| author | wenzelm | 
| Sat, 30 May 2015 23:30:54 +0200 | |
| changeset 60318 | ab785001b51d | 
| parent 59528 | 4862f3dc9540 | 
| child 60517 | f16e4fb20652 | 
| permissions | -rw-r--r-- | 
| 29655 
ac31940cfb69
Plain, Main form meeting points in import hierarchy
 haftmann parents: 
28562diff
changeset | 1 | (* Authors: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 15300 | 2 | Copyright 1996 University of Cambridge | 
| 3 | *) | |
| 4 | ||
| 58889 | 5 | section {* Equivalence Relations in Higher-Order Set Theory *}
 | 
| 15300 | 6 | |
| 7 | theory Equiv_Relations | |
| 54744 
1e7f2d296e19
more algebraic terminology for theories about big operators
 haftmann parents: 
51112diff
changeset | 8 | imports Groups_Big Relation | 
| 15300 | 9 | begin | 
| 10 | ||
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 11 | subsection {* Equivalence relations -- set version *}
 | 
| 15300 | 12 | |
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 13 | definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" where
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 14 | "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r" | 
| 15300 | 15 | |
| 40815 | 16 | lemma equivI: | 
| 17 | "refl_on A r \<Longrightarrow> sym r \<Longrightarrow> trans r \<Longrightarrow> equiv A r" | |
| 18 | by (simp add: equiv_def) | |
| 19 | ||
| 20 | lemma equivE: | |
| 21 | assumes "equiv A r" | |
| 22 | obtains "refl_on A r" and "sym r" and "trans r" | |
| 23 | using assms by (simp add: equiv_def) | |
| 24 | ||
| 15300 | 25 | text {*
 | 
| 26 |   Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
 | |
| 27 | r = r"}. | |
| 28 | ||
| 29 |   First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
 | |
| 30 | *} | |
| 31 | ||
| 32 | lemma sym_trans_comp_subset: | |
| 33 | "sym r ==> trans r ==> r\<inverse> O r \<subseteq> r" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
45969diff
changeset | 34 | by (unfold trans_def sym_def converse_unfold) blast | 
| 15300 | 35 | |
| 30198 | 36 | lemma refl_on_comp_subset: "refl_on A r ==> r \<subseteq> r\<inverse> O r" | 
| 37 | by (unfold refl_on_def) blast | |
| 15300 | 38 | |
| 39 | lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r" | |
| 40 | apply (unfold equiv_def) | |
| 41 | apply clarify | |
| 42 | apply (rule equalityI) | |
| 30198 | 43 | apply (iprover intro: sym_trans_comp_subset refl_on_comp_subset)+ | 
| 15300 | 44 | done | 
| 45 | ||
| 46 | text {* Second half. *}
 | |
| 47 | ||
| 48 | lemma comp_equivI: | |
| 49 | "r\<inverse> O r = r ==> Domain r = A ==> equiv A r" | |
| 30198 | 50 | apply (unfold equiv_def refl_on_def sym_def trans_def) | 
| 15300 | 51 | apply (erule equalityE) | 
| 52 | apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r") | |
| 53 | apply fast | |
| 54 | apply fast | |
| 55 | done | |
| 56 | ||
| 57 | ||
| 58 | subsection {* Equivalence classes *}
 | |
| 59 | ||
| 60 | lemma equiv_class_subset: | |
| 61 |   "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
 | |
| 62 |   -- {* lemma for the next result *}
 | |
| 63 | by (unfold equiv_def trans_def sym_def) blast | |
| 64 | ||
| 65 | theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
 | |
| 66 | apply (assumption | rule equalityI equiv_class_subset)+ | |
| 67 | apply (unfold equiv_def sym_def) | |
| 68 | apply blast | |
| 69 | done | |
| 70 | ||
| 71 | lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
 | |
| 30198 | 72 | by (unfold equiv_def refl_on_def) blast | 
| 15300 | 73 | |
| 74 | lemma subset_equiv_class: | |
| 75 |     "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
 | |
| 76 |   -- {* lemma for the next result *}
 | |
| 30198 | 77 | by (unfold equiv_def refl_on_def) blast | 
| 15300 | 78 | |
| 79 | lemma eq_equiv_class: | |
| 80 |     "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
 | |
| 17589 | 81 | by (iprover intro: equalityD2 subset_equiv_class) | 
| 15300 | 82 | |
| 83 | lemma equiv_class_nondisjoint: | |
| 84 |     "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
 | |
| 85 | by (unfold equiv_def trans_def sym_def) blast | |
| 86 | ||
| 87 | lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A" | |
| 30198 | 88 | by (unfold equiv_def refl_on_def) blast | 
| 15300 | 89 | |
| 90 | theorem equiv_class_eq_iff: | |
| 91 |   "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
 | |
| 92 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | |
| 93 | ||
| 94 | theorem eq_equiv_class_iff: | |
| 95 |   "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
 | |
| 96 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | |
| 97 | ||
| 98 | ||
| 99 | subsection {* Quotients *}
 | |
| 100 | ||
| 28229 | 101 | definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"  (infixl "'/'/" 90) where
 | 
| 37767 | 102 |   "A//r = (\<Union>x \<in> A. {r``{x}})"  -- {* set of equiv classes *}
