| 
2608
 | 
     1  | 
(*  Title:      HOL/NatDef.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Definition of types ind and nat.
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Type nat is defined as a set Nat over type ind.
  | 
| 
 | 
     9  | 
*)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
NatDef = WF +
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
(** type ind **)
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
types
  | 
| 
 | 
    16  | 
  ind
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
arities
  | 
| 
 | 
    19  | 
  ind :: term
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
consts
  | 
| 
 | 
    22  | 
  Zero_Rep      :: ind
  | 
| 
 | 
    23  | 
  Suc_Rep       :: ind => ind
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
rules
  | 
| 
 | 
    26  | 
  (*the axiom of infinity in 2 parts*)
  | 
| 
 | 
    27  | 
  inj_Suc_Rep           "inj(Suc_Rep)"
  | 
| 
 | 
    28  | 
  Suc_Rep_not_Zero_Rep  "Suc_Rep(x) ~= Zero_Rep"
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
(** type nat **)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
(* type definition *)
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
typedef (Nat)
  | 
| 
 | 
    37  | 
  nat = "lfp(%X. {Zero_Rep} Un (Suc_Rep``X))"   (lfp_def)
 | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
instance
  | 
| 
 | 
    40  | 
  nat :: ord
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
(* abstract constants and syntax *)
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
consts
  | 
| 
 | 
    46  | 
  "0"       :: nat                ("0")
 | 
| 
 | 
    47  | 
  Suc       :: nat => nat
  | 
| 
 | 
    48  | 
  nat_case  :: ['a, nat => 'a, nat] => 'a
  | 
| 
 | 
    49  | 
  pred_nat  :: "(nat * nat) set"
  | 
| 
 | 
    50  | 
  nat_rec   :: ['a, [nat, 'a] => 'a, nat] => 'a
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
syntax
  | 
| 
 | 
    53  | 
  "1"       :: nat                ("1")
 | 
| 
 | 
    54  | 
  "2"       :: nat                ("2")
 | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
translations
  | 
| 
 | 
    57  | 
   "1"  == "Suc 0"
  | 
| 
 | 
    58  | 
   "2"  == "Suc 1"
  | 
| 
 | 
    59  | 
  "case p of 0 => a | Suc y => b" == "nat_case a (%y.b) p"
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
defs
  | 
| 
 | 
    63  | 
  Zero_def      "0 == Abs_Nat(Zero_Rep)"
  | 
| 
 | 
    64  | 
  Suc_def       "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))"
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
  (*nat operations and recursion*)
  | 
| 
 | 
    67  | 
  nat_case_def  "nat_case a f n == @z.  (n=0 --> z=a)  
  | 
| 
 | 
    68  | 
                                        & (!x. n=Suc x --> z=f(x))"
  | 
| 
 | 
    69  | 
  pred_nat_def  "pred_nat == {p. ? n. p = (n, Suc n)}"
 | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  less_def      "m<n == (m,n):trancl(pred_nat)"
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
  le_def        "m<=(n::nat) == ~(n<m)"
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
  nat_rec_def   "nat_rec c d ==
  | 
| 
 | 
    76  | 
                 wfrec pred_nat (%f. nat_case c (%m. d m (f m)))"
  | 
| 
 | 
    77  | 
end
  |