| author | huffman | 
| Thu, 15 Jan 2009 12:43:12 -0800 | |
| changeset 29539 | abfe2af6883e | 
| parent 28592 | 824f8390aaa2 | 
| child 29511 | 7071b017cb35 | 
| permissions | -rw-r--r-- | 
| 23449 | 1  | 
(* Title: HOL/MetisExamples/BigO.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
||
5  | 
Testing the metis method  | 
|
6  | 
*)  | 
|
7  | 
||
8  | 
header {* Big O notation *}
 | 
|
9  | 
||
10  | 
theory BigO  | 
|
| 26165 | 11  | 
imports Dense_Linear_Order Main SetsAndFunctions  | 
| 23449 | 12  | 
begin  | 
13  | 
||
14  | 
subsection {* Definitions *}
 | 
|
15  | 
||
16  | 
constdefs  | 
|
17  | 
||
18  | 
  bigo :: "('a => 'b::ordered_idom) => ('a => 'b) set"    ("(1O'(_'))")
 | 
|
19  | 
  "O(f::('a => 'b)) ==   {h. EX c. ALL x. abs (h x) <= c * abs (f x)}"
 | 
|
20  | 
||
| 28592 | 21  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_pos_const"*}
 | 
| 23449 | 22  | 
lemma bigo_pos_const: "(EX (c::'a::ordered_idom).  | 
23  | 
ALL x. (abs (h x)) <= (c * (abs (f x))))  | 
|
24  | 
= (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))"  | 
|
25  | 
apply auto  | 
|
26  | 
apply (case_tac "c = 0", simp)  | 
|
27  | 
apply (rule_tac x = "1" in exI, simp)  | 
|
| 
25304
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
28  | 
apply (rule_tac x = "abs c" in exI, auto)  | 
| 
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
29  | 
apply (metis abs_ge_minus_self abs_ge_zero abs_minus_cancel abs_of_nonneg equation_minus_iff Orderings.xt1(6) abs_mult)  | 
| 23449 | 30  | 
done  | 
31  | 
||
32  | 
(*** Now various verions with an increasing modulus ***)  | 
|
33  | 
||
| 
26333
 
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
 
paulson 
parents: 
26312 
diff
changeset
 | 
34  | 
declare [[sledgehammer_modulus = 1]]  | 
| 23449 | 35  | 
|
| 26312 | 36  | 
lemma (*bigo_pos_const:*) "(EX (c::'a::ordered_idom).  | 
| 23449 | 37  | 
ALL x. (abs (h x)) <= (c * (abs (f x))))  | 
38  | 
= (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))"  | 
|
39  | 
apply auto  | 
|
40  | 
apply (case_tac "c = 0", simp)  | 
|
41  | 
apply (rule_tac x = "1" in exI, simp)  | 
|
42  | 
apply (rule_tac x = "abs c" in exI, auto)  | 
|
43  | 
proof (neg_clausify)  | 
|
44  | 
fix c x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
45  | 
have 0: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. \<bar>X1 * X2\<bar> = \<bar>X2 * X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
46  | 
by (metis abs_mult mult_commute)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
47  | 
have 1: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
48  | 
X1 \<le> (0\<Colon>'a\<Colon>ordered_idom) \<or> \<bar>X2\<bar> * X1 = \<bar>X2 * X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
49  | 
by (metis abs_mult_pos linorder_linear)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
50  | 
have 2: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
51  | 
\<not> (0\<Colon>'a\<Colon>ordered_idom) < X1 * X2 \<or>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
52  | 
\<not> (0\<Colon>'a\<Colon>ordered_idom) \<le> X2 \<or> \<not> X1 \<le> (0\<Colon>'a\<Colon>ordered_idom)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
53  | 
by (metis linorder_not_less mult_nonneg_nonpos2)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
54  | 
assume 3: "\<And>x\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
55  | 
\<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
56  | 
\<le> (c\<Colon>'a\<Colon>ordered_idom) * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
57  | 
assume 4: "\<not> \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
58  | 
\<le> \<bar>c\<Colon>'a\<Colon>ordered_idom\<bar> * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
59  | 
have 5: "\<not> \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
60  | 
\<le> \<bar>(c\<Colon>'a\<Colon>ordered_idom) * (f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
61  | 
by (metis 4 abs_mult)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
62  | 
have 6: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
63  | 
\<not> X1 \<le> (0\<Colon>'a\<Colon>ordered_idom) \<or> X1 \<le> \<bar>X2\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
64  | 
by (metis abs_ge_zero xt1(6))  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
65  | 
have 7: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
66  | 
X1 \<le> \<bar>X2\<bar> \<or> (0\<Colon>'a\<Colon>ordered_idom) < X1"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
67  | 
by (metis not_leE 6)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
68  | 
have 8: "(0\<Colon>'a\<Colon>ordered_idom) < \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
69  | 
by (metis 5 7)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
70  | 
have 9: "\<And>X1\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
71  | 
\<not> \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar> \<le> X1 \<or>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
72  | 
(0\<Colon>'a\<Colon>ordered_idom) < X1"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
73  | 
by (metis 8 order_less_le_trans)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
74  | 
have 10: "(0\<Colon>'a\<Colon>ordered_idom)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
75  | 
< (c\<Colon>'a\<Colon>ordered_idom) * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
76  | 
by (metis 3 9)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