 | 
| 15300 | 103 | |
| 104 | lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
 | |
| 105 | by (unfold quotient_def) blast | |
| 106 | ||
| 107 | lemma quotientE: | |
| 108 |   "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
 | |
| 109 | by (unfold quotient_def) blast | |
| 110 | ||
| 111 | lemma Union_quotient: "equiv A r ==> Union (A//r) = A" | |
| 30198 | 112 | by (unfold equiv_def refl_on_def quotient_def) blast | 
| 15300 | 113 | |
| 114 | lemma quotient_disj: | |
| 115 |   "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
 | |
| 116 | apply (unfold quotient_def) | |
| 117 | apply clarify | |
| 118 | apply (rule equiv_class_eq) | |
| 119 | apply assumption | |
| 120 | apply (unfold equiv_def trans_def sym_def) | |
| 121 | apply blast | |
| 122 | done | |
| 123 | ||
| 124 | lemma quotient_eqI: | |
| 125 | "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y" | |
| 126 | apply (clarify elim!: quotientE) | |
| 127 | apply (rule equiv_class_eq, assumption) | |
| 128 | apply (unfold equiv_def sym_def trans_def, blast) | |
| 129 | done | |
| 130 | ||
| 131 | lemma quotient_eq_iff: | |
| 132 | "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)" | |
| 133 | apply (rule iffI) | |
| 134 | prefer 2 apply (blast del: equalityI intro: quotient_eqI) | |
| 135 | apply (clarify elim!: quotientE) | |
| 136 | apply (unfold equiv_def sym_def trans_def, blast) | |
| 137 | done | |
| 138 | ||
| 18493 | 139 | lemma eq_equiv_class_iff2: | 
| 140 |   "\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
 | |
| 141 | by(simp add:quotient_def eq_equiv_class_iff) | |
| 142 | ||
| 15300 | 143 | |
| 144 | lemma quotient_empty [simp]: "{}//r = {}"
 | |
| 145 | by(simp add: quotient_def) | |
| 146 | ||
| 147 | lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
 | |
| 148 | by(simp add: quotient_def) | |
| 149 | ||
| 150 | lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
 | |
| 151 | by(simp add: quotient_def) | |
| 152 | ||
| 153 | ||
| 15302 | 154 | lemma singleton_quotient: "{x}//r = {r `` {x}}"
 | 
| 155 | by(simp add:quotient_def) | |
| 156 | ||
| 157 | lemma quotient_diff1: | |
| 158 |   "\<lbrakk> inj_on (%a. {a}//r) A; a \<in> A \<rbrakk> \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
 | |
| 159 | apply(simp add:quotient_def inj_on_def) | |
| 160 | apply blast | |
| 161 | done | |
| 162 | ||
| 59528 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 163 | subsection {* Refinement of one equivalence relation WRT another *}
 | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 164 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 165 | lemma refines_equiv_class_eq: | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 166 |    "\<lbrakk>R \<subseteq> S; equiv A R; equiv A S\<rbrakk> \<Longrightarrow> R``(S``{a}) = S``{a}"
 | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 167 | by (auto simp: equiv_class_eq_iff) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 168 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 169 | lemma refines_equiv_class_eq2: | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 170 |    "\<lbrakk>R \<subseteq> S; equiv A R; equiv A S\<rbrakk> \<Longrightarrow> S``(R``{a}) = S``{a}"
 | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 171 | by (auto simp: equiv_class_eq_iff) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 172 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 173 | lemma refines_equiv_image_eq: | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 174 | "\<lbrakk>R \<subseteq> S; equiv A R; equiv A S\<rbrakk> \<Longrightarrow> (\<lambda>X. S``X) ` (A//R) = A//S" | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 175 | by (auto simp: quotient_def image_UN refines_equiv_class_eq2) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 176 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 177 | lemma finite_refines_finite: | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 178 | "\<lbrakk>finite (A//R); R \<subseteq> S; equiv A R; equiv A S\<rbrakk> \<Longrightarrow> finite (A//S)" | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 179 | apply (erule finite_surj [where f = "\<lambda>X. S``X"]) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 180 | apply (simp add: refines_equiv_image_eq) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 181 | done | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 182 | |
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 183 | lemma finite_refines_card_le: | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 184 | "\<lbrakk>finite (A//R); R \<subseteq> S; equiv A R; equiv A S\<rbrakk> \<Longrightarrow> card (A//S) \<le> card (A//R)" | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 185 | apply (subst refines_equiv_image_eq [of R S A, symmetric]) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 186 | apply (auto simp: card_image_le [where f = "\<lambda>X. S``X"]) | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 187 | done | 
