author | wenzelm |
Tue, 09 Oct 2012 13:27:52 +0200 | |
changeset 49742 | ab0949eff3ca |
parent 45242 | 401f91ed8a93 |
child 49752 | 2bbb0013ff82 |
permissions | -rw-r--r-- |
22809 | 1 |
(* Title: Cube/Cube.thy |
2 |
Author: Tobias Nipkow |
|
3 |
*) |
|
3773 | 4 |
|
17252 | 5 |
header {* Barendregt's Lambda-Cube *} |
6 |
||
7 |
theory Cube |
|
8 |
imports Pure |
|
9 |
begin |
|
10 |
||
39557
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
wenzelm
parents:
35256
diff
changeset
|
11 |
setup Pure_Thy.old_appl_syntax_setup |
26956
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
wenzelm
parents:
24783
diff
changeset
|
12 |
|
17252 | 13 |
typedecl "term" |
14 |
typedecl "context" |
|
15 |
typedecl typing |
|
16 |
||
45241 | 17 |
axiomatization |
18 |
Abs :: "[term, term => term] => term" and |
|
19 |
Prod :: "[term, term => term] => term" and |
|
20 |
Trueprop :: "[context, typing] => prop" and |
|
21 |
MT_context :: "context" and |
|
22 |
Context :: "[typing, context] => context" and |
|
23 |
star :: "term" ("*") and |
|
45242 | 24 |
box :: "term" ("\<box>") and |
45241 | 25 |
app :: "[term, term] => term" (infixl "^" 20) and |
26 |
Has_type :: "[term, term] => typing" |
|
17252 | 27 |
|
45241 | 28 |
nonterminal context' and typing' |
17252 | 29 |
|
30 |
syntax |
|
45242 | 31 |
"_Trueprop" :: "[context', typing'] => prop" ("(_/ \<turnstile> _)") |
45241 | 32 |
"_Trueprop1" :: "typing' => prop" ("(_)") |
33 |
"" :: "id => context'" ("_") |
|
34 |
"" :: "var => context'" ("_") |
|
35 |
"_MT_context" :: "context'" ("") |
|
36 |
"_Context" :: "[typing', context'] => context'" ("_ _") |
|
37 |
"_Has_type" :: "[term, term] => typing'" ("(_:/ _)" [0, 0] 5) |
|
45242 | 38 |
"_Lam" :: "[idt, term, term] => term" ("(3\<Lambda> _:_./ _)" [0, 0, 0] 10) |
39 |
"_Pi" :: "[idt, term, term] => term" ("(3\<Pi> _:_./ _)" [0, 0] 10) |
|
40 |
"_arrow" :: "[term, term] => term" (infixr "\<rightarrow>" 10) |
|
17252 | 41 |
|
42 |
translations |
|
45241 | 43 |
"_Trueprop(G, t)" == "CONST Trueprop(G, t)" |
45242 | 44 |
("prop") "x:X" == ("prop") "\<turnstile> x:X" |
45241 | 45 |
"_MT_context" == "CONST MT_context" |
46 |
"_Context" == "CONST Context" |
|
47 |
"_Has_type" == "CONST Has_type" |
|
45242 | 48 |
"\<Lambda> x:A. B" == "CONST Abs(A, %x. B)" |
49 |
"\<Pi> x:A. B" => "CONST Prod(A, %x. B)" |
|
50 |
"A \<rightarrow> B" => "CONST Prod(A, %_. B)" |
|
17252 | 51 |
|
52 |
syntax (xsymbols) |
|
35256 | 53 |
"_Pi" :: "[idt, term, term] => term" ("(3\<Pi> _:_./ _)" [0, 0] 10) |
17252 | 54 |
|
35113 | 55 |
print_translation {* |
42284 | 56 |
[(@{const_syntax Prod}, |
57 |
Syntax_Trans.dependent_tr' (@{syntax_const "_Pi"}, @{syntax_const "_arrow"}))] |
|
35113 | 58 |
*} |
17252 | 59 |
|
45241 | 60 |
axiomatization where |
45242 | 61 |
s_b: "*: \<box>" and |
17252 | 62 |
|
45242 | 63 |
strip_s: "[| A:*; a:A ==> G \<turnstile> x:X |] ==> a:A G \<turnstile> x:X" and |