77  | 
have 11: "\<not> (c\<Colon>'a\<Colon>ordered_idom) \<le> (0\<Colon>'a\<Colon>ordered_idom)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
78  | 
by (metis abs_ge_zero 2 10)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
79  | 
have 12: "\<And>X1\<Colon>'a\<Colon>ordered_idom. (c\<Colon>'a\<Colon>ordered_idom) * \<bar>X1\<bar> = \<bar>X1 * c\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
80  | 
by (metis mult_commute 1 11)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
81  | 
have 13: "\<And>X1\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
82  | 
- (h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
83  | 
\<le> (c\<Colon>'a\<Colon>ordered_idom) * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
84  | 
by (metis 3 abs_le_D2)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
85  | 
have 14: "\<And>X1\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
86  | 
- (h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
87  | 
\<le> \<bar>(c\<Colon>'a\<Colon>ordered_idom) * (f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
88  | 
by (metis 0 12 13)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
89  | 
have 15: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. \<bar>X1 * \<bar>X2\<bar>\<bar> = \<bar>X1 * X2\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
90  | 
by (metis abs_mult abs_mult_pos abs_ge_zero)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
91  | 
have 16: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. X1 \<le> \<bar>X2\<bar> \<or> \<not> X1 \<le> X2"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
92  | 
by (metis xt1(6) abs_ge_self)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
93  | 
have 17: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. \<not> \<bar>X1\<bar> \<le> X2 \<or> X1 \<le> \<bar>X2\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
94  | 
by (metis 16 abs_le_D1)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
95  | 
have 18: "\<And>X1\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
96  | 
(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
97  | 
\<le> \<bar>(c\<Colon>'a\<Colon>ordered_idom) * (f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
98  | 
by (metis 17 3 15)  | 
| 23449 | 99  | 
show "False"  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
100  | 
by (metis abs_le_iff 5 18 14)  | 
| 23449 | 101  | 
qed  | 
102  | 
||
| 
26333
 
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
 
paulson 
parents: 
26312 
diff
changeset
 | 
103  | 
declare [[sledgehammer_modulus = 2]]  | 
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25592 
diff
changeset
 | 
104  | 
|
| 23449 | 105  | 
lemma (*bigo_pos_const:*) "(EX (c::'a::ordered_idom).  | 
106  | 
ALL x. (abs (h x)) <= (c * (abs (f x))))  | 
|
107  | 
= (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))"  | 
|
108  | 
apply auto  | 
|
109  | 
apply (case_tac "c = 0", simp)  | 
|
110  | 
apply (rule_tac x = "1" in exI, simp)  | 
|
111  | 
apply (rule_tac x = "abs c" in exI, auto);  | 
|
112  | 
proof (neg_clausify)  | 
|
113  | 
fix c x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
114  | 
have 0: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. \<bar>X1 * X2\<bar> = \<bar>X2 * X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
115  | 
by (metis abs_mult mult_commute)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
116  | 
assume 1: "\<And>x\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
117  | 
\<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
118  | 
\<le> (c\<Colon>'a\<Colon>ordered_idom) * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
119  | 
assume 2: "\<not> \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
120  | 
\<le> \<bar>c\<Colon>'a\<Colon>ordered_idom\<bar> * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
121  | 
have 3: "\<not> \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
122  | 
\<le> \<bar>(c\<Colon>'a\<Colon>ordered_idom) * (f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
123  | 
by (metis 2 abs_mult)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
124  | 
have 4: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
125  | 
\<not> X1 \<le> (0\<Colon>'a\<Colon>ordered_idom) \<or> X1 \<le> \<bar>X2\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
126  | 
by (metis abs_ge_zero xt1(6))  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
127  | 
have 5: "(0\<Colon>'a\<Colon>ordered_idom) < \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
128  | 
by (metis not_leE 4 3)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
129  | 
have 6: "(0\<Colon>'a\<Colon>ordered_idom)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
130  | 
< (c\<Colon>'a\<Colon>ordered_idom) * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
131  | 
by (metis 1 order_less_le_trans 5)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
132  | 
have 7: "\<And>X1\<Colon>'a\<Colon>ordered_idom. (c\<Colon>'a\<Colon>ordered_idom) * \<bar>X1\<bar> = \<bar>X1 * c\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
133  | 
by (metis abs_ge_zero linorder_not_less mult_nonneg_nonpos2 6 linorder_linear abs_mult_pos mult_commute)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
134  | 
have 8: "\<And>X1\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
135  | 
- (h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
136  | 
