| author | blanchet | 
| Wed, 21 Dec 2011 15:04:28 +0100 | |
| changeset 45945 | aa8100cc02dc | 
| parent 44890 | 22f665a2e91c | 
| child 49609 | 89e10ed7668b | 
| permissions | -rw-r--r-- | 
| 36648 | 1  | 
(* Title: HOL/Library/Convex.thy  | 
2  | 
Author: Armin Heller, TU Muenchen  | 
|
3  | 
Author: Johannes Hoelzl, TU Muenchen  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {* Convexity in real vector spaces *}
 | 
|
7  | 
||
| 36623 | 8  | 
theory Convex  | 
9  | 
imports Product_Vector  | 
|
10  | 
begin  | 
|
11  | 
||
12  | 
subsection {* Convexity. *}
 | 
|
13  | 
||
14  | 
definition  | 
|
15  | 
convex :: "'a::real_vector set \<Rightarrow> bool" where  | 
|
16  | 
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"  | 
|
17  | 
||
18  | 
lemma convex_alt:  | 
|
19  | 
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"  | 
|
20  | 
(is "_ \<longleftrightarrow> ?alt")  | 
|
21  | 
proof  | 
|
22  | 
assume alt[rule_format]: ?alt  | 
|
23  | 
  { fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s"
 | 
|
24  | 
assume "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
25  | 
moreover hence "u = 1 - v" by auto  | 
|
26  | 
ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto }  | 
|
27  | 
thus "convex s" unfolding convex_def by auto  | 
|
28  | 
qed (auto simp: convex_def)  | 
|
29  | 
||
30  | 
lemma mem_convex:  | 
|
31  | 
assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"  | 
|
32  | 
shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"  | 
|
33  | 
using assms unfolding convex_alt by auto  | 
|
34  | 
||
35  | 
lemma convex_empty[intro]: "convex {}"
 | 
|
36  | 
unfolding convex_def by simp  | 
|
37  | 
||
38  | 
lemma convex_singleton[intro]: "convex {a}"
 | 
|
39  | 
unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])  | 
|
40  | 
||
41  | 
lemma convex_UNIV[intro]: "convex UNIV"  | 
|
42  | 
unfolding convex_def by auto  | 
|
43  | 
||
44  | 
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"  | 
|
45  | 
unfolding convex_def by auto  | 
|
46  | 
||
47  | 
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"  | 
|
48  | 
unfolding convex_def by auto  | 
|
49  | 
||
50  | 
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
|
51  | 
unfolding convex_def  | 
|
| 44142 | 52  | 
by (auto simp: inner_add intro!: convex_bound_le)  | 
| 36623 | 53  | 
|
54  | 
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | 
|
55  | 
proof -  | 
|
56  | 
  have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
 | 
|
57  | 
show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto  | 
|
58  | 
qed  | 
|
59  | 
||
60  | 
lemma convex_hyperplane: "convex {x. inner a x = b}"
 | 
|
61  | 
proof-  | 
|
62  | 
  have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
 | 
|
63  | 
show ?thesis using convex_halfspace_le convex_halfspace_ge  | 
|
64  | 
by (auto intro!: convex_Int simp: *)  | 
|
65  | 
qed  | 
|
66  | 
||
67  | 
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | 
|
68  | 
unfolding convex_def  | 
|
69  | 
by (auto simp: convex_bound_lt inner_add)  | 
|
70  | 
||
71  | 
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | 
|
72  | 
using convex_halfspace_lt[of "-a" "-b"] by auto  | 
|
73  | 
||
74  | 
lemma convex_real_interval:  | 
|
75  | 
fixes a b :: "real"  | 
|
76  | 
  shows "convex {a..}" and "convex {..b}"
 | 
|
77  | 
  and "convex {a<..}" and "convex {..<b}"
 | 
|
78  | 
  and "convex {a..b}" and "convex {a<..b}"
 | 
|
79  | 
  and "convex {a..<b}" and "convex {a<..<b}"
 | 
|
80  | 
proof -  | 
|
81  | 
  have "{a..} = {x. a \<le> inner 1 x}" by auto
 | 
|
82  | 
  thus 1: "convex {a..}" by (simp only: convex_halfspace_ge)
 | 
|
83  | 
  have "{..b} = {x. inner 1 x \<le> b}" by auto
 | 
|
84  | 
  thus 2: "convex {..b}" by (simp only: convex_halfspace_le)
 | 
|
85  | 
  have "{a<..} = {x. a < inner 1 x}" by auto
 | 
|
86  | 
  thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
 | 
|
87  | 
  have "{..<b} = {x. inner 1 x < b}" by auto
 | 
|
88  | 
  thus 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
 | 
|
89  | 
  have "{a..b} = {a..} \<inter> {..b}" by auto
 | 
|
90  | 
  thus "convex {a..b}" by (simp only: convex_Int 1 2)
 | 
|
91  | 
  have "{a<..b} = {a<..} \<inter> {..b}" by auto
 | 
|
92  | 
  thus "convex {a<..b}" by (simp only: convex_Int 3 2)
 | 
|
93  | 
  have "{a..<b} = {a..} \<inter> {..<b}" by auto
 | 
|
94  | 
  thus "convex {a..<b}" by (simp only: convex_Int 1 4)
