| author | paulson | 
| Fri, 18 Apr 1997 11:47:11 +0200 | |
| changeset 2981 | aa5aeb6467c6 | 
| parent 2922 | 580647a879cf | 
| child 3091 | 9366415b93ad | 
| permissions | -rw-r--r-- | 
| 1465 | 1  | 
(* Title: HOL/Sum.ML  | 
| 923 | 2  | 
ID: $Id$  | 
| 1465 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 923 | 4  | 
Copyright 1991 University of Cambridge  | 
5  | 
||
6  | 
For Sum.thy. The disjoint sum of two types  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
open Sum;  | 
|
10  | 
||
11  | 
(** Inl_Rep and Inr_Rep: Representations of the constructors **)  | 
|
12  | 
||
13  | 
(*This counts as a non-emptiness result for admitting 'a+'b as a type*)  | 
|
14  | 
goalw Sum.thy [Sum_def] "Inl_Rep(a) : Sum";  | 
|
15  | 
by (EVERY1 [rtac CollectI, rtac disjI1, rtac exI, rtac refl]);  | 
|
16  | 
qed "Inl_RepI";  | 
|
17  | 
||
18  | 
goalw Sum.thy [Sum_def] "Inr_Rep(b) : Sum";  | 
|
19  | 
by (EVERY1 [rtac CollectI, rtac disjI2, rtac exI, rtac refl]);  | 
|
20  | 
qed "Inr_RepI";  | 
|
21  | 
||
22  | 
goal Sum.thy "inj_onto Abs_Sum Sum";  | 
|
23  | 
by (rtac inj_onto_inverseI 1);  | 
|
24  | 
by (etac Abs_Sum_inverse 1);  | 
|
25  | 
qed "inj_onto_Abs_Sum";  | 
|
26  | 
||
27  | 
(** Distinctness of Inl and Inr **)  | 
|
28  | 
||
29  | 
goalw Sum.thy [Inl_Rep_def, Inr_Rep_def] "Inl_Rep(a) ~= Inr_Rep(b)";  | 
|
30  | 
by (EVERY1 [rtac notI,  | 
|
| 1465 | 31  | 
etac (fun_cong RS fun_cong RS fun_cong RS iffE),  | 
32  | 
rtac (notE RS ccontr), etac (mp RS conjunct2),  | 
|
33  | 
REPEAT o (ares_tac [refl,conjI]) ]);  | 
|
| 923 | 34  | 
qed "Inl_Rep_not_Inr_Rep";  | 
35  | 
||
36  | 
goalw Sum.thy [Inl_def,Inr_def] "Inl(a) ~= Inr(b)";  | 
|
37  | 
by (rtac (inj_onto_Abs_Sum RS inj_onto_contraD) 1);  | 
|
38  | 
by (rtac Inl_Rep_not_Inr_Rep 1);  | 
|
39  | 
by (rtac Inl_RepI 1);  | 
|
40  | 
by (rtac Inr_RepI 1);  | 
|
41  | 
qed "Inl_not_Inr";  | 
|
42  | 
||
| 
1985
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
43  | 
bind_thm ("Inr_not_Inl", Inl_not_Inr RS not_sym);
 | 
| 
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
44  | 
|
| 
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
45  | 
AddIffs [Inl_not_Inr, Inr_not_Inl];  | 
| 923 | 46  | 
|
| 
1985
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
47  | 
bind_thm ("Inl_neq_Inr", Inl_not_Inr RS notE);
 | 
| 923 | 48  | 
|
| 
1985
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
49  | 
val Inr_neq_Inl = sym RS Inl_neq_Inr;  | 
| 923 | 50  | 
|
51  | 
||
52  | 
(** Injectiveness of Inl and Inr **)  | 
|
53  | 
||
54  | 
val [major] = goalw Sum.thy [Inl_Rep_def] "Inl_Rep(a) = Inl_Rep(c) ==> a=c";  | 
|
55  | 
by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);  | 
|
| 2891 | 56  | 
by (Blast_tac 1);  | 
| 923 | 57  | 
qed "Inl_Rep_inject";  | 
58  | 
||
59  | 
val [major] = goalw Sum.thy [Inr_Rep_def] "Inr_Rep(b) = Inr_Rep(d) ==> b=d";  | 
|
60  | 
by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);  | 
|
| 2891 | 61  | 
by (Blast_tac 1);  | 
| 923 | 62  | 
qed "Inr_Rep_inject";  | 
63  | 
||
64  | 
goalw Sum.thy [Inl_def] "inj(Inl)";  | 
|
65  | 
by (rtac injI 1);  | 
|
66  | 
by (etac (inj_onto_Abs_Sum RS inj_ontoD RS Inl_Rep_inject) 1);  | 
|
67  | 
by (rtac Inl_RepI 1);  | 
|
68  | 
by (rtac Inl_RepI 1);  | 
|
69  | 
qed "inj_Inl";  | 
|
70  | 
val Inl_inject = inj_Inl RS injD;  | 
|
71  | 
||
72  | 
goalw Sum.thy [Inr_def] "inj(Inr)";  | 
|
73  | 
by (rtac injI 1);  | 
|
74  | 
by (etac (inj_onto_Abs_Sum RS inj_ontoD RS Inr_Rep_inject) 1);  | 
|
75  | 
by (rtac Inr_RepI 1);  | 
|
76  | 
by (rtac Inr_RepI 1);  | 
|
77  | 
qed "inj_Inr";  | 
|
78  | 
val Inr_inject = inj_Inr RS injD;  | 
|
79  | 
||
80  | 
goal Sum.thy "(Inl(x)=Inl(y)) = (x=y)";  | 
|
| 2891 | 81  | 
by (blast_tac (!claset addSDs [Inl_inject]) 1);  | 
| 923 | 82  | 
qed "Inl_eq";  | 
83  | 
||
84  | 
goal Sum.thy "(Inr(x)=Inr(y)) = (x=y)";  | 
|
| 2891 | 85  | 
by (blast_tac (!claset addSDs [Inr_inject]) 1);  | 
| 923 | 86  | 
qed "Inr_eq";  | 
87  | 
||
| 
1985
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
88  | 
AddIffs [Inl_eq, Inr_eq];  | 
| 
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
89  | 
|
| 923 | 90  | 
(*** Rules for the disjoint sum of two SETS ***)  | 
91  | 
||
92  | 
(** Introduction rules for the injections **)  | 
|
93  | 
||
| 2212 | 94  | 
goalw Sum.thy [sum_def] "!!a A B. a : A ==> Inl(a) : A Plus B";  | 
| 2891 | 95  | 
by (Blast_tac 1);  | 
| 923 | 96  | 
qed "InlI";  | 
97  | 
||
| 2212 | 98  | 
goalw Sum.thy [sum_def] "!!b A B. b : B ==> Inr(b) : A Plus B";  | 
| 2891 | 99  | 
by (Blast_tac 1);  | 
| 923 | 100  | 
qed "InrI";  | 
101  | 
||
102  | 
(** Elimination rules **)  | 
|
103  | 
||
104  | 
val major::prems = goalw Sum.thy [sum_def]  | 
|
| 2212 | 105  | 
"[| u: A Plus B; \  | 
| 923 | 106  | 
\ !!x. [| x:A; u=Inl(x) |] ==> P; \  | 
107  | 
\ !!y. [| y:B; u=Inr(y) |] ==> P \  | 
|
108  | 
\ |] ==> P";  | 
|
109  | 
by (rtac (major RS UnE) 1);  | 
|
110  | 
by (REPEAT (rtac refl 1  | 
|
111  | 
ORELSE eresolve_tac (prems@[imageE,ssubst]) 1));  | 
|
| 2212 | 112  | 
qed "PlusE";  | 
| 923 | 113  | 
|
114  | 
||
| 
1760
 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 
berghofe 
parents: 
1515 
diff
changeset
 | 
115  | 
AddSIs [InlI, InrI];  | 
| 2212 | 116  | 
AddSEs [PlusE];  | 
| 
1760
 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 
berghofe 
parents: 
1515 
diff
changeset
 | 
117  | 
|
| 923 | 118  | 
|
119  | 
(** sum_case -- the selection operator for sums **)  | 
|
120  | 
||
121  | 
goalw Sum.thy [sum_case_def] "sum_case f g (Inl x) = f(x)";  | 
|
| 2891 | 122  | 
by (blast_tac (!claset addIs [select_equality]) 1);  | 
| 923 | 123  | 
qed "sum_case_Inl";  | 
124  | 
||
125  | 
goalw Sum.thy [sum_case_def] "sum_case f g (Inr x) = g(x)";  | 
|
| 
1760
 