\<le> \<bar>(c\<Colon>'a\<Colon>ordered_idom) * (f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
137  | 
by (metis 0 7 abs_le_D2 1)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
138  | 
have 9: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. \<not> \<bar>X1\<bar> \<le> X2 \<or> X1 \<le> \<bar>X2\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
139  | 
by (metis abs_ge_self xt1(6) abs_le_D1)  | 
| 23449 | 140  | 
show "False"  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
141  | 
by (metis 8 abs_ge_zero abs_mult_pos abs_mult 1 9 3 abs_le_iff)  | 
| 23449 | 142  | 
qed  | 
143  | 
||
| 
26333
 
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
 
paulson 
parents: 
26312 
diff
changeset
 | 
144  | 
declare [[sledgehammer_modulus = 3]]  | 
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25592 
diff
changeset
 | 
145  | 
|
| 23449 | 146  | 
lemma (*bigo_pos_const:*) "(EX (c::'a::ordered_idom).  | 
147  | 
ALL x. (abs (h x)) <= (c * (abs (f x))))  | 
|
148  | 
= (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))"  | 
|
149  | 
apply auto  | 
|
150  | 
apply (case_tac "c = 0", simp)  | 
|
151  | 
apply (rule_tac x = "1" in exI, simp)  | 
|
152  | 
apply (rule_tac x = "abs c" in exI, auto);  | 
|
153  | 
proof (neg_clausify)  | 
|
154  | 
fix c x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
155  | 
assume 0: "\<And>x\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
156  | 
\<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
157  | 
\<le> (c\<Colon>'a\<Colon>ordered_idom) * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
158  | 
assume 1: "\<not> \<bar>(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) (x\<Colon>'b\<Colon>type)\<bar>  | 
| 23449 | 159  | 
\<le> \<bar>c\<Colon>'a\<Colon>ordered_idom\<bar> * \<bar>(f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) x\<bar>"  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
160  | 
have 2: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
161  | 
X1 \<le> \<bar>X2\<bar> \<or> (0\<Colon>'a\<Colon>ordered_idom) < X1"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
162  | 
by (metis abs_ge_zero xt1(6) not_leE)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
163  | 
have 3: "\<not> (c\<Colon>'a\<Colon>ordered_idom) \<le> (0\<Colon>'a\<Colon>ordered_idom)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
164  | 
by (metis abs_ge_zero mult_nonneg_nonpos2 linorder_not_less order_less_le_trans 1 abs_mult 2 0)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
165  | 
have 4: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2\<Colon>'a\<Colon>ordered_idom. \<bar>X1 * \<bar>X2\<bar>\<bar> = \<bar>X1 * X2\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
166  | 
by (metis abs_ge_zero abs_mult_pos abs_mult)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
167  | 
have 5: "\<And>X1\<Colon>'b\<Colon>type.  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
168  | 
(h\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
169  | 
\<le> \<bar>(c\<Colon>'a\<Colon>ordered_idom) * (f\<Colon>'b\<Colon>type \<Rightarrow> 'a\<Colon>ordered_idom) X1\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
170  | 
by (metis 4 0 xt1(6) abs_ge_self abs_le_D1)  | 
| 23449 | 171  | 
show "False"  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
172  | 
by (metis abs_mult mult_commute 3 abs_mult_pos linorder_linear 0 abs_le_D2 5 1 abs_le_iff)  | 
| 23449 | 173  | 
qed  | 
174  | 
||
175  | 
||
| 
26333
 
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
 
paulson 
parents: 
26312 
diff
changeset
 | 
176  | 
declare [[sledgehammer_modulus = 1]]  | 
| 24545 | 177  | 
|
178  | 
lemma (*bigo_pos_const:*) "(EX (c::'a::ordered_idom).  | 
|
179  | 
ALL x. (abs (h x)) <= (c * (abs (f x))))  | 
|
180  | 
= (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))"  | 
|
181  | 
apply auto  | 
|
182  | 
apply (case_tac "c = 0", simp)  | 
|
183  | 
apply (rule_tac x = "1" in exI, simp)  | 
|
184  | 
apply (rule_tac x = "abs c" in exI, auto);  | 
|
185  | 
proof (neg_clausify)  | 
|
186  | 
fix c x (*sort/type constraint inserted by hand!*)  | 
|
187  | 
have 0: "\<And>(X1\<Colon>'a\<Colon>ordered_idom) X2. \<bar>X1 * \<bar>X2\<bar>\<bar> = \<bar>X1 * X2\<bar>"  | 
|
188  | 
by (metis abs_ge_zero abs_mult_pos abs_mult)  | 
|
189  | 
assume 1: "\<And>A. \<bar>h A\<bar> \<le> c * \<bar>f A\<bar>"  | 
|
190  | 
have 2: "\<And>X1 X2. \<not> \<bar>X1\<bar> \<le> X2 \<or> (0\<Colon>'a) \<le> X2"  | 
|
191  | 
by (metis abs_ge_zero order_trans)  | 
|
192  | 
have 3: "\<And>X1. (0\<Colon>'a) \<le> c * \<bar>f X1\<bar>"  | 
|
193  | 
by (metis 1 2)  | 
|
194  | 
have 4: "\<And>X1. c * \<bar>f X1\<bar> = \<bar>c * f X1\<bar>"  | 
|
195  | 
by (metis 0 abs_of_nonneg 3)  | 
|
196  | 
have 5: "\<And>X1. - h X1 \<le> c * \<bar>f X1\<bar>"  | 
|
197  | 
by (metis 1 abs_le_D2)  | 
|
198  | 
have 6: "\<And>X1. - h X1 \<le> \<bar>c * f X1\<bar>"  | 
|
199  | 
by (metis 4 5)  | 
|
200  | 
have 7: "\<And>X1. h X1 \<le> c * \<bar>f X1\<bar>"  | 
|
201  | 
by (metis 1 abs_le_D1)  | 
|
202  | 
have 8: "\<And>X1. h X1 \<le> \<bar>c * f X1\<bar>"  | 
|
203  | 
by (metis 4 7)  | 
|
204  | 
assume 9: "\<not> \<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>"  | 
|
205  | 
have 10: "\<not> \<bar>h x\<bar> \<le> \<bar>c * f x\<bar>"  | 
|
206  | 
by (metis abs_mult 9)  | 
|
207  | 
show "False"  | 
|
208  | 
by (metis 6 8 10 abs_leI)  | 
|
209  | 
qed  | 
|
210  | 
||
211  | 
||
| 
26333
 
68e5eee47a45