| 
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 188 | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 189 | |
| 15300 | 190 | subsection {* Defining unary operations upon equivalence classes *}
 | 
| 191 | ||
| 192 | text{*A congruence-preserving function*}
 | |
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 193 | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
44204diff
changeset | 194 | definition congruent :: "('a \<times> 'a) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"  where
 | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 195 | "congruent r f \<longleftrightarrow> (\<forall>(y, z) \<in> r. f y = f z)" | 
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 196 | |
| 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 197 | lemma congruentI: | 
| 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 198 | "(\<And>y z. (y, z) \<in> r \<Longrightarrow> f y = f z) \<Longrightarrow> congruent r f" | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 199 | by (auto simp add: congruent_def) | 
| 40816 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 200 | |
| 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 201 | lemma congruentD: | 
| 
19c492929756
replaced slightly odd locale congruent by plain definition
 haftmann parents: 
40815diff
changeset | 202 | "congruent r f \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> f y = f z" | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 203 | by (auto simp add: congruent_def) | 
| 15300 | 204 | |
| 19363 | 205 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19979diff
changeset | 206 |   RESPECTS :: "('a => 'b) => ('a * 'a) set => bool"
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19979diff
changeset | 207 | (infixr "respects" 80) where | 
| 19363 | 208 | "f respects r == congruent r f" | 
| 15300 | 209 | |
| 210 | ||
| 211 | lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c" | |
| 212 |   -- {* lemma required to prove @{text UN_equiv_class} *}
 | |
| 213 | by auto | |
| 214 | ||
| 215 | lemma UN_equiv_class: | |
| 216 | "equiv A r ==> f respects r ==> a \<in> A | |
| 217 |     ==> (\<Union>x \<in> r``{a}. f x) = f a"
 | |
| 218 |   -- {* Conversion rule *}
 | |
| 219 | apply (rule equiv_class_self [THEN UN_constant_eq], assumption+) | |
| 220 | apply (unfold equiv_def congruent_def sym_def) | |
| 221 | apply (blast del: equalityI) | |
| 222 | done | |
| 223 | ||
| 224 | lemma UN_equiv_class_type: | |
| 225 | "equiv A r ==> f respects r ==> X \<in> A//r ==> | |
| 226 | (!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B" | |
| 227 | apply (unfold quotient_def) | |
| 228 | apply clarify | |
| 229 | apply (subst UN_equiv_class) | |
| 230 | apply auto | |
| 231 | done | |
| 232 | ||
| 233 | text {*
 | |
| 234 | Sufficient conditions for injectiveness. Could weaken premises! | |
| 235 |   major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
 | |
| 236 | A ==> f y \<in> B"}. | |
| 237 | *} | |
| 238 | ||
| 239 | lemma UN_equiv_class_inject: | |
| 240 | "equiv A r ==> f respects r ==> | |
| 241 | (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r | |
| 242 | ==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r) | |
| 243 | ==> X = Y" | |
| 244 | apply (unfold quotient_def) | |
| 245 | apply clarify | |
| 246 | apply (rule equiv_class_eq) | |
| 247 | apply assumption | |
| 248 | apply (subgoal_tac "f x = f xa") | |
| 249 | apply blast | |
| 250 | apply (erule box_equals) | |
| 251 | apply (assumption | rule UN_equiv_class)+ | |
| 252 | done | |
| 253 | ||
| 254 | ||
| 255 | subsection {* Defining binary operations upon equivalence classes *}
 | |
| 256 | ||
| 257 | text{*A congruence-preserving function of two arguments*}
 | |
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 258 | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
44204diff
changeset | 259 | definition congruent2 :: "('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> bool" where
 | 
| 40817 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 260 | "congruent2 r1 r2 f \<longleftrightarrow> (\<forall>(y1, z1) \<in> r1. \<forall>(y2, z2) \<in> r2. f y1 y2 = f z1 z2)" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 261 | |
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 262 | lemma congruent2I': | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 263 | assumes "\<And>y1 z1 y2 z2. (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 264 | shows "congruent2 r1 r2 f" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 265 | using assms by (auto simp add: congruent2_def) | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 266 | |
