> \<exists>y. P y & ~ (m y < m k + n)" |
|
15251 | 400 |
apply (induct n, force) |
12298 | 401 |
apply (force simp add: le_Suc_eq) |
402 |
done |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
403 |
|
12298 | 404 |
lemma ex_has_greatest_nat: |
14760 | 405 |
"P k ==> \<forall>y. P y --> m y < b |
406 |
==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)" |
|
12298 | 407 |
apply (rule ccontr) |
408 |
apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma) |
|
14208 | 409 |
apply (subgoal_tac [3] "m k <= b", auto) |
12298 | 410 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
411 |
|
12298 | 412 |
lemma GreatestM_nat_lemma: |
14760 | 413 |
"P k ==> \<forall>y. P y --> m y < b |
414 |
==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))" |
|
415 |
apply (simp add: GreatestM_def) |
|
12298 | 416 |
apply (rule someI_ex) |
14208 | 417 |
apply (erule ex_has_greatest_nat, assumption) |
12298 | 418 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
419 |
|
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
420 |
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard] |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
421 |
|
12298 | 422 |
lemma GreatestM_nat_le: |
14760 | 423 |
"P x ==> \<forall>y. P y --> m y < b |
12298 | 424 |
==> (m x::nat) <= m (GreatestM m P)" |
21020 | 425 |
apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P]) |
12298 | 426 |
done |
427 |
||
428 |
||
429 |
text {* \medskip Specialization to @{text GREATEST}. *} |
|
430 |
||
14760 | 431 |
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)" |
432 |
apply (simp add: Greatest_def) |
|
14208 | 433 |
apply (rule GreatestM_natI, auto) |
12298 | 434 |
done |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
435 |
|
12298 | 436 |
lemma Greatest_le: |
14760 | 437 |
"P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)" |
438 |
apply (simp add: Greatest_def) |
|
14208 | 439 |
apply (rule GreatestM_nat_le, auto) |
12298 | 440 |
done |
441 |
||
442 |
||
17893
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
443 |
subsection {* Specification package -- Hilbertized version *} |
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
444 |
|
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
445 |
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c" |
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
446 |
by (simp only: someI_ex) |
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
wenzelm
parents:
17702
diff
changeset
|
447 |
|
31723
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31454
diff
changeset
|
448 |
use "Tools/choice_specification.ML" |
14115 | 449 |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
diff
changeset
|
450 |
end |