6f41a494f3b1
Replaced fast_tac by Fast_tac (which uses default claset)
 
berghofe 
parents: 
1515 
diff
changeset
 | 
126  | 
by (fast_tac (!claset addIs [select_equality]) 1);  | 
| 923 | 127  | 
qed "sum_case_Inr";  | 
128  | 
||
| 
1985
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
129  | 
Addsimps [sum_case_Inl, sum_case_Inr];  | 
| 
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
130  | 
|
| 923 | 131  | 
(** Exhaustion rule for sums -- a degenerate form of induction **)  | 
132  | 
||
133  | 
val prems = goalw Sum.thy [Inl_def,Inr_def]  | 
|
134  | 
"[| !!x::'a. s = Inl(x) ==> P; !!y::'b. s = Inr(y) ==> P \  | 
|
135  | 
\ |] ==> P";  | 
|
136  | 
by (rtac (rewrite_rule [Sum_def] Rep_Sum RS CollectE) 1);  | 
|
137  | 
by (REPEAT (eresolve_tac [disjE,exE] 1  | 
|
138  | 
ORELSE EVERY1 [resolve_tac prems,  | 
|
| 1465 | 139  | 
etac subst,  | 
140  | 
rtac (Rep_Sum_inverse RS sym)]));  | 
|
| 923 | 141  | 
qed "sumE";  | 
142  | 
||
143  | 
goal Sum.thy "sum_case (%x::'a. f(Inl x)) (%y::'b. f(Inr y)) s = f(s)";  | 
|
144  | 
by (EVERY1 [res_inst_tac [("s","s")] sumE, 
 | 
|
| 1465 | 145  | 
etac ssubst, rtac sum_case_Inl,  | 
146  | 
etac ssubst, rtac sum_case_Inr]);  | 
|
| 923 | 147  | 
qed "surjective_sum";  | 
148  | 
||
149  | 
goal Sum.thy "R(sum_case f g s) = \  | 
|
150  | 
\ ((! x. s = Inl(x) --> R(f(x))) & (! y. s = Inr(y) --> R(g(y))))";  | 
|
| 
1985
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
151  | 
by (res_inst_tac [("s","s")] sumE 1);
 | 
| 
 