Attributes sledgehammer_full, sledgehammer_modulus, sledgehammer_sorts
 
paulson 
parents: 
26312 
diff
changeset
 | 
212  | 
declare [[sledgehammer_sorts = true]]  | 
| 24545 | 213  | 
|
| 23449 | 214  | 
lemma bigo_alt_def: "O(f) =  | 
215  | 
    {h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}"
 | 
|
216  | 
by (auto simp add: bigo_def bigo_pos_const)  | 
|
217  | 
||
| 28592 | 218  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_elt_subset"*}
 | 
| 23449 | 219  | 
lemma bigo_elt_subset [intro]: "f : O(g) ==> O(f) <= O(g)"  | 
220  | 
apply (auto simp add: bigo_alt_def)  | 
|
221  | 
apply (rule_tac x = "ca * c" in exI)  | 
|
222  | 
apply (rule conjI)  | 
|
223  | 
apply (rule mult_pos_pos)  | 
|
224  | 
apply (assumption)+  | 
|
225  | 
(*sledgehammer*);  | 
|
226  | 
apply (rule allI)  | 
|
227  | 
apply (drule_tac x = "xa" in spec)+  | 
|
228  | 
apply (subgoal_tac "ca * abs(f xa) <= ca * (c * abs(g xa))");  | 
|
229  | 
apply (erule order_trans)  | 
|
230  | 
apply (simp add: mult_ac)  | 
|
231  | 
apply (rule mult_left_mono, assumption)  | 
|
232  | 
apply (rule order_less_imp_le, assumption);  | 
|
233  | 
done  | 
|
234  | 
||
235  | 
||
| 28592 | 236  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_refl"*}
 | 
| 23449 | 237  | 
lemma bigo_refl [intro]: "f : O(f)"  | 
238  | 
apply(auto simp add: bigo_def)  | 
|
239  | 
proof (neg_clausify)  | 
|
240  | 
fix x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
241  | 
assume 0: "\<And>xa. \<not> \<bar>f (x xa)\<bar> \<le> xa * \<bar>f (x xa)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
242  | 
have 1: "\<And>X2. X2 \<le> (1\<Colon>'b) * X2 \<or> \<not> (1\<Colon>'b) \<le> (1\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
243  | 
by (metis mult_le_cancel_right1 order_eq_iff)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
244  | 
have 2: "\<And>X2. X2 \<le> (1\<Colon>'b) * X2"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
245  | 
by (metis order_eq_iff 1)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
246  | 
show "False"  | 
| 23449 | 247  | 
by (metis 0 2)  | 
248  | 
qed  | 
|
249  | 
||
| 28592 | 250  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_zero"*}
 | 
| 23449 | 251  | 
lemma bigo_zero: "0 : O(g)"  | 
252  | 
apply (auto simp add: bigo_def func_zero)  | 
|
253  | 
proof (neg_clausify)  | 
|
254  | 
fix x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
255  | 
assume 0: "\<And>xa. \<not> (0\<Colon>'b) \<le> xa * \<bar>g (x xa)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
256  | 
have 1: "\<not> (0\<Colon>'b) \<le> (0\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
257  | 
by (metis 0 mult_eq_0_iff)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
258  | 
show "False"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
259  | 
by (metis 1 linorder_neq_iff linorder_antisym_conv1)  | 
| 23449 | 260  | 
qed  | 
261  | 
||
262  | 
lemma bigo_zero2: "O(%x.0) = {%x.0}"
 | 
|
263  | 
apply (auto simp add: bigo_def)  | 
|
264  | 
apply (rule ext)  | 
|
265  | 
apply auto  | 
|
266  | 
done  | 
|
267  | 
||
268  | 
lemma bigo_plus_self_subset [intro]:  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
269  | 
"O(f) \<oplus> O(f) <= O(f)"  | 
| 
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
270  | 
apply (auto simp add: bigo_alt_def set_plus_def)  | 
| 23449 | 271  | 
apply (rule_tac x = "c + ca" in exI)  | 
272  | 
apply auto  | 
|
| 
23477
 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 
nipkow 
parents: 
23464 
diff
changeset
 | 
273  | 
apply (simp add: ring_distribs func_plus)  | 
| 23449 | 274  | 
apply (blast intro:order_trans abs_triangle_ineq add_mono elim:)  | 
275  | 
done  | 
|
276  | 
||
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
277  | 
lemma bigo_plus_idemp [simp]: "O(f) \<oplus> O(f) = O(f)"  | 
| 23449 | 278  | 
apply (rule equalityI)  | 
279  | 
apply (rule bigo_plus_self_subset)  | 
|
280  | 
apply (rule set_zero_plus2)  | 
|
281  | 
apply (rule bigo_zero)  | 
|
282  | 
done  | 
|
283  | 
||
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
284  | 
lemma bigo_plus_subset [intro]: "O(f + g) <= O(f) \<oplus> O(g)"  | 
| 23449 | 285  | 
apply (rule subsetI)  | 
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
286  | 
apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def)  | 
| 23449 | 287  | 
apply (subst bigo_pos_const [symmetric])+  | 
288  | 
apply (rule_tac x =  | 
|
289  | 
"%n. if abs (g n) <= (abs (f n)) then x n else 0" in exI)  | 
|
290  | 
apply (rule conjI)  | 
|
291  | 
apply (rule_tac x = "c + c" in exI)  | 
|
292  | 
apply (clarsimp)  | 
|
293  | 
apply (auto)  | 
|
294  | 
apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (f xa)")  | 
|
295  | 
apply (erule_tac x = xa in allE)  | 
|
296  | 
apply (erule order_trans)  | 
|
297  | 
apply (simp)  | 
|
298  | 
apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))")  | 
|
299  | 
apply (erule order_trans)  | 
|
| 
23477
 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 
nipkow 
parents: 
23464 
diff
changeset
 | 
300  | 
apply (simp add: ring_distribs)  | 
| 23449 | 301  | 
apply (rule mult_left_mono)  | 
302  | 
apply assumption  | 
|
303  | 
apply (simp add: order_less_le)  | 
|
304  | 
apply (rule mult_left_mono)  | 
|
305  | 
apply (simp add: abs_triangle_ineq)  | 
|
306  | 
apply (simp add: order_less_le)  | 
|
307  | 
apply (rule mult_nonneg_nonneg)  | 
|
308  | 