 | 
|
95  | 
  have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | 
|
96  | 
  thus "convex {a<..<b}" by (simp only: convex_Int 3 4)
 | 
|
97  | 
qed  | 
|
98  | 
||
99  | 
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | 
|
100  | 
||
101  | 
lemma convex_setsum:  | 
|
102  | 
fixes C :: "'a::real_vector set"  | 
|
103  | 
assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1"  | 
|
104  | 
assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C"  | 
|
105  | 
shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C"  | 
|
106  | 
using assms  | 
|
107  | 
proof (induct s arbitrary:a rule:finite_induct)  | 
|
108  | 
case empty thus ?case by auto  | 
|
109  | 
next  | 
|
110  | 
case (insert i s) note asms = this  | 
|
111  | 
  { assume "a i = 1"
 | 
|
112  | 
hence "(\<Sum> j \<in> s. a j) = 0"  | 
|
113  | 
using asms by auto  | 
|
114  | 
hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0"  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
115  | 
using setsum_nonneg_0[where 'b=real] asms by fastforce  | 
| 36623 | 116  | 
hence ?case using asms by auto }  | 
117  | 
moreover  | 
|
118  | 
  { assume asm: "a i \<noteq> 1"
 | 
|
119  | 
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto  | 
|
120  | 
have fis: "finite (insert i s)" using asms by auto  | 
|
121  | 
hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp  | 
|
122  | 
hence "a i < 1" using asm by auto  | 
|
123  | 
hence i0: "1 - a i > 0" by auto  | 
|
124  | 
let "?a j" = "a j / (1 - a i)"  | 
|
125  | 
    { fix j assume "j \<in> s"
 | 
|
126  | 
hence "?a j \<ge> 0"  | 
|
127  | 
using i0 asms divide_nonneg_pos  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
128  | 
by fastforce } note a_nonneg = this  | 
| 36623 | 129  | 
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
130  | 
hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce  | 
| 36623 | 131  | 
hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44142 
diff
changeset
 | 
132  | 
hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp  | 
| 36623 | 133  | 
from this asms  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
134  | 
have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastforce  | 
| 36623 | 135  | 
hence "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"  | 
136  | 
using asms[unfolded convex_def, rule_format] yai ai1 by auto  | 
|
137  | 
hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C"  | 
|
138  | 
using scaleR_right.setsum[of "(1 - a i)" "\<lambda> j. ?a j *\<^sub>R y j" s] by auto  | 
|
139  | 
hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto  | 
|
140  | 
hence ?case using setsum.insert asms by auto }  | 
|
141  | 
ultimately show ?case by auto  | 
|
142  | 
qed  | 
|
143  | 
||
144  | 
lemma convex:  | 
|
145  | 
  shows "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
|
146  | 
           \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | 
|
147  | 
proof safe  | 
|
148  | 
fix k :: nat fix u :: "nat \<Rightarrow> real" fix x  | 
|
149  | 
assume "convex s"  | 
|
150  | 
"\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s"  | 
|
151  | 
    "setsum u {1..k} = 1"
 | 
|
152  | 
  from this convex_setsum[of "{1 .. k}" s]
 | 
|
153  | 
  show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s" by auto
 | 
|
154  | 
next  | 
|
155  | 
  assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | 
|
156  | 
\<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s"  | 
|
157  | 
  { fix \<mu> :: real fix x y :: 'a assume xy: "x \<in> s" "y \<in> s" assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
 | 
|
158  | 
let "?u i" = "if (i :: nat) = 1 then \<mu> else 1 - \<mu>"  | 
|
159  | 
let "?x i" = "if (i :: nat) = 1 then x else y"  | 
|
160  | 
    have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto
 | 
|
161  | 
    hence card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
 | 
|
162  | 
    hence "setsum ?u {1 .. 2} = 1"
 | 
|
163  | 
      using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | 
|
164  | 
by auto  | 
|
165  | 
from this asm[rule_format, of "2" ?u ?x]  | 
|
166  | 
    have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | 
|
167  | 
using mu xy by auto  | 
|
168  | 
    have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | 
|
169  | 
using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto  | 
|
170  | 
from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this]  | 