64 |
strip_b: "[| A:\<box>; a:A ==> G \<turnstile> x:X |] ==> a:A G \<turnstile> x:X" and |
|
17252 | 65 |
|
45241 | 66 |
app: "[| F:Prod(A, B); C:A |] ==> F^C: B(C)" and |
0 | 67 |
|
45241 | 68 |
pi_ss: "[| A:*; !!x. x:A ==> B(x):* |] ==> Prod(A, B):*" and |
17252 | 69 |
|
45241 | 70 |
lam_ss: "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |] |
71 |
==> Abs(A, f) : Prod(A, B)" and |
|
17252 | 72 |
|
45241 | 73 |
beta: "Abs(A, f)^a == f(a)" |
17252 | 74 |
|
75 |
lemmas simple = s_b strip_s strip_b app lam_ss pi_ss |
|
76 |
lemmas rules = simple |
|
77 |
||
78 |
lemma imp_elim: |
|
45242 | 79 |
assumes "f:A\<rightarrow>B" and "a:A" and "f^a:B ==> PROP P" |
41526 | 80 |
shows "PROP P" by (rule app assms)+ |
17252 | 81 |
|
82 |
lemma pi_elim: |
|
83 |
assumes "F:Prod(A,B)" and "a:A" and "F^a:B(a) ==> PROP P" |
|
41526 | 84 |
shows "PROP P" by (rule app assms)+ |
17252 | 85 |
|
86 |
||
87 |
locale L2 = |
|
45242 | 88 |
assumes pi_bs: "[| A:\<box>; !!x. x:A ==> B(x):* |] ==> Prod(A,B):*" |
89 |
and lam_bs: "[| A:\<box>; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |] |
|
17252 | 90 |
==> Abs(A,f) : Prod(A,B)" |
45242 | 91 |
begin |
17252 | 92 |
|
45242 | 93 |
lemmas rules = simple lam_bs pi_bs |
94 |
||
95 |
end |
|
17252 | 96 |
|
17260 | 97 |
|
17252 | 98 |
locale Lomega = |
99 |
assumes |
|
45242 | 100 |
pi_bb: "[| A:\<box>; !!x. x:A ==> B(x):\<box> |] ==> Prod(A,B):\<box>" |
101 |
and lam_bb: "[| A:\<box>; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):\<box> |] |
|
17252 | 102 |
==> Abs(A,f) : Prod(A,B)" |
45242 | 103 |
begin |
17252 | 104 |
|
45242 | 105 |
lemmas rules = simple lam_bb pi_bb |
106 |
||
107 |
end |
|
17252 | 108 |
|
109 |
||
110 |
locale LP = |
|
45242 | 111 |
assumes pi_sb: "[| A:*; !!x. x:A ==> B(x):\<box> |] ==> Prod(A,B):\<box>" |
112 |
and lam_sb: "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):\<box> |] |
|
17252 | 113 |
==> Abs(A,f) : Prod(A,B)" |
45241 | 114 |
begin |
17252 | 115 |
|
45241 | 116 |
lemmas rules = simple lam_sb pi_sb |
117 |
||
118 |
end |
|
17252 | 119 |
|
17260 | 120 |
|
17252 | 121 |
locale LP2 = LP + L2 |
45241 | 122 |
begin |
17252 | 123 |
|
45241 | 124 |
lemmas rules = simple lam_bs pi_bs lam_sb pi_sb |
125 |
||
126 |
end |
|
17252 | 127 |
|
17260 | 128 |
|
17252 | 129 |
locale Lomega2 = L2 + Lomega |
45241 | 130 |
begin |
17252 | 131 |
|
45241 | 132 |
lemmas rules = simple lam_bs pi_bs lam_bb pi_bb |
133 |
||
134 |
end |
|
17252 | 135 |
|
17260 | 136 |
|
17252 | 137 |
locale LPomega = LP + Lomega |
45241 | 138 |
begin |
17252 | 139 |
|
45241 | 140 |
lemmas rules = simple lam_bb pi_bb lam_sb pi_sb |
141 |
||
142 |
end |
|
17252 | 143 |
|
17260 | 144 |
|
17252 | 145 |
locale CC = L2 + LP + Lomega |
45241 | 146 |
begin |
17252 | 147 |
|
45241 | 148 |
lemmas rules = simple lam_bs pi_bs lam_bb pi_bb lam_sb pi_sb |
17252 | 149 |
|
150 |
end |
|
45241 | 151 |
|
152 |
end |