apply (rule add_nonneg_nonneg)  | 
|
309  | 
apply auto  | 
|
310  | 
apply (rule_tac x = "%n. if (abs (f n)) < abs (g n) then x n else 0"  | 
|
311  | 
in exI)  | 
|
312  | 
apply (rule conjI)  | 
|
313  | 
apply (rule_tac x = "c + c" in exI)  | 
|
314  | 
apply auto  | 
|
315  | 
apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (g xa)")  | 
|
316  | 
apply (erule_tac x = xa in allE)  | 
|
317  | 
apply (erule order_trans)  | 
|
318  | 
apply (simp)  | 
|
319  | 
apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))")  | 
|
320  | 
apply (erule order_trans)  | 
|
| 
23477
 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 
nipkow 
parents: 
23464 
diff
changeset
 | 
321  | 
apply (simp add: ring_distribs)  | 
| 23449 | 322  | 
apply (rule mult_left_mono)  | 
323  | 
apply (simp add: order_less_le)  | 
|
324  | 
apply (simp add: order_less_le)  | 
|
325  | 
apply (rule mult_left_mono)  | 
|
326  | 
apply (rule abs_triangle_ineq)  | 
|
327  | 
apply (simp add: order_less_le)  | 
|
| 25087 | 328  | 
apply (metis abs_not_less_zero double_less_0_iff less_not_permute linorder_not_less mult_less_0_iff)  | 
| 23449 | 329  | 
apply (rule ext)  | 
330  | 
apply (auto simp add: if_splits linorder_not_le)  | 
|
331  | 
done  | 
|
332  | 
||
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
333  | 
lemma bigo_plus_subset2 [intro]: "A <= O(f) ==> B <= O(f) ==> A \<oplus> B <= O(f)"  | 
| 
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
334  | 
apply (subgoal_tac "A \<oplus> B <= O(f) \<oplus> O(f)")  | 
| 23449 | 335  | 
apply (erule order_trans)  | 
336  | 
apply simp  | 
|
337  | 
apply (auto del: subsetI simp del: bigo_plus_idemp)  | 
|
338  | 
done  | 
|
339  | 
||
| 28592 | 340  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_plus_eq"*}
 | 
| 23449 | 341  | 
lemma bigo_plus_eq: "ALL x. 0 <= f x ==> ALL x. 0 <= g x ==>  | 
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
342  | 
O(f + g) = O(f) \<oplus> O(g)"  | 
| 23449 | 343  | 
apply (rule equalityI)  | 
344  | 
apply (rule bigo_plus_subset)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
345  | 
apply (simp add: bigo_alt_def set_plus_def func_plus)  | 
| 23449 | 346  | 
apply clarify  | 
347  | 
(*sledgehammer*);  | 
|
348  | 
apply (rule_tac x = "max c ca" in exI)  | 
|
349  | 
apply (rule conjI)  | 
|
| 25087 | 350  | 
apply (metis Orderings.less_max_iff_disj)  | 
| 23449 | 351  | 
apply clarify  | 
352  | 
apply (drule_tac x = "xa" in spec)+  | 
|
353  | 
apply (subgoal_tac "0 <= f xa + g xa")  | 
|
| 
23477
 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 
nipkow 
parents: 
23464 
diff
changeset
 | 
354  | 
apply (simp add: ring_distribs)  | 
| 23449 | 355  | 
apply (subgoal_tac "abs(a xa + b xa) <= abs(a xa) + abs(b xa)")  | 
356  | 
apply (subgoal_tac "abs(a xa) + abs(b xa) <=  | 
|
357  | 
max c ca * f xa + max c ca * g xa")  | 
|
358  | 
apply (blast intro: order_trans)  | 
|
359  | 
defer 1  | 
|
360  | 
apply (rule abs_triangle_ineq)  | 
|
| 25087 | 361  | 
apply (metis add_nonneg_nonneg)  | 
| 23449 | 362  | 
apply (rule add_mono)  | 
| 28592 | 363  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_plus_eq_simpler"*} 
 | 
| 24942 | 364  | 
(*Found by SPASS; SLOW*)  | 
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25592 
diff
changeset
 | 
365  | 
apply (metis le_maxI2 linorder_linear linorder_not_le min_max.less_eq_less_sup.sup_absorb1 mult_le_cancel_right order_trans)  | 
| 
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25592 
diff
changeset
 | 
366  | 
apply (metis le_maxI2 linorder_not_le mult_le_cancel_right order_trans)  | 
| 23449 | 367  | 
done  | 
368  | 
||
| 28592 | 369  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_bounded_alt"*}
 | 
| 23449 | 370  | 
lemma bigo_bounded_alt: "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==>  | 
371  | 
f : O(g)"  | 
|
372  | 
apply (auto simp add: bigo_def)  | 
|
373  | 
(*Version 1: one-shot proof*)  | 
|
| 
26645
 
e114be97befe
Changed naming scheme for theorems generated by interpretations.
 
ballarin 
parents: 
26483 
diff
changeset
 | 
374  | 
apply (metis OrderedGroup.abs_le_D1 linorder_class.not_less order_less_le Orderings.xt1(12) Ring_and_Field.abs_mult)  | 
| 23449 | 375  | 
done  | 
376  | 
||
| 26312 | 377  | 
lemma (*bigo_bounded_alt:*) "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==>  | 
| 23449 | 378  | 
f : O(g)"  | 
379  | 
apply (auto simp add: bigo_def)  | 
|
380  | 
(*Version 2: single-step proof*)  | 
|
381  | 
proof (neg_clausify)  | 
|
382  | 
fix x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
383  | 
assume 0: "\<And>x. f x \<le> c * g x"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
384  | 
assume 1: "\<And>xa. \<not> f (x xa) \<le> xa * \<bar>g (x xa)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
385  | 
have 2: "\<And>X3. c * g X3 = f X3 \<or> \<not> c * g X3 \<le> f X3"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
386  | 
by (metis 0 order_antisym_conv)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
387  | 
have 3: "\<And>X3. \<not> f (x \<bar>X3\<bar>) \<le> \<bar>X3 * g (x \<bar>X3\<bar>)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
388  | 
by (metis 1 abs_mult)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
389  | 
have 4: "\<And>X1 X3\<Colon>'b\<Colon>ordered_idom. X3 \<le> X1 \<or> X1 \<le> \<bar>X3\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
390  | 