|
171  | 
    have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto
 | 
|
172  | 
hence "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute) }  | 
|
173  | 
thus "convex s" unfolding convex_alt by auto  | 
|
174  | 
qed  | 
|
175  | 
||
176  | 
||
177  | 
lemma convex_explicit:  | 
|
178  | 
fixes s :: "'a::real_vector set"  | 
|
179  | 
shows "convex s \<longleftrightarrow>  | 
|
180  | 
(\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"  | 
|
181  | 
proof safe  | 
|
182  | 
fix t fix u :: "'a \<Rightarrow> real"  | 
|
183  | 
assume "convex s" "finite t"  | 
|
184  | 
"t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1"  | 
|
185  | 
thus "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"  | 
|
186  | 
using convex_setsum[of t s u "\<lambda> x. x"] by auto  | 
|
187  | 
next  | 
|
188  | 
assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x)  | 
|
189  | 
\<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"  | 
|
190  | 
show "convex s"  | 
|
191  | 
unfolding convex_alt  | 
|
192  | 
proof safe  | 
|
193  | 
fix x y fix \<mu> :: real  | 
|
194  | 
assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1"  | 
|
195  | 
    { assume "x \<noteq> y"
 | 
|
196  | 
hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"  | 
|
197  | 
        using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
 | 
|
198  | 
asm by auto }  | 
|
199  | 
moreover  | 
|
200  | 
    { assume "x = y"
 | 
|
201  | 
hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"  | 
|
202  | 
        using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
 | 
|
203  | 
asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) }  | 
|
204  | 
ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast  | 
|
205  | 
qed  | 
|
206  | 
qed  | 
|
207  | 
||
208  | 
lemma convex_finite: assumes "finite s"  | 
|
209  | 
shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1  | 
|
210  | 
\<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"  | 
|
211  | 
unfolding convex_explicit  | 
|
| 44142 | 212  | 
proof (safe)  | 
| 36623 | 213  | 
fix t u assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"  | 
214  | 
and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"  | 
|
215  | 
have *:"s \<inter> t = t" using as(2) by auto  | 
|
216  | 
have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" by simp  | 
|
217  | 
show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"  | 
|
218  | 
using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as *  | 
|
219  | 
by (auto simp: assms setsum_cases if_distrib if_distrib_arg)  | 
|
220  | 
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)  | 
|
221  | 
||
222  | 
definition  | 
|
223  | 
  convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
 | 
|
224  | 
"convex_on s f \<longleftrightarrow>  | 
|
225  | 
(\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"  | 
|
226  | 
||
227  | 
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"  | 
|
228  | 
unfolding convex_on_def by auto  | 
|
229  | 
||
230  | 
lemma convex_add[intro]:  | 
|
231  | 
assumes "convex_on s f" "convex_on s g"  | 
|
232  | 
shows "convex_on s (\<lambda>x. f x + g x)"  | 
|
233  | 
proof-  | 
|
234  | 
  { fix x y assume "x\<in>s" "y\<in>s" moreover
 | 
|
235  | 
fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
236  | 
ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"  | 
|
237  | 
using assms unfolding convex_on_def by (auto simp add:add_mono)  | 
|
238  | 
hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) }  | 
|
239  | 
thus ?thesis unfolding convex_on_def by auto  | 
|
240  | 
qed  | 
|
241  | 
||
242  | 
lemma convex_cmul[intro]:  | 
|
243  | 
assumes "0 \<le> (c::real)" "convex_on s f"  | 
|
244  | 
shows "convex_on s (\<lambda>x. c * f x)"  | 
|
245  | 
proof-  | 
|
246  | 
have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps)  | 
|
| 
38642
 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 
haftmann 
parents: 
36778 
diff
changeset
 | 
247  | 
show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] unfolding convex_on_def and * by auto  | 
| 36623 | 248  | 
qed  | 
249  | 
||
250  | 
lemma convex_lower:  | 
|
251  | 
assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
252  | 
shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"  | 
|
253  | 
proof-  | 
|
254  | 
let ?m = "max (f x) (f y)"  | 
|
255  | 
have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)"  | 
