author | ballarin |
Wed, 07 Apr 2010 19:17:10 +0200 | |
changeset 36096 | abc6a2ea4b88 |
parent 32631 | 2489e3c3562b |
child 37936 | 1e4c5015a72e |
permissions | -rw-r--r-- |
1934 | 1 |
(* Title: HOL/Auth/Shared |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1996 University of Cambridge |
|
4 |
||
5 |
Theory of Shared Keys (common to all symmetric-key protocols) |
|
6 |
||
3512
9dcb4daa15e8
Moving common declarations and proofs from theories "Shared"
paulson
parents:
3472
diff
changeset
|
7 |
Shared, long-term keys; initial states of agents |
1934 | 8 |
*) |
9 |
||
32631 | 10 |
theory Shared |
11 |
imports Event All_Symmetric |
|
12 |
begin |
|
1934 | 13 |
|
14 |
consts |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
15 |
shrK :: "agent => key" (*symmetric keys*); |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
16 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
17 |
specification (shrK) |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
18 |
inj_shrK: "inj shrK" |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
19 |
--{*No two agents have the same long-term key*} |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
20 |
apply (rule exI [of _ "agent_case 0 (\<lambda>n. n + 2) 1"]) |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
21 |
apply (simp add: inj_on_def split: agent.split) |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
22 |
done |
1967 | 23 |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
24 |
text{*Server knows all long-term keys; other agents know only their own*} |
5183 | 25 |
primrec |
11104 | 26 |
initState_Server: "initState Server = Key ` range shrK" |
27 |
initState_Friend: "initState (Friend i) = {Key (shrK (Friend i))}" |
|
28 |
initState_Spy: "initState Spy = Key`shrK`bad" |
|
2032 | 29 |
|
1934 | 30 |
|
13926 | 31 |
subsection{*Basic properties of shrK*} |
32 |
||
33 |
(*Injectiveness: Agents' long-term keys are distinct.*) |
|
18749
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
paulson
parents:
17744
diff
changeset
|
34 |
lemmas shrK_injective = inj_shrK [THEN inj_eq] |
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
paulson
parents:
17744
diff
changeset
|
35 |
declare shrK_injective [iff] |
13926 | 36 |
|
37 |
lemma invKey_K [simp]: "invKey K = K" |
|
38 |
apply (insert isSym_keys) |
|
39 |
apply (simp add: symKeys_def) |
|
40 |
done |
|
41 |
||
42 |
||
43 |
lemma analz_Decrypt' [dest]: |
|
44 |
"[| Crypt K X \<in> analz H; Key K \<in> analz H |] ==> X \<in> analz H" |
|
45 |
by auto |
|
46 |
||
47 |
text{*Now cancel the @{text dest} attribute given to |
|
48 |
@{text analz.Decrypt} in its declaration.*} |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
49 |
declare analz.Decrypt [rule del] |
13926 | 50 |
|
51 |
text{*Rewrites should not refer to @{term "initState(Friend i)"} because |
|
52 |
that expression is not in normal form.*} |
|
53 |
||
54 |
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}" |
|
55 |
apply (unfold keysFor_def) |
|
56 |
apply (induct_tac "C", auto) |
|
57 |
done |
|
58 |
||
59 |
(*Specialized to shared-key model: no @{term invKey}*) |
|
60 |
lemma keysFor_parts_insert: |
|
14983 | 61 |
"[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |] |
62 |
==> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H"; |
|
13926 | 63 |
by (force dest: Event.keysFor_parts_insert) |
64 |
||
65 |
lemma Crypt_imp_keysFor: "Crypt K X \<in> H ==> K \<in> keysFor H" |
|
66 |
by (drule Crypt_imp_invKey_keysFor, simp) |
|
67 |
||
68 |
||
69 |
subsection{*Function "knows"*} |
|
70 |
||
71 |
(*Spy sees shared keys of agents!*) |
|
72 |
lemma Spy_knows_Spy_bad [intro!]: "A: bad ==> Key (shrK A) \<in> knows Spy evs" |
|
73 |
apply (induct_tac "evs") |
|
74 |
apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split) |
|
75 |
done |
|
76 |
||
77 |
(*For case analysis on whether or not an agent is compromised*) |
|
78 |
lemma Crypt_Spy_analz_bad: "[| Crypt (shrK A) X \<in> analz (knows Spy evs); A: bad |] |
|
79 |
==> X \<in> analz (knows Spy evs)" |
|
80 |
apply (force dest!: analz.Decrypt) |
|
81 |
done |
|
82 |
||
83 |
||
84 |
(** Fresh keys never clash with long-term shared keys **) |
|
85 |
||
86 |
(*Agents see their own shared keys!*) |
|
87 |
lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState A" |
|
88 |
by (induct_tac "A", auto) |
|
89 |
||
90 |
lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs" |
|
91 |
by (rule initState_into_used, blast) |
|
92 |
||
93 |
(*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys |
|
94 |
from long-term shared keys*) |
|
95 |
lemma Key_not_used [simp]: "Key K \<notin> used evs ==> K \<notin> range shrK" |
|
96 |
by blast |
|
97 |
||
98 |
lemma shrK_neq [simp]: "Key K \<notin> used evs ==> shrK B \<noteq> K" |
|
99 |
by blast |
|
100 |
||
17744 | 101 |
lemmas shrK_sym_neq = shrK_neq [THEN not_sym] |
102 |
declare shrK_sym_neq [simp] |
|
13926 | 103 |
|
104 |
||
105 |
subsection{*Fresh nonces*} |
|
106 |
||
107 |
lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)" |
|
108 |
by (induct_tac "B", auto) |
|
109 |
||
110 |
lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []" |
|
111 |
apply (simp (no_asm) add: used_Nil) |
|
112 |
done |
|
113 |
||
114 |
||
115 |
subsection{*Supply fresh nonces for possibility theorems.*} |
|
116 |
||
117 |
(*In any trace, there is an upper bound N on the greatest nonce in use.*) |
|
118 |
lemma Nonce_supply_lemma: "\<exists>N. ALL n. N<=n --> Nonce n \<notin> used evs" |
|
119 |
apply (induct_tac "evs") |
|
120 |
apply (rule_tac x = 0 in exI) |
|
121 |
apply (simp_all (no_asm_simp) add: used_Cons split add: event.split) |
|
122 |
apply safe |
|
123 |
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+ |
|
124 |
done |
|
125 |
||
126 |
lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs" |
|
127 |
by (rule Nonce_supply_lemma [THEN exE], blast) |
|
128 |
||
129 |
lemma Nonce_supply2: "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'" |
|
130 |
apply (cut_tac evs = evs in Nonce_supply_lemma) |
|
131 |
apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify) |
|
132 |
apply (rule_tac x = N in exI) |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
133 |
apply (rule_tac x = "Suc (N+Na)" in exI) |
13926 | 134 |
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le) |
135 |
done |
|
136 |
||
137 |
lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & |
|
138 |
Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''" |
|
139 |
apply (cut_tac evs = evs in Nonce_supply_lemma) |
|
140 |
apply (cut_tac evs = "evs'" in Nonce_supply_lemma) |
|
141 |
apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify) |
|
142 |
apply (rule_tac x = N in exI) |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
143 |
apply (rule_tac x = "Suc (N+Na)" in exI) |
13926 | 144 |
apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI) |
145 |
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le) |
|
146 |
done |
|
147 |
||
148 |
lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs" |
|
149 |
apply (rule Nonce_supply_lemma [THEN exE]) |
|
150 |
apply (rule someI, blast) |
|
151 |
done |
|
152 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
153 |
text{*Unlike the corresponding property of nonces, we cannot prove |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
154 |
@{term "finite KK ==> \<exists>K. K \<notin> KK & Key K \<notin> used evs"}. |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2451
diff
changeset
|
155 |
We have infinitely many agents and there is nothing to stop their |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
156 |
long-term keys from exhausting all the natural numbers. Instead, |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
157 |
possibility theorems must assume the existence of a few keys.*} |
13926 | 158 |
|
159 |
||
13956 | 160 |
subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*} |
13926 | 161 |
|
162 |
lemma subset_Compl_range: "A <= - (range shrK) ==> shrK x \<notin> A" |
|
163 |
by blast |
|
164 |
||
165 |
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H" |
|
166 |
by blast |
|
167 |
||
13956 | 168 |
lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C" |
13926 | 169 |
by blast |
170 |
||
171 |
(** Reverse the normal simplification of "image" to build up (not break down) |
|
172 |
the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to |
|
173 |
erase occurrences of forwarded message components (X). **) |
|
174 |
||
175 |
lemmas analz_image_freshK_simps = |
|
176 |