by (metis linorder_linear abs_le_D1)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
391  | 
have 5: "\<And>X3::'b. \<bar>X3\<bar> * \<bar>X3\<bar> = X3 * X3"  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
392  | 
by (metis abs_mult_self)  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
393  | 
have 6: "\<And>X3. \<not> X3 * X3 < (0\<Colon>'b\<Colon>ordered_idom)"  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
394  | 
by (metis not_square_less_zero)  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
395  | 
have 7: "\<And>X1 X3::'b. \<bar>X1\<bar> * \<bar>X3\<bar> = \<bar>X3 * X1\<bar>"  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
396  | 
by (metis abs_mult mult_commute)  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
397  | 
have 8: "\<And>X3::'b. X3 * X3 = \<bar>X3 * X3\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
398  | 
by (metis abs_mult 5)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
399  | 
have 9: "\<And>X3. X3 * g (x \<bar>X3\<bar>) \<le> f (x \<bar>X3\<bar>)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
400  | 
by (metis 3 4)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
401  | 
have 10: "c * g (x \<bar>c\<bar>) = f (x \<bar>c\<bar>)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
402  | 
by (metis 2 9)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
403  | 
have 11: "\<And>X3::'b. \<bar>X3\<bar> * \<bar>\<bar>X3\<bar>\<bar> = \<bar>X3\<bar> * \<bar>X3\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
404  | 
by (metis abs_idempotent abs_mult 8)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
405  | 
have 12: "\<And>X3::'b. \<bar>X3 * \<bar>X3\<bar>\<bar> = \<bar>X3\<bar> * \<bar>X3\<bar>"  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
406  | 
by (metis mult_commute 7 11)  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
407  | 
have 13: "\<And>X3::'b. \<bar>X3 * \<bar>X3\<bar>\<bar> = X3 * X3"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
408  | 
by (metis 8 7 12)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
409  | 
have 14: "\<And>X3. X3 \<le> \<bar>X3\<bar> \<or> X3 < (0\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
410  | 
by (metis abs_ge_self abs_le_D1 abs_if)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
411  | 
have 15: "\<And>X3. X3 \<le> \<bar>X3\<bar> \<or> \<bar>X3\<bar> < (0\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
412  | 
by (metis abs_ge_self abs_le_D1 abs_if)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
413  | 
have 16: "\<And>X3. X3 * X3 < (0\<Colon>'b) \<or> X3 * \<bar>X3\<bar> \<le> X3 * X3"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
414  | 
by (metis 15 13)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
415  | 
have 17: "\<And>X3::'b. X3 * \<bar>X3\<bar> \<le> X3 * X3"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
416  | 
by (metis 16 6)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
417  | 
have 18: "\<And>X3. X3 \<le> \<bar>X3\<bar> \<or> \<not> X3 < (0\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
418  | 
by (metis mult_le_cancel_left 17)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
419  | 
have 19: "\<And>X3::'b. X3 \<le> \<bar>X3\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
420  | 
by (metis 18 14)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
421  | 
have 20: "\<not> f (x \<bar>c\<bar>) \<le> \<bar>f (x \<bar>c\<bar>)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
422  | 
by (metis 3 10)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
423  | 
show "False"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
424  | 
by (metis 20 19)  | 
| 23449 | 425  | 
qed  | 
426  | 
||
427  | 
||
428  | 
text{*So here is the easier (and more natural) problem using transitivity*}
 | 
|
| 28592 | 429  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_bounded_alt_trans"*}
 | 
| 23449 | 430  | 
lemma "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> f : O(g)"  | 
431  | 
apply (auto simp add: bigo_def)  | 
|
432  | 
(*Version 1: one-shot proof*)  | 
|
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
25592 
diff
changeset
 | 
433  | 
apply (metis Orderings.leD Orderings.leI abs_ge_self abs_le_D1 abs_mult abs_of_nonneg order_le_less)  | 
| 23449 | 434  | 
done  | 
435  | 
||
436  | 
text{*So here is the easier (and more natural) problem using transitivity*}
 | 
|
| 28592 | 437  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_bounded_alt_trans"*}
 | 
| 23449 | 438  | 
lemma "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> f : O(g)"  | 
439  | 
apply (auto simp add: bigo_def)  | 
|
440  | 
(*Version 2: single-step proof*)  | 
|
441  | 
proof (neg_clausify)  | 
|
442  | 
fix x  | 
|
| 23519 | 443  | 
assume 0: "\<And>A\<Colon>'a\<Colon>type.  | 
444  | 
(f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) A  | 
|
445  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * (g\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) A"  | 
|
446  | 
assume 1: "\<And>A\<Colon>'b\<Colon>ordered_idom.  | 
|
447  | 
\<not> (f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) ((x\<Colon>'b\<Colon>ordered_idom \<Rightarrow> 'a\<Colon>type) A)  | 
|
448  | 
\<le> A * \<bar>(g\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) (x A)\<bar>"  | 
|
449  | 
have 2: "\<And>X2\<Colon>'a\<Colon>type.  | 
|
450  | 
\<not> (c\<Colon>'b\<Colon>ordered_idom) * (g\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) X2  | 
|