|
| 
38642
 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 
haftmann 
parents: 
36778 
diff
changeset
 | 
256  | 
using assms(4,5) by (auto simp add: mult_left_mono add_mono)  | 
| 36623 | 257  | 
also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto  | 
258  | 
finally show ?thesis  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
259  | 
using assms unfolding convex_on_def by fastforce  | 
| 36623 | 260  | 
qed  | 
261  | 
||
262  | 
lemma convex_distance[intro]:  | 
|
263  | 
fixes s :: "'a::real_normed_vector set"  | 
|
264  | 
shows "convex_on s (\<lambda>x. dist a x)"  | 
|
265  | 
proof(auto simp add: convex_on_def dist_norm)  | 
|
266  | 
fix x y assume "x\<in>s" "y\<in>s"  | 
|
267  | 
fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
268  | 
have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp  | 
|
269  | 
hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"  | 
|
270  | 
by (auto simp add: algebra_simps)  | 
|
271  | 
show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"  | 
|
272  | 
unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]  | 
|
273  | 
using `0 \<le> u` `0 \<le> v` by auto  | 
|
274  | 
qed  | 
|
275  | 
||
276  | 
subsection {* Arithmetic operations on sets preserve convexity. *}
 | 
|
277  | 
lemma convex_scaling:  | 
|
278  | 
assumes "convex s"  | 
|
279  | 
shows"convex ((\<lambda>x. c *\<^sub>R x) ` s)"  | 
|
280  | 
using assms unfolding convex_def image_iff  | 
|
281  | 
proof safe  | 
|
282  | 
fix x xa y xb :: "'a::real_vector" fix u v :: real  | 
|
283  | 
assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"  | 
|
284  | 
"xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
285  | 
show "\<exists>x\<in>s. u *\<^sub>R c *\<^sub>R xa + v *\<^sub>R c *\<^sub>R xb = c *\<^sub>R x"  | 
|
286  | 
using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by (auto simp add: algebra_simps)  | 
|
287  | 
qed  | 
|
288  | 
||
289  | 
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"  | 
|
290  | 
using assms unfolding convex_def image_iff  | 
|
291  | 
proof safe  | 
|
292  | 
fix x xa y xb :: "'a::real_vector" fix u v :: real  | 
|
293  | 
assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"  | 
|
294  | 
"xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
295  | 
show "\<exists>x\<in>s. u *\<^sub>R - xa + v *\<^sub>R - xb = - x"  | 
|
296  | 
using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by auto  | 
|
297  | 
qed  | 
|
298  | 
||
299  | 
lemma convex_sums:  | 
|
300  | 
assumes "convex s" "convex t"  | 
|
301  | 
  shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
|
302  | 
using assms unfolding convex_def image_iff  | 
|
303  | 
proof safe  | 
|
304  | 
fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"  | 
|
305  | 
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
306  | 
show "\<exists>x y. u *\<^sub>R (xa + ya) + v *\<^sub>R (xb + yb) = x + y \<and> x \<in> s \<and> y \<in> t"  | 
|
307  | 
using exI[of _ "u *\<^sub>R xa + v *\<^sub>R xb"] exI[of _ "u *\<^sub>R ya + v *\<^sub>R yb"]  | 
|
308  | 
assms[unfolded convex_def] uv xy by (auto simp add:scaleR_right_distrib)  | 
|
309  | 
qed  | 
|
310  | 
||
311  | 
lemma convex_differences:  | 
|
312  | 
assumes "convex s" "convex t"  | 
|
313  | 
  shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | 
|
314  | 
proof -  | 
|
315  | 
  have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | 
|
316  | 
proof safe  | 
|
317  | 
fix x x' y assume "x' \<in> s" "y \<in> t"  | 
|
318  | 
thus "\<exists>x y'. x' - y = x + y' \<and> x \<in> s \<and> y' \<in> uminus ` t"  | 
|
319  | 
using exI[of _ x'] exI[of _ "-y"] by auto  | 
|
320  | 
next  | 
|
321  | 
fix x x' y y' assume "x' \<in> s" "y' \<in> t"  | 
|
322  | 
thus "\<exists>x y. x' + - y' = x - y \<and> x \<in> s \<and> y \<in> t"  | 
|
323  | 
using exI[of _ x'] exI[of _ y'] by auto  | 
|
324  | 
qed  | 
|
325  | 
thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto  | 
|
326  | 
qed  | 
|
327  | 
||
328  | 
lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)"  | 
|
329  | 
proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
 | 
|
330  | 
thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed  | 
|
331  | 
||
332  | 
lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"  | 
|
333  | 
proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto  | 
|
334  | 
thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed  | 