simp_thms mem_simps --{*these two allow its use with @{text "only:"}*} |
|
177 |
disj_comms |
|
178 |
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset |
|
179 |
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD] |
|
180 |
insert_Key_singleton subset_Compl_range |
|
181 |
Key_not_used insert_Key_image Un_assoc [THEN sym] |
|
182 |
||
183 |
(*Lemma for the trivial direction of the if-and-only-if*) |
|
184 |
lemma analz_image_freshK_lemma: |
|
185 |
"(Key K \<in> analz (Key`nE \<union> H)) --> (K \<in> nE | Key K \<in> analz H) ==> |
|
186 |
(Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)" |
|
187 |
by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
188 |
||
24122 | 189 |
|
190 |
subsection{*Tactics for possibility theorems*} |
|
191 |
||
13926 | 192 |
ML |
193 |
{* |
|
24122 | 194 |
structure Shared = |
195 |
struct |
|
196 |
||
197 |
(*Omitting used_Says makes the tactic much faster: it leaves expressions |
|
198 |
such as Nonce ?N \<notin> used evs that match Nonce_supply*) |
|
199 |
fun possibility_tac ctxt = |
|
200 |
(REPEAT |
|
32149
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents:
30549
diff
changeset
|
201 |
(ALLGOALS (simp_tac (simpset_of ctxt |
24122 | 202 |
delsimps [@{thm used_Says}, @{thm used_Notes}, @{thm used_Gets}] |
203 |
setSolver safe_solver)) |
|
204 |
THEN |
|
205 |
REPEAT_FIRST (eq_assume_tac ORELSE' |
|
206 |
resolve_tac [refl, conjI, @{thm Nonce_supply}]))) |
|
13926 | 207 |
|
24122 | 208 |
(*For harder protocols (such as Recur) where we have to set up some |
209 |
nonces and keys initially*) |
|
210 |
fun basic_possibility_tac ctxt = |
|
211 |
REPEAT |
|
32149
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents:
30549
diff
changeset
|
212 |
(ALLGOALS (asm_simp_tac (simpset_of ctxt setSolver safe_solver)) |
24122 | 213 |
THEN |
214 |
REPEAT_FIRST (resolve_tac [refl, conjI])) |
|
215 |
||
216 |
||
217 |
val analz_image_freshK_ss = |
|
218 |
@{simpset} delsimps [image_insert, image_Un] |
|
219 |
delsimps [@{thm imp_disjL}] (*reduces blow-up*) |
|
220 |
addsimps @{thms analz_image_freshK_simps} |
|
221 |
||
222 |
end |
|
13926 | 223 |
*} |
224 |
||
225 |
||
11104 | 226 |
|
227 |
(*Lets blast_tac perform this step without needing the simplifier*) |
|
228 |
lemma invKey_shrK_iff [iff]: |
|
11270
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents:
11230
diff
changeset
|
229 |
"(Key (invKey K) \<in> X) = (Key K \<in> X)" |
13507 | 230 |
by auto |
11104 | 231 |
|
232 |
(*Specialized methods*) |
|
233 |
||
234 |
method_setup analz_freshK = {* |
|
30549 | 235 |
Scan.succeed (fn ctxt => |
30510
4120fc59dd85
unified type Proof.method and pervasive METHOD combinators;
wenzelm
parents:
24122
diff
changeset
|
236 |
(SIMPLE_METHOD |
21588 | 237 |
(EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]), |
24122 | 238 |
REPEAT_FIRST (rtac @{thm analz_image_freshK_lemma}), |
239 |
ALLGOALS (asm_simp_tac (Simplifier.context ctxt Shared.analz_image_freshK_ss))]))) *} |
|
11104 | 240 |
"for proving the Session Key Compromise theorem" |
241 |
||
242 |
method_setup possibility = {* |
|
30549 | 243 |
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.possibility_tac ctxt)) *} |
23894
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
wenzelm
parents:
21588
diff
changeset
|
244 |
"for proving possibility theorems" |
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
wenzelm
parents:
21588
diff
changeset
|
245 |
|
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
wenzelm
parents:
21588
diff
changeset
|
246 |
method_setup basic_possibility = {* |
30549 | 247 |
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.basic_possibility_tac ctxt)) *} |
11104 | 248 |
"for proving possibility theorems" |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2451
diff
changeset
|
249 |
|
12415
74977582a585
Slightly generalized the agents' knowledge theorems
paulson
parents:
11270
diff
changeset
|
250 |
lemma knows_subset_knows_Cons: "knows A evs <= knows A (e # evs)" |
23894
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
wenzelm
parents:
21588
diff
changeset
|
251 |
by (induct e) (auto simp: knows_Cons) |
12415
74977582a585
Slightly generalized the agents' knowledge theorems
paulson
parents:
11270
diff
changeset
|
252 |
|
1934 | 253 |
end |