84cf16192e03
Tidied many proofs, using AddIffs to let equivalences take
 
paulson 
parents: 
1761 
diff
changeset
 | 
152  | 
by (Auto_tac());  | 
| 923 | 153  | 
qed "expand_sum_case";  | 
154  | 
||
155  | 
(*Prevents simplification of f and g: much faster*)  | 
|
156  | 
qed_goal "sum_case_weak_cong" Sum.thy  | 
|
157  | 
"s=t ==> sum_case f g s = sum_case f g t"  | 
|
158  | 
(fn [prem] => [rtac (prem RS arg_cong) 1]);  | 
|
159  | 
||
160  | 
||
161  | 
||
162  | 
(** Rules for the Part primitive **)  | 
|
163  | 
||
164  | 
goalw Sum.thy [Part_def]  | 
|
165  | 
"!!a b A h. [| a : A; a=h(b) |] ==> a : Part A h";  | 
|
| 2891 | 166  | 
by (Blast_tac 1);  | 
| 923 | 167  | 
qed "Part_eqI";  | 
168  | 
||
169  | 
val PartI = refl RSN (2,Part_eqI);  | 
|
170  | 
||
171  | 
val major::prems = goalw Sum.thy [Part_def]  | 
|
172  | 
"[| a : Part A h; !!z. [| a : A; a=h(z) |] ==> P \  | 
|
173  | 
\ |] ==> P";  | 
|
174  | 
by (rtac (major RS IntE) 1);  | 
|
175  | 
by (etac CollectE 1);  | 
|
176  | 
by (etac exE 1);  | 
|
177  | 
by (REPEAT (ares_tac prems 1));  | 
|
178  | 
qed "PartE";  | 
|
179  | 
||
| 2891 | 180  | 
AddIs [Part_eqI];  | 
181  | 
AddSEs [PartE];  | 
|
182  | 
||
| 923 | 183  | 
goalw Sum.thy [Part_def] "Part A h <= A";  | 
184  | 
by (rtac Int_lower1 1);  | 
|
185  | 
qed "Part_subset";  | 
|
186  | 
||
187  | 
goal Sum.thy "!!A B. A<=B ==> Part A h <= Part B h";  | 
|
| 2922 | 188  | 
by (Blast_tac 1);  | 
| 923 | 189  | 
qed "Part_mono";  | 
190  | 
||
| 1515 | 191  | 
val basic_monos = basic_monos @ [Part_mono];  | 
192  | 
||
| 923 | 193  | 
goalw Sum.thy [Part_def] "!!a. a : Part A h ==> a : A";  | 
194  | 
by (etac IntD1 1);  | 
|
195  | 
qed "PartD1";  | 
|
196  | 
||
197  | 
goal Sum.thy "Part A (%x.x) = A";  | 
|
| 2891 | 198  | 
by (Blast_tac 1);  | 
| 923 | 199  | 
qed "Part_id";  | 
200  | 
||
| 
1188
 
0443e4dc8511
Added Part_Int and Part_Collect for inductive definitions
 
lcp 
parents: 
923 
diff
changeset
 | 
201  | 
goal Sum.thy "Part (A Int B) h = (Part A h) Int (Part B h)";  | 
| 2922 | 202  | 
by (Blast_tac 1);  | 
| 
1188
 
0443e4dc8511
Added Part_Int and Part_Collect for inductive definitions
 
lcp 
parents: 
923 
diff
changeset
 | 
203  | 
qed "Part_Int";  | 
| 
 
0443e4dc8511
Added Part_Int and Part_Collect for inductive definitions
 
lcp 
parents: 
923 
diff
changeset
 | 
204  | 
|
| 
 
0443e4dc8511
Added Part_Int and Part_Collect for inductive definitions
 
lcp 
parents: 
923 
diff
changeset
 | 
205  | 
(*For inductive definitions*)  | 
| 
 
0443e4dc8511
Added Part_Int and Part_Collect for inductive definitions
 
lcp 
parents: 
923 
diff
changeset
 | 
206  | 
goal Sum.thy "Part (A Int {x.P x}) h = (Part A h) Int {x.P x}";
 | 
| 2922 | 207  | 
by (Blast_tac 1);  | 
| 
1188
 
0443e4dc8511
Added Part_Int and Part_Collect for inductive definitions
 
lcp 
parents: 
923 
diff
changeset
 | 
208  | 
qed "Part_Collect";  |