|
335  | 
||
336  | 
lemma convex_linear_image:  | 
|
337  | 
assumes c:"convex s" and l:"bounded_linear f"  | 
|
338  | 
shows "convex(f ` s)"  | 
|
339  | 
proof(auto simp add: convex_def)  | 
|
340  | 
interpret f: bounded_linear f by fact  | 
|
341  | 
fix x y assume xy:"x \<in> s" "y \<in> s"  | 
|
342  | 
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
343  | 
show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff  | 
|
344  | 
using bexI[of _ "u *\<^sub>R x + v *\<^sub>R y"] f.add f.scaleR  | 
|
345  | 
c[unfolded convex_def] xy uv by auto  | 
|
346  | 
qed  | 
|
347  | 
||
348  | 
||
349  | 
lemma pos_is_convex:  | 
|
350  | 
  shows "convex {0 :: real <..}"
 | 
|
351  | 
unfolding convex_alt  | 
|
352  | 
proof safe  | 
|
353  | 
fix y x \<mu> :: real  | 
|
354  | 
assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1"  | 
|
355  | 
  { assume "\<mu> = 0"
 | 
|
356  | 
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp  | 
|
357  | 
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }  | 
|
358  | 
moreover  | 
|
359  | 
  { assume "\<mu> = 1"
 | 
|
360  | 
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }  | 
|
361  | 
moreover  | 
|
362  | 
  { assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
 | 
|
363  | 
hence "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto  | 
|
364  | 
hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36648 
diff
changeset
 | 
365  | 
by (auto simp add: add_pos_pos mult_pos_pos) }  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
366  | 
ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastforce  | 
| 36623 | 367  | 
qed  | 
368  | 
||
369  | 
lemma convex_on_setsum:  | 
|
370  | 
fixes a :: "'a \<Rightarrow> real"  | 
|
371  | 
fixes y :: "'a \<Rightarrow> 'b::real_vector"  | 
|
372  | 
fixes f :: "'b \<Rightarrow> real"  | 
|
373  | 
  assumes "finite s" "s \<noteq> {}"
 | 
|
374  | 
assumes "convex_on C f"  | 
|
375  | 
assumes "convex C"  | 
|
376  | 
assumes "(\<Sum> i \<in> s. a i) = 1"  | 
|
377  | 
assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0"  | 
|
378  | 
assumes "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C"  | 
|
379  | 
shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))"  | 
|
380  | 
using assms  | 
|
381  | 
proof (induct s arbitrary:a rule:finite_ne_induct)  | 
|
382  | 
case (singleton i)  | 
|
383  | 
hence ai: "a i = 1" by auto  | 
|
384  | 
thus ?case by auto  | 
|
385  | 
next  | 
|
386  | 
case (insert i s) note asms = this  | 
|
387  | 
hence "convex_on C f" by simp  | 
|
388  | 
from this[unfolded convex_on_def, rule_format]  | 
|
389  | 
have conv: "\<And> x y \<mu>. \<lbrakk>x \<in> C; y \<in> C; 0 \<le> \<mu>; \<mu> \<le> 1\<rbrakk>  | 
|
390  | 
\<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"  | 
|
391  | 
by simp  | 
|
392  | 
  { assume "a i = 1"
 | 
|
393  | 
hence "(\<Sum> j \<in> s. a j) = 0"  | 
|
394  | 
using asms by auto  | 
|
395  | 
hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0"  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
396  | 
using setsum_nonneg_0[where 'b=real] asms by fastforce  | 
| 36623 | 397  | 
hence ?case using asms by auto }  | 
398  | 
moreover  | 
|
399  | 
  { assume asm: "a i \<noteq> 1"
 | 
|
400  | 
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto  | 
|
401  | 
have fis: "finite (insert i s)" using asms by auto  | 
|
402  | 
hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp  | 
|
403  | 
hence "a i < 1" using asm by auto  | 
|
404  | 
hence i0: "1 - a i > 0" by auto  | 
|
405  | 
let "?a j" = "a j / (1 - a i)"  | 
|
406  | 
    { fix j assume "j \<in> s"
 | 
|
407  | 
hence "?a j \<ge> 0"  | 
|
408  | 
using i0 asms divide_nonneg_pos  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
409  | 
by fastforce } note a_nonneg = this  | 
| 36623 | 410  | 
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
411  | 
hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce  | 
| 36623 | 412  | 
hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto  | 
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44142 
diff
changeset
 | 
413  | 
hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp  | 
| 36623 | 414  | 
have "convex C" using asms by auto  | 
415  | 
hence asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"  | 
|
416  | 
using asms convex_setsum[OF `finite s`  | 
|
417  | 
`convex C` a1 a_nonneg] by auto  | 
