| author | wenzelm | 
| Thu, 13 Jul 2000 23:09:25 +0200 | |
| changeset 9311 | ab5b24cbaa16 | 
| parent 6382 | 8b0c9205da75 | 
| child 10834 | a7897aebbffc | 
| permissions | -rw-r--r-- | 
| 2640 | 1 | (* Title: HOLCF/Ssum0.thy | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 1479 | 3 | Author: Franz Regensburger | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 2640 | 6 | Strict sum with typedef | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | Ssum0 = Cfun3 + | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 2640 | 11 | constdefs | 
| 12 | Sinl_Rep :: ['a,'a,'b,bool]=>bool | |
| 13 | "Sinl_Rep == (%a.%x y p. (a~=UU --> x=a & p))" | |
| 14 | Sinr_Rep :: ['b,'a,'b,bool]=>bool | |
| 15 | "Sinr_Rep == (%b.%x y p.(b~=UU --> y=b & ~p))" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | |
| 2640 | 17 | typedef (Ssum)  ('a, 'b) "++" (infixr 10) = 
 | 
| 6382 | 18 | 	"{f.(? a. f=Sinl_Rep(a::'a))|(? b. f=Sinr_Rep(b::'b))}"
 | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 19 | |
| 2394 | 20 | syntax (symbols) | 
| 2640 | 21 |   "++"		:: [type, type] => type	("(_ \\<oplus>/ _)" [21, 20] 20)
 | 
| 2394 | 22 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | consts | 
| 1479 | 24 |   Isinl         :: "'a => ('a ++ 'b)"
 | 
| 25 |   Isinr         :: "'b => ('a ++ 'b)"
 | |
| 26 |   Iwhen         :: "('a->'c)=>('b->'c)=>('a ++ 'b)=> 'c"
 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 27 | |
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
1150diff
changeset | 28 | defs (*defining the abstract constants*) | 
| 1479 | 29 | Isinl_def "Isinl(a) == Abs_Ssum(Sinl_Rep(a))" | 
| 30 | Isinr_def "Isinr(b) == Abs_Ssum(Sinr_Rep(b))" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 31 | |
| 1479 | 32 | Iwhen_def "Iwhen(f)(g)(s) == @z. | 
| 33 | (s=Isinl(UU) --> z=UU) | |
| 34 | &(!a. a~=UU & s=Isinl(a) --> z=f`a) | |
| 35 | &(!b. b~=UU & s=Isinr(b) --> z=g`b)" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 36 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 37 | end |