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 267 | lemma congruent2D: | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 268 | "congruent2 r1 r2 f \<Longrightarrow> (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" | 
| 
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
 haftmann parents: 
40816diff
changeset | 269 | using assms by (auto simp add: congruent2_def) | 
| 15300 | 270 | |
| 271 | text{*Abbreviation for the common case where the relations are identical*}
 | |
| 19979 | 272 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19979diff
changeset | 273 |   RESPECTS2:: "['a => 'a => 'b, ('a * 'a) set] => bool"
 | 
| 21749 | 274 | (infixr "respects2" 80) where | 
| 19979 | 275 | "f respects2 r == congruent2 r r f" | 
| 276 | ||
| 15300 | 277 | |
| 278 | lemma congruent2_implies_congruent: | |
| 279 | "equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)" | |
| 30198 | 280 | by (unfold congruent_def congruent2_def equiv_def refl_on_def) blast | 
| 15300 | 281 | |
| 282 | lemma congruent2_implies_congruent_UN: | |
| 283 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==> | |
| 284 |     congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
 | |
| 285 | apply (unfold congruent_def) | |
| 286 | apply clarify | |
| 287 | apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+) | |
| 288 | apply (simp add: UN_equiv_class congruent2_implies_congruent) | |
| 30198 | 289 | apply (unfold congruent2_def equiv_def refl_on_def) | 
| 15300 | 290 | apply (blast del: equalityI) | 
| 291 | done | |
| 292 | ||
| 293 | lemma UN_equiv_class2: | |
| 294 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2 | |
| 295 |     ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
 | |
| 296 | by (simp add: UN_equiv_class congruent2_implies_congruent | |
| 297 | congruent2_implies_congruent_UN) | |
| 298 | ||
| 299 | lemma UN_equiv_class_type2: | |
| 300 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f | |
| 301 | ==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2 | |
| 302 | ==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B) | |
| 303 | ==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" | |
| 304 | apply (unfold quotient_def) | |
| 305 | apply clarify | |
| 306 | apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN | |
| 307 | congruent2_implies_congruent quotientI) | |
| 308 | done | |
| 309 | ||
| 310 | lemma UN_UN_split_split_eq: | |
| 311 | "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = | |
| 312 | (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" | |
| 313 |   -- {* Allows a natural expression of binary operators, *}
 | |
| 314 |   -- {* without explicit calls to @{text split} *}
 | |
| 315 | by auto | |
| 316 | ||
| 317 | lemma congruent2I: | |
| 318 | "equiv A1 r1 ==> equiv A2 r2 | |
| 319 | ==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w) | |
| 320 | ==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z) | |
| 321 | ==> congruent2 r1 r2 f" | |
| 322 |   -- {* Suggested by John Harrison -- the two subproofs may be *}
 | |
| 323 |   -- {* \emph{much} simpler than the direct proof. *}
 | |
| 30198 | 324 | apply (unfold congruent2_def equiv_def refl_on_def) | 
| 15300 | 325 | apply clarify | 
| 326 | apply (blast intro: trans) | |
| 327 | done | |
| 328 | ||
| 329 | lemma congruent2_commuteI: | |
| 330 | assumes equivA: "equiv A r" | |
| 331 | and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y" | |
| 332 | and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z" | |
| 333 | shows "f respects2 r" | |
| 334 | apply (rule congruent2I [OF equivA equivA]) | |
| 335 | apply (rule commute [THEN trans]) | |
| 336 | apply (rule_tac [3] commute [THEN trans, symmetric]) | |
| 337 | apply (rule_tac [5] sym) | |
| 25482 | 338 | apply (rule congt | assumption | | 
| 15300 | 339 | erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+ | 
| 340 | done | |
| 341 | ||
| 24728 | 342 | |
| 343 | subsection {* Quotients and finiteness *}
 | |
| 344 | ||
| 40945 | 345 | text {*Suggested by Florian Kammüller*}
 | 
| 24728 | 346 | |
| 347 | lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)" | |
| 348 |   -- {* recall @{thm equiv_type} *}
 | |
| 349 | apply (rule finite_subset) | |
| 350 | apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) | |
| 351 | apply (unfold quotient_def) | |
| 352 | apply blast | |
| 353 | done | |
| 354 | ||
| 355 | lemma finite_equiv_class: | |
| 356 | "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X" | |
| 357 | apply (unfold quotient_def) | |
| 358 | apply (rule finite_subset) | |
| 359 | prefer 2 apply assumption | |
| 360 | apply blast | |
| 361 | done | |
| 362 | ||
| 363 | lemma equiv_imp_dvd_card: | |
| 364 | "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X | |
| 365 | ==> k dvd card A" | |
| 26791 
3581a9c71909
Instantiated subst rule to avoid problems with HO unification.
