| 0 |      1 | (*  Title: 	FOL/ex/nat.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Examples for the manual "Introduction to Isabelle"
 | 
|  |      7 | 
 | 
|  |      8 | Theory of the natural numbers: Peano's axioms, primitive recursion
 | 
|  |      9 | 
 | 
|  |     10 | INCOMPATIBLE with nat2.thy, Nipkow's example
 | 
|  |     11 | *)
 | 
|  |     12 | 
 | 
|  |     13 | Nat = FOL +
 | 
|  |     14 | types   nat 0
 | 
|  |     15 | arities nat         :: term
 | 
|  |     16 | consts  "0"         :: "nat"    ("0")
 | 
|  |     17 |         Suc         :: "nat=>nat"
 | 
|  |     18 |         rec         :: "[nat, 'a, [nat,'a]=>'a] => 'a"
 | 
|  |     19 |         "+"         :: "[nat, nat] => nat"              (infixl 60)
 | 
|  |     20 | rules   induct      "[| P(0);  !!x. P(x) ==> P(Suc(x)) |]  ==> P(n)"
 | 
|  |     21 |         Suc_inject  "Suc(m)=Suc(n) ==> m=n"
 | 
|  |     22 |         Suc_neq_0   "Suc(m)=0      ==> R"
 | 
|  |     23 |         rec_0       "rec(0,a,f) = a"
 | 
|  |     24 |         rec_Suc     "rec(Suc(m), a, f) = f(m, rec(m,a,f))"
 | 
|  |     25 |         add_def     "m+n == rec(m, n, %x y. Suc(y))"
 | 
|  |     26 | end
 |