|
418  | 
have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))"  | 
|
419  | 
using a_nonneg a1 asms by blast  | 
|
420  | 
have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"  | 
|
421  | 
using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms  | 
|
422  | 
by (auto simp only:add_commute)  | 
|
423  | 
also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"  | 
|
424  | 
using i0 by auto  | 
|
425  | 
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"  | 
|
426  | 
using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] by (auto simp:algebra_simps)  | 
|
427  | 
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36648 
diff
changeset
 | 
428  | 
by (auto simp: divide_inverse)  | 
| 36623 | 429  | 
also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)"  | 
430  | 
using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1]  | 
|
431  | 
by (auto simp add:add_commute)  | 
|
432  | 
also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)"  | 
|
433  | 
using add_right_mono[OF mult_left_mono[of _ _ "1 - a i",  | 
|
434  | 
OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp  | 
|
435  | 
also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)"  | 
|
| 
44282
 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 
huffman 
parents: 
44142 
diff
changeset
 | 
436  | 
unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto  | 
| 36623 | 437  | 
also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto  | 
438  | 
also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto  | 
|
439  | 
finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))"  | 
|
440  | 
by simp }  | 
|
441  | 
ultimately show ?case by auto  | 
|
442  | 
qed  | 
|
443  | 
||
444  | 
lemma convex_on_alt:  | 
|
445  | 
fixes C :: "'a::real_vector set"  | 
|
446  | 
assumes "convex C"  | 
|
447  | 
shows "convex_on C f =  | 
|
448  | 
(\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1  | 
|
449  | 
\<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"  | 
|
450  | 
proof safe  | 
|
451  | 
fix x y fix \<mu> :: real  | 
|
452  | 
assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1"  | 
|
453  | 
from this[unfolded convex_on_def, rule_format]  | 
|
454  | 
have "\<And> u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto  | 
|
455  | 
from this[of "\<mu>" "1 - \<mu>", simplified] asms  | 
|
456  | 
show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y)  | 
|
457  | 
\<le> \<mu> * f x + (1 - \<mu>) * f y" by auto  | 
|
458  | 
next  | 
|
459  | 
assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"  | 
|
460  | 
  {fix x y fix u v :: real
 | 
|
461  | 
assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1"  | 
|
462  | 
hence[simp]: "1 - u = v" by auto  | 
|
463  | 
from asm[rule_format, of x y u]  | 
|
464  | 
have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto }  | 
|
465  | 
thus "convex_on C f" unfolding convex_on_def by auto  | 
|
466  | 
qed  | 
|
467  | 
||
| 43337 | 468  | 
lemma convex_on_diff:  | 
469  | 
fixes f :: "real \<Rightarrow> real"  | 
|
470  | 
assumes f: "convex_on I f" and I: "x\<in>I" "y\<in>I" and t: "x < t" "t < y"  | 
|
471  | 
shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"  | 
|
472  | 
proof -  | 
|
473  | 
def a \<equiv> "(t - y) / (x - y)"  | 
|
474  | 
with t have "0 \<le> a" "0 \<le> 1 - a" by (auto simp: field_simps)  | 
|
475  | 
with f `x \<in> I` `y \<in> I` have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y"  | 
|
476  | 
by (auto simp: convex_on_def)  | 
|
477  | 
have "a * x + (1 - a) * y = a * (x - y) + y" by (simp add: field_simps)  | 
|
478  | 
also have "\<dots> = t" unfolding a_def using `x < t` `t < y` by simp  | 
|
479  | 
finally have "f t \<le> a * f x + (1 - a) * f y" using cvx by simp  | 
|
480  | 
also have "\<dots> = a * (f x - f y) + f y" by (simp add: field_simps)  | 
|
481  | 
finally have "f t - f y \<le> a * (f x - f y)" by simp  | 
|
482  | 
with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"  | 
|
| 44142 | 483  | 
by (simp add: le_divide_eq divide_le_eq field_simps a_def)  | 
| 43337 | 484  | 
with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"  | 
| 44142 | 485  | 
by (simp add: le_divide_eq divide_le_eq field_simps)  | 
| 43337 | 486  | 
qed  | 
| 36623 | 487  | 
|
488  | 
lemma pos_convex_function:  | 
|
489  | 
fixes f :: "real \<Rightarrow> real"  | 
|
490  | 
assumes "convex C"  | 
|
491  | 
