doc-src/TutorialI/Misc/natsum.thy
author wenzelm
Sun, 21 Jan 2001 19:50:43 +0100
changeset 10950 aa788fcb75a5
parent 10788 ea48dd8b0232
child 10971 6852682eaf16
permissions -rw-r--r--
updated;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     1
(*<*)
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     2
theory natsum = Main:;
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     3
(*>*)
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     4
text{*\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9541
diff changeset
     5
In particular, there are @{text"case"}-expressions, for example
9541
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 9458
diff changeset
     6
@{term[display]"case n of 0 => 0 | Suc m => m"}
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     7
primitive recursion, for example
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     8
*}
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     9
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    10
consts sum :: "nat \<Rightarrow> nat";
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    11
primrec "sum 0 = 0"
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    12
        "sum (Suc n) = Suc n + sum n";
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    13
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    14
text{*\noindent
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    15
and induction, for example
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    16
*}
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    17
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    18
lemma "sum n + sum n = n*(Suc n)";
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    19
apply(induct_tac n);
10171
59d6633835fa *** empty log message ***
nipkow
parents: 9834
diff changeset
    20
apply(auto);
59d6633835fa *** empty log message ***
nipkow
parents: 9834
diff changeset
    21
done
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    22
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    23
text{*\newcommand{\mystar}{*%
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    24
}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    25
The usual arithmetic operations \ttindexboldpos{+}{$HOL2arithfun},
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    26
\ttindexboldpos{-}{$HOL2arithfun}, \ttindexboldpos{\mystar}{$HOL2arithfun},
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    27
\isaindexbold{div}, \isaindexbold{mod}, \isaindexbold{min} and
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    28
\isaindexbold{max} are predefined, as are the relations
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    29
\indexboldpos{\isasymle}{$HOL2arithrel} and
10654
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    30
\ttindexboldpos{<}{$HOL2arithrel}. As usual, @{prop"m-n = 0"} if
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    31
@{prop"m<n"}. There is even a least number operation
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    32
\isaindexbold{LEAST}. For example, @{prop"(LEAST n. 1 < n) = 2"}, although
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    33
Isabelle does not prove this completely automatically. Note that @{term 1}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    34
and @{term 2} are available as abbreviations for the corresponding
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    35
@{term Suc}-expressions. If you need the full set of numerals,
10608
620647438780 *** empty log message ***
nipkow
parents: 10538
diff changeset
    36
see~\S\ref{sec:numerals}.
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    37
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    38
\begin{warn}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    39
  The constant \ttindexbold{0} and the operations
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    40
  \ttindexboldpos{+}{$HOL2arithfun}, \ttindexboldpos{-}{$HOL2arithfun},
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    41
  \ttindexboldpos{\mystar}{$HOL2arithfun}, \isaindexbold{min},
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    42
  \isaindexbold{max}, \indexboldpos{\isasymle}{$HOL2arithrel} and
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    43
  \ttindexboldpos{<}{$HOL2arithrel} are overloaded, i.e.\ they are available
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    44
  not just for natural numbers but at other types as well (see
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    45
  \S\ref{sec:overloading}). For example, given the goal @{prop"x+0 = x"},
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    46
  there is nothing to indicate that you are talking about natural numbers.
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    47
  Hence Isabelle can only infer that @{term x} is of some arbitrary type where
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    48
  @{term 0} and @{text"+"} are declared. As a consequence, you will be unable
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    49
  to prove the goal (although it may take you some time to realize what has
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    50
  happened if @{text show_types} is not set).  In this particular example,
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    51
  you need to include an explicit type constraint, for example
10788
ea48dd8b0232 *** empty log message ***
nipkow
parents: 10654
diff changeset
    52
  @{text"x+0 = (x::nat)"}. If there is enough contextual information this
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    53
  may not be necessary: @{prop"Suc x = x"} automatically implies
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    54
  @{text"x::nat"} because @{term Suc} is not overloaded.
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    55
\end{warn}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    56
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    57
Simple arithmetic goals are proved automatically by both @{term auto} and the
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    58
simplification methods introduced in \S\ref{sec:Simplification}.  For
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    59
example,
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    60
*}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    61
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    62
lemma "\<lbrakk> \<not> m < n; m < n+1 \<rbrakk> \<Longrightarrow> m = n"
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    63
(*<*)by(auto)(*>*)
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    64
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    65
text{*\noindent
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    66
is proved automatically. The main restriction is that only addition is taken
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    67
into account; other arithmetic operations and quantified formulae are ignored.
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    68
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    69
For more complex goals, there is the special method \isaindexbold{arith}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    70
(which attacks the first subgoal). It proves arithmetic goals involving the
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    71
usual logical connectives (@{text"\<not>"}, @{text"\<and>"}, @{text"\<or>"},
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    72
@{text"\<longrightarrow>"}), the relations @{text"\<le>"} and @{text"<"}, and the operations
10654
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    73
@{text"+"}, @{text"-"}, @{term min} and @{term max}. Technically, this is
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    74
known as the class of (quantifier free) \bfindex{linear arithmetic} formulae.
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    75
For example,
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    76
*}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    77
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    78
lemma "min i (max j (k*k)) = max (min (k*k) i) (min i (j::nat))";
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    79
apply(arith)
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    80
(*<*)done(*>*)
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    81
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    82
text{*\noindent
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    83
succeeds because @{term"k*k"} can be treated as atomic. In contrast,
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    84
*}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    85
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    86
lemma "n*n = n \<Longrightarrow> n=0 \<or> n=1"
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    87
(*<*)oops(*>*)
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    88
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    89
text{*\noindent
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    90
is not even proved by @{text arith} because the proof relies essentially
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    91
on properties of multiplication.
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    92
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    93
\begin{warn}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    94
  The running time of @{text arith} is exponential in the number of occurrences
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    95
  of \ttindexboldpos{-}{$HOL2arithfun}, \isaindexbold{min} and
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    96
  \isaindexbold{max} because they are first eliminated by case distinctions.
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
    97
10654
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    98
  \isa{arith} is incomplete even for the restricted class of
458068404143 *** empty log message ***
nipkow
parents: 10608
diff changeset
    99
  linear arithmetic formulae. If divisibility plays a
10538
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
   100
  role, it may fail to prove a valid formula, for example
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
   101
  @{prop"m+m \<noteq> n+n+1"}. Fortunately, such examples are rare in practice.
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
   102
\end{warn}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
   103
*}
d1bf9ca9008d *** empty log message ***
nipkow
parents: 10171
diff changeset
   104
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
   105
(*<*)
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
   106
end
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
   107
(*>*)