451  | 
< (f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) X2"  | 
|
452  | 
by (metis 0 linorder_not_le)  | 
|
453  | 
have 3: "\<And>X2\<Colon>'b\<Colon>ordered_idom.  | 
|
454  | 
\<not> (f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) ((x\<Colon>'b\<Colon>ordered_idom \<Rightarrow> 'a\<Colon>type) \<bar>X2\<bar>)  | 
|
455  | 
\<le> \<bar>X2 * (g\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) (x \<bar>X2\<bar>)\<bar>"  | 
|
456  | 
by (metis abs_mult 1)  | 
|
457  | 
have 4: "\<And>X2\<Colon>'b\<Colon>ordered_idom.  | 
|
458  | 
\<bar>X2 * (g\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) ((x\<Colon>'b\<Colon>ordered_idom \<Rightarrow> 'a\<Colon>type) \<bar>X2\<bar>)\<bar>  | 
|
459  | 
< (f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) (x \<bar>X2\<bar>)"  | 
|
460  | 
by (metis 3 linorder_not_less)  | 
|
461  | 
have 5: "\<And>X2\<Colon>'b\<Colon>ordered_idom.  | 
|
462  | 
X2 * (g\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) ((x\<Colon>'b\<Colon>ordered_idom \<Rightarrow> 'a\<Colon>type) \<bar>X2\<bar>)  | 
|
463  | 
< (f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) (x \<bar>X2\<bar>)"  | 
|
464  | 
by (metis abs_less_iff 4)  | 
|
465  | 
show "False"  | 
|
466  | 
by (metis 2 5)  | 
|
| 23449 | 467  | 
qed  | 
468  | 
||
469  | 
||
470  | 
lemma bigo_bounded: "ALL x. 0 <= f x ==> ALL x. f x <= g x ==>  | 
|
471  | 
f : O(g)"  | 
|
472  | 
apply (erule bigo_bounded_alt [of f 1 g])  | 
|
473  | 
apply simp  | 
|
474  | 
done  | 
|
475  | 
||
| 28592 | 476  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_bounded2"*}
 | 
| 23449 | 477  | 
lemma bigo_bounded2: "ALL x. lb x <= f x ==> ALL x. f x <= lb x + g x ==>  | 
478  | 
f : lb +o O(g)"  | 
|
479  | 
apply (rule set_minus_imp_plus)  | 
|
480  | 
apply (rule bigo_bounded)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
481  | 
apply (auto simp add: diff_minus fun_Compl_def func_plus)  | 
| 23449 | 482  | 
prefer 2  | 
483  | 
apply (drule_tac x = x in spec)+  | 
|
484  | 
apply arith (*not clear that it's provable otherwise*)  | 
|
485  | 
proof (neg_clausify)  | 
|
486  | 
fix x  | 
|
487  | 
assume 0: "\<And>y. lb y \<le> f y"  | 
|
488  | 
assume 1: "\<not> (0\<Colon>'b) \<le> f x + - lb x"  | 
|
489  | 
have 2: "\<And>X3. (0\<Colon>'b) + X3 = X3"  | 
|
490  | 
by (metis diff_eq_eq right_minus_eq)  | 
|
491  | 
have 3: "\<not> (0\<Colon>'b) \<le> f x - lb x"  | 
|
492  | 
by (metis 1 compare_rls(1))  | 
|
493  | 
have 4: "\<not> (0\<Colon>'b) + lb x \<le> f x"  | 
|
494  | 
by (metis 3 le_diff_eq)  | 
|
495  | 
show "False"  | 
|
496  | 
by (metis 4 2 0)  | 
|
497  | 
qed  | 
|
498  | 
||
| 28592 | 499  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_abs"*}
 | 
| 23449 | 500  | 
lemma bigo_abs: "(%x. abs(f x)) =o O(f)"  | 
501  | 
apply (unfold bigo_def)  | 
|
502  | 
apply auto  | 
|
503  | 
proof (neg_clausify)  | 
|
504  | 
fix x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
505  | 
assume 0: "\<And>xa. \<not> \<bar>f (x xa)\<bar> \<le> xa * \<bar>f (x xa)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
506  | 
have 1: "\<And>X2. X2 \<le> (1\<Colon>'b) * X2 \<or> \<not> (1\<Colon>'b) \<le> (1\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
507  | 
by (metis mult_le_cancel_right1 order_eq_iff)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
508  | 
have 2: "\<And>X2. X2 \<le> (1\<Colon>'b) * X2"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
509  | 
by (metis order_eq_iff 1)  | 
| 23449 | 510  | 
show "False"  | 
511  | 
by (metis 0 2)  | 
|
512  | 
qed  | 
|
513  | 
||
| 28592 | 514  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_abs2"*}
 | 
| 23449 | 515  | 
lemma bigo_abs2: "f =o O(%x. abs(f x))"  | 
516  | 
apply (unfold bigo_def)  | 
|
517  | 
apply auto  | 
|
518  | 
proof (neg_clausify)  | 
|
519  | 
fix x  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
520  | 
assume 0: "\<And>xa. \<not> \<bar>f (x xa)\<bar> \<le> xa * \<bar>f (x xa)\<bar>"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
521  | 
have 1: "\<And>X2. X2 \<le> (1\<Colon>'b) * X2 \<or> \<not> (1\<Colon>'b) \<le> (1\<Colon>'b)"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
522  | 
by (metis mult_le_cancel_right1 order_eq_iff)  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
523  | 
have 2: "\<And>X2. X2 \<le> (1\<Colon>'b) * X2"  | 
| 
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
524  | 
by (metis order_eq_iff 1)  | 
| 23449 | 525  | 
show "False"  | 
526  | 
by (metis 0 2)  | 
|
527  | 
qed  | 
|
528  | 
||
529  | 
lemma bigo_abs3: "O(f) = O(%x. abs(f x))"  | 
|
530  | 
apply (rule equalityI)  | 
|
531  | 
apply (rule bigo_elt_subset)  | 
|
532  | 
apply (rule bigo_abs2)  | 
|
533  | 
apply (rule bigo_elt_subset)  | 
|
534  | 
apply (rule bigo_abs)  | 
|
535  | 
done  | 
|
536  | 
||
537  | 
lemma bigo_abs4: "f =o g +o O(h) ==>  | 
|
538  | 
(%x. abs (f x)) =o (%x. abs (g x)) +o O(h)"  | 
|
539  | 
apply (drule set_plus_imp_minus)  | 
|
540  | 
apply (rule set_minus_imp_plus)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
541  | 
apply (subst fun_diff_def)  | 
| 23449 | 542  | 
proof -  | 
543  | 
assume a: "f - g : O(h)"  | 
|
544  | 
have "(%x. abs (f x) - abs (g x)) =o O(%x. abs(abs (f x) - abs (g x)))"  | 
|
545  | 
by (rule bigo_abs2)  | 
|
546  | 
also have "... <= O(%x. abs (f x - g x))"  | 
|
547  | 
apply (rule bigo_elt_subset)  | 
|
548  | 
apply (rule bigo_bounded)  | 