assumes leq: "\<And> x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x"  | 
|
492  | 
shows "convex_on C f"  | 
|
493  | 
unfolding convex_on_alt[OF assms(1)]  | 
|
494  | 
using assms  | 
|
495  | 
proof safe  | 
|
496  | 
fix x y \<mu> :: real  | 
|
497  | 
let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"  | 
|
498  | 
assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1"  | 
|
499  | 
hence "1 - \<mu> \<ge> 0" by auto  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
500  | 
hence xpos: "?x \<in> C" using asm unfolding convex_alt by fastforce  | 
| 36623 | 501  | 
have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x)  | 
502  | 
\<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"  | 
|
| 
38642
 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 
haftmann 
parents: 
36778 
diff
changeset
 | 
503  | 
using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`]  | 
| 
 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 
haftmann 
parents: 
36778 
diff
changeset
 | 
504  | 
mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto  | 
| 36623 | 505  | 
hence "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"  | 
506  | 
by (auto simp add:field_simps)  | 
|
507  | 
thus "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"  | 
|
508  | 
using convex_on_alt by auto  | 
|
509  | 
qed  | 
|
510  | 
||
511  | 
lemma atMostAtLeast_subset_convex:  | 
|
512  | 
fixes C :: "real set"  | 
|
513  | 
assumes "convex C"  | 
|
514  | 
assumes "x \<in> C" "y \<in> C" "x < y"  | 
|
515  | 
  shows "{x .. y} \<subseteq> C"
 | 
|
516  | 
proof safe  | 
|
517  | 
  fix z assume zasm: "z \<in> {x .. y}"
 | 
|
518  | 
  { assume asm: "x < z" "z < y"
 | 
|
519  | 
let "?\<mu>" = "(y - z) / (y - x)"  | 
|
520  | 
have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add:field_simps)  | 
|
521  | 
hence comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"  | 
|
522  | 
using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] by (simp add:algebra_simps)  | 
|
523  | 
have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"  | 
|
524  | 
by (auto simp add:field_simps)  | 
|
525  | 
also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"  | 
|
526  | 
using assms unfolding add_divide_distrib by (auto simp:field_simps)  | 
|
527  | 
also have "\<dots> = z"  | 
|
528  | 
using assms by (auto simp:field_simps)  | 
|
529  | 
finally have "z \<in> C"  | 
|
530  | 
using comb by auto } note less = this  | 
|
531  | 
show "z \<in> C" using zasm less assms  | 
|
532  | 
unfolding atLeastAtMost_iff le_less by auto  | 
|
533  | 
qed  | 
|
534  | 
||
535  | 
lemma f''_imp_f':  | 
|
536  | 
fixes f :: "real \<Rightarrow> real"  | 
|
537  | 
assumes "convex C"  | 
|
538  | 
assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"  | 
|
539  | 
assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"  | 
|
540  | 
assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"  | 
|
541  | 
assumes "x \<in> C" "y \<in> C"  | 
|
542  | 
shows "f' x * (y - x) \<le> f y - f x"  | 
|
543  | 
using assms  | 
|
544  | 
proof -  | 
|
545  | 
  { fix x y :: real assume asm: "x \<in> C" "y \<in> C" "y > x"
 | 
|
546  | 
hence ge: "y - x > 0" "y - x \<ge> 0" by auto  | 
|
547  | 
from asm have le: "x - y < 0" "x - y \<le> 0" by auto  | 
|
548  | 
then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"  | 
|
549  | 
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`],  | 
|
550  | 
THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]]  | 
|
551  | 
by auto  | 
|
552  | 
hence "z1 \<in> C" using atMostAtLeast_subset_convex  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
553  | 
`convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce  | 
| 36623 | 554  | 
from z1 have z1': "f x - f y = (x - y) * f' z1"  | 
555  | 
by (simp add:field_simps)  | 
|
556  | 
obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"  | 
|
557  | 
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`],  | 
|
558  | 
THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1  | 
|
559  | 
by auto  | 
|
560  | 
obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"  | 
|
561  | 
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`],  | 
|
562  | 
THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1  | 
|
563  | 
by auto  | 
|
564  | 
have "f' y - (f x - f y) / (x - y) = f' y - f' z1"  | 
|
565  | 
using asm z1' by auto  | 
|
566  | 