 berghofe parents: 
25482diff
changeset | 366 | apply (rule Union_quotient [THEN subst [where P="\<lambda>A. k dvd card A"]]) | 
| 24728 | 367 | apply assumption | 
| 368 | apply (rule dvd_partition) | |
| 369 | prefer 3 apply (blast dest: quotient_disj) | |
| 370 | apply (simp_all add: Union_quotient equiv_type) | |
| 371 | done | |
| 372 | ||
| 373 | lemma card_quotient_disjoint: | |
| 374 |  "\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
 | |
| 375 | apply(simp add:quotient_def) | |
| 376 | apply(subst card_UN_disjoint) | |
| 377 | apply assumption | |
| 378 | apply simp | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44279diff
changeset | 379 | apply(fastforce simp add:inj_on_def) | 
| 35216 | 380 | apply simp | 
| 24728 | 381 | done | 
| 382 | ||
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 383 | |
| 55022 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 384 | subsection {* Projection *}
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 385 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 386 | definition proj where "proj r x = r `` {x}"
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 387 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 388 | lemma proj_preserves: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 389 | "x \<in> A \<Longrightarrow> proj r x \<in> A//r" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 390 | unfolding proj_def by (rule quotientI) | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 391 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 392 | lemma proj_in_iff: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 393 | assumes "equiv A r" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 394 | shows "(proj r x \<in> A//r) = (x \<in> A)" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 395 | apply(rule iffI, auto simp add: proj_preserves) | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 396 | unfolding proj_def quotient_def proof clarsimp | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 397 |   fix y assume y: "y \<in> A" and "r `` {x} = r `` {y}"
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 398 |   moreover have "y \<in> r `` {y}" using assms y unfolding equiv_def refl_on_def by blast
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 399 | ultimately have "(x,y) \<in> r" by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 400 | thus "x \<in> A" using assms unfolding equiv_def refl_on_def by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 401 | qed | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 402 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 403 | lemma proj_iff: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 404 | "\<lbrakk>equiv A r; {x,y} \<subseteq> A\<rbrakk> \<Longrightarrow> (proj r x = proj r y) = ((x,y) \<in> r)"
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 405 | by (simp add: proj_def eq_equiv_class_iff) | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 406 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 407 | (* | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 408 | lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 409 | unfolding proj_def equiv_def refl_on_def by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 410 | *) | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 411 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 412 | lemma proj_image: "(proj r) ` A = A//r" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 413 | unfolding proj_def[abs_def] quotient_def by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 414 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 415 | lemma in_quotient_imp_non_empty: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 416 | "\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<noteq> {}"
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 417 | unfolding quotient_def using equiv_class_self by fast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 418 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 419 | lemma in_quotient_imp_in_rel: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 420 | "\<lbrakk>equiv A r; X \<in> A//r; {x,y} \<subseteq> X\<rbrakk> \<Longrightarrow> (x,y) \<in> r"
 | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 421 | using quotient_eq_iff[THEN iffD1] by fastforce | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 422 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 423 | lemma in_quotient_imp_closed: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 424 | "\<lbrakk>equiv A r; X \<in> A//r; x \<in> X; (x,y) \<in> r\<rbrakk> \<Longrightarrow> y \<in> X" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 425 | unfolding quotient_def equiv_def trans_def by blast | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 426 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 427 | lemma in_quotient_imp_subset: | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 428 | "\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<subseteq> A" | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 429 | using assms in_quotient_imp_in_rel equiv_type by fastforce | 
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 430 | |
| 
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
 blanchet parents: 
54744diff
changeset | 431 | |
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 432 | subsection {* Equivalence relations -- predicate version *}
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 433 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 434 | text {* Partial equivalences *}
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 435 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 436 | definition part_equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 437 | "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> (\<forall>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y)" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 438 |     -- {* John-Harrison-style characterization *}
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 439 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 440 | lemma part_equivpI: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 441 | "(\<exists>x. R x x) \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> part_equivp R" | 