|
549  | 
apply force  | 
|
550  | 
apply (rule allI)  | 
|
551  | 
apply (rule abs_triangle_ineq3)  | 
|
552  | 
done  | 
|
553  | 
also have "... <= O(f - g)"  | 
|
554  | 
apply (rule bigo_elt_subset)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
555  | 
apply (subst fun_diff_def)  | 
| 23449 | 556  | 
apply (rule bigo_abs)  | 
557  | 
done  | 
|
558  | 
also have "... <= O(h)"  | 
|
| 23464 | 559  | 
using a by (rule bigo_elt_subset)  | 
| 23449 | 560  | 
finally show "(%x. abs (f x) - abs (g x)) : O(h)".  | 
561  | 
qed  | 
|
562  | 
||
563  | 
lemma bigo_abs5: "f =o O(g) ==> (%x. abs(f x)) =o O(g)"  | 
|
564  | 
by (unfold bigo_def, auto)  | 
|
565  | 
||
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
566  | 
lemma bigo_elt_subset2 [intro]: "f : g +o O(h) ==> O(f) <= O(g) \<oplus> O(h)"  | 
| 23449 | 567  | 
proof -  | 
568  | 
assume "f : g +o O(h)"  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
569  | 
also have "... <= O(g) \<oplus> O(h)"  | 
| 23449 | 570  | 
by (auto del: subsetI)  | 
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
571  | 
also have "... = O(%x. abs(g x)) \<oplus> O(%x. abs(h x))"  | 
| 23449 | 572  | 
apply (subst bigo_abs3 [symmetric])+  | 
573  | 
apply (rule refl)  | 
|
574  | 
done  | 
|
575  | 
also have "... = O((%x. abs(g x)) + (%x. abs(h x)))"  | 
|
576  | 
by (rule bigo_plus_eq [symmetric], auto)  | 
|
577  | 
finally have "f : ...".  | 
|
578  | 
then have "O(f) <= ..."  | 
|
579  | 
by (elim bigo_elt_subset)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
580  | 
also have "... = O(%x. abs(g x)) \<oplus> O(%x. abs(h x))"  | 
| 23449 | 581  | 
by (rule bigo_plus_eq, auto)  | 
582  | 
finally show ?thesis  | 
|
583  | 
by (simp add: bigo_abs3 [symmetric])  | 
|
584  | 
qed  | 
|
585  | 
||
| 28592 | 586  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult"*}
 | 
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
587  | 
lemma bigo_mult [intro]: "O(f)\<otimes>O(g) <= O(f * g)"  | 
| 23449 | 588  | 
apply (rule subsetI)  | 
589  | 
apply (subst bigo_def)  | 
|
590  | 
apply (auto simp del: abs_mult mult_ac  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
591  | 
simp add: bigo_alt_def set_times_def func_times)  | 
| 23449 | 592  | 
(*sledgehammer*);  | 
593  | 
apply (rule_tac x = "c * ca" in exI)  | 
|
594  | 
apply(rule allI)  | 
|
595  | 
apply(erule_tac x = x in allE)+  | 
|
596  | 
apply(subgoal_tac "c * ca * abs(f x * g x) =  | 
|
597  | 
(c * abs(f x)) * (ca * abs(g x))")  | 
|
| 28592 | 598  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult_simpler"*}
 | 
| 23449 | 599  | 
prefer 2  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
600  | 
apply (metis mult_assoc mult_left_commute  | 
| 
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
601  | 
OrderedGroup.abs_of_pos OrderedGroup.mult_left_commute  | 
| 
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
602  | 
Ring_and_Field.abs_mult Ring_and_Field.mult_pos_pos)  | 
| 
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
603  | 
apply (erule ssubst)  | 
| 23449 | 604  | 
apply (subst abs_mult)  | 
605  | 
(*not qute BigO__bigo_mult_simpler_1 (a hard problem!) as abs_mult has  | 
|
606  | 
just been done*)  | 
|
607  | 
proof (neg_clausify)  | 
|
608  | 
fix a c b ca x  | 
|
609  | 
assume 0: "(0\<Colon>'b\<Colon>ordered_idom) < (c\<Colon>'b\<Colon>ordered_idom)"  | 
|
610  | 
assume 1: "\<bar>(a\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar>  | 
|
611  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>(f\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>"  | 
|
612  | 
assume 2: "\<bar>(b\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar>  | 
|
613  | 
\<le> (ca\<Colon>'b\<Colon>ordered_idom) * \<bar>(g\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>"  | 
|
614  | 
assume 3: "\<not> \<bar>(a\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar> *  | 
|
615  | 
\<bar>(b\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>  | 
|
616  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>(f\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar> *  | 
|
617  | 
((ca\<Colon>'b\<Colon>ordered_idom) * \<bar>(g\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>)"  | 
|
618  | 
have 4: "\<bar>c\<Colon>'b\<Colon>ordered_idom\<bar> = c"  | 
|
619  | 
by (metis OrderedGroup.abs_of_pos 0)  | 
|
620  | 
have 5: "\<And>X1\<Colon>'b\<Colon>ordered_idom. (c\<Colon>'b\<Colon>ordered_idom) * \<bar>X1\<bar> = \<bar>c * X1\<bar>"  | 
|
621  | 
by (metis Ring_and_Field.abs_mult 4)  | 
|
622  | 
have 6: "(0\<Colon>'b\<Colon>ordered_idom) = (1\<Colon>'b\<Colon>ordered_idom) \<or>  | 
|
623  | 
(0\<Colon>'b\<Colon>ordered_idom) < (1\<Colon>'b\<Colon>ordered_idom)"  | 
|
624  | 
by (metis OrderedGroup.abs_not_less_zero Ring_and_Field.abs_one Ring_and_Field.linorder_neqE_ordered_idom)  | 
|
625  | 
have 7: "(0\<Colon>'b\<Colon>ordered_idom) < (1\<Colon>'b\<Colon>ordered_idom)"  | 
|
626  | 
by (metis 6 Ring_and_Field.one_neq_zero)  | 
|
627  | 
have 8: "\<bar>1\<Colon>'b\<Colon>ordered_idom\<bar> = (1\<Colon>'b\<Colon>ordered_idom)"  | 
|
628  | 
by (metis OrderedGroup.abs_of_pos 7)  | 
|
629  | 
have 9: "\<And>X1\<Colon>'b\<Colon>ordered_idom. (0\<Colon>'b\<Colon>ordered_idom) \<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>X1\<bar>"  | 
|
630  | 
by (metis OrderedGroup.abs_ge_zero 5)  | 
|
631  | 
have 10: "\<And>X1\<Colon>'b\<Colon>ordered_idom. X1 * (1\<Colon>'b\<Colon