also have "\<dots> = (y - z1) * f'' z3" using z3 by auto  | 
|
567  | 
finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp  | 
|
568  | 
have A': "y - z1 \<ge> 0" using z1 by auto  | 
|
569  | 
have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
570  | 
`convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce  | 
| 36623 | 571  | 
hence B': "f'' z3 \<ge> 0" using assms by auto  | 
572  | 
from A' B' have "(y - z1) * f'' z3 \<ge> 0" using mult_nonneg_nonneg by auto  | 
|
573  | 
from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto  | 
|
574  | 
from mult_right_mono_neg[OF this le(2)]  | 
|
575  | 
have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)"  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36648 
diff
changeset
 | 
576  | 
by (simp add: algebra_simps)  | 
| 36623 | 577  | 
hence "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto  | 
578  | 
hence res: "f' y * (x - y) \<le> f x - f y" by auto  | 
|
579  | 
have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"  | 
|
580  | 
using asm z1 by auto  | 
|
581  | 
also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto  | 
|
582  | 
finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp  | 
|
583  | 
have A: "z1 - x \<ge> 0" using z1 by auto  | 
|
584  | 
have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
585  | 
`convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce  | 
| 36623 | 586  | 
hence B: "f'' z2 \<ge> 0" using assms by auto  | 
587  | 
from A B have "(z1 - x) * f'' z2 \<ge> 0" using mult_nonneg_nonneg by auto  | 
|
588  | 
from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto  | 
|
589  | 
from mult_right_mono[OF this ge(2)]  | 
|
590  | 
have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)"  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36648 
diff
changeset
 | 
591  | 
by (simp add: algebra_simps)  | 
| 36623 | 592  | 
hence "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto  | 
593  | 
hence "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"  | 
|
594  | 
using res by auto } note less_imp = this  | 
|
595  | 
  { fix x y :: real assume "x \<in> C" "y \<in> C" "x \<noteq> y"
 | 
|
596  | 
hence"f y - f x \<ge> f' x * (y - x)"  | 
|
597  | 
unfolding neq_iff using less_imp by auto } note neq_imp = this  | 
|
598  | 
moreover  | 
|
599  | 
  { fix x y :: real assume asm: "x \<in> C" "y \<in> C" "x = y"
 | 
|
600  | 
hence "f y - f x \<ge> f' x * (y - x)" by auto }  | 
|
601  | 
ultimately show ?thesis using assms by blast  | 
|
602  | 
qed  | 
|
603  | 
||
604  | 
lemma f''_ge0_imp_convex:  | 
|
605  | 
fixes f :: "real \<Rightarrow> real"  | 
|
606  | 
assumes conv: "convex C"  | 
|
607  | 
assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"  | 
|
608  | 
assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"  | 
|
609  | 
assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"  | 
|
610  | 
shows "convex_on C f"  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44282 
diff
changeset
 | 
611  | 
using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastforce  | 
| 36623 | 612  | 
|
613  | 
lemma minus_log_convex:  | 
|
614  | 
fixes b :: real  | 
|
615  | 
assumes "b > 1"  | 
|
616  | 
  shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | 
|
617  | 
proof -  | 
|
618  | 
have "\<And> z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto  | 
|
619  | 
hence f': "\<And> z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"  | 
|
620  | 
using DERIV_minus by auto  | 
|
621  | 
have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"  | 
|
622  | 
using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto  | 
|
623  | 
from this[THEN DERIV_cmult, of _ "- 1 / ln b"]  | 
|
624  | 
have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"  | 
|
625  | 
by auto  | 
|
626  | 
hence f''0: "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36648 
diff
changeset
 | 
627  | 
unfolding inverse_eq_divide by (auto simp add: mult_assoc)  | 
| 36623 | 628  | 
have f''_ge0: "\<And> z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"  | 
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
36648 
diff
changeset
 | 
629  | 
using `b > 1` by (auto intro!:less_imp_le simp add:divide_pos_pos[of 1] mult_pos_pos)  | 
| 36623 | 630  | 
from f''_ge0_imp_convex[OF pos_is_convex,  | 
631  | 
unfolded greaterThan_iff, OF f' f''0 f''_ge0]  | 
|
632  | 
show ?thesis by auto  | 
|
633  | 
qed  | 
|
634  | 
||
635  | 
end  |