| 45969 | 442 | by (auto simp add: part_equivp_def) (auto elim: sympE transpE) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 443 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 444 | lemma part_equivpE: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 445 | assumes "part_equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 446 | obtains x where "R x x" and "symp R" and "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 447 | proof - | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 448 | from assms have 1: "\<exists>x. R x x" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 449 | and 2: "\<And>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 450 | by (unfold part_equivp_def) blast+ | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 451 | from 1 obtain x where "R x x" .. | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 452 | moreover have "symp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 453 | proof (rule sympI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 454 | fix x y | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 455 | assume "R x y" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 456 | with 2 [of x y] show "R y x" by auto | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 457 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 458 | moreover have "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 459 | proof (rule transpI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 460 | fix x y z | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 461 | assume "R x y" and "R y z" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 462 | with 2 [of x y] 2 [of y z] show "R x z" by auto | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 463 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 464 | ultimately show thesis by (rule that) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 465 | qed | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 466 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 467 | lemma part_equivp_refl_symp_transp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 468 | "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> symp R \<and> transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 469 | by (auto intro: part_equivpI elim: part_equivpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 470 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 471 | lemma part_equivp_symp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 472 | "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 473 | by (erule part_equivpE, erule sympE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 474 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 475 | lemma part_equivp_transp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 476 | "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 477 | by (erule part_equivpE, erule transpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 478 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 479 | lemma part_equivp_typedef: | 
| 44204 
3cdc4176638c
Quotient Package: make quotient_type work with separate set type
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
40945diff
changeset | 480 |   "part_equivp R \<Longrightarrow> \<exists>d. d \<in> {c. \<exists>x. R x x \<and> c = Collect (R x)}"
 | 
| 
3cdc4176638c
Quotient Package: make quotient_type work with separate set type
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
40945diff
changeset | 481 | by (auto elim: part_equivpE) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 482 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 483 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 484 | text {* Total equivalences *}
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 485 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 486 | definition equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 487 |   "equivp R \<longleftrightarrow> (\<forall>x y. R x y = (R x = R y))" -- {* John-Harrison-style characterization *}
 | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 488 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 489 | lemma equivpI: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 490 | "reflp R \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> equivp R" | 
| 45969 | 491 | by (auto elim: reflpE sympE transpE simp add: equivp_def) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 492 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 493 | lemma equivpE: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 494 | assumes "equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 495 | obtains "reflp R" and "symp R" and "transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 496 | using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 497 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 498 | lemma equivp_implies_part_equivp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 499 | "equivp R \<Longrightarrow> part_equivp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 500 | by (auto intro: part_equivpI elim: equivpE reflpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 501 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 502 | lemma equivp_equiv: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 503 | "equiv UNIV A \<longleftrightarrow> equivp (\<lambda>x y. (x, y) \<in> A)" | 
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
45969diff
changeset | 504 | by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set]) | 
| 40812 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 505 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 506 | lemma equivp_reflp_symp_transp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 507 | shows "equivp R \<longleftrightarrow> reflp R \<and> symp R \<and> transp R" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 508 | by (auto intro: equivpI elim: equivpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 509 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 510 | lemma identity_equivp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 511 | "equivp (op =)" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 512 | by (auto intro: equivpI reflpI sympI transpI) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 513 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 514 | lemma equivp_reflp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 515 | "equivp R \<Longrightarrow> R x x" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 516 | by (erule equivpE, erule reflpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 517 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 518 | lemma equivp_symp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 519 | "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 520 | by (erule equivpE, erule sympE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 521 | |
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 522 | lemma equivp_transp: | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 523 | "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 524 | by (erule equivpE, erule transpE) | 
| 
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
 haftmann parents: 
37767diff
changeset | 525 | |
| 55024 | 526 | hide_const (open) proj | 
| 527 | ||
| 15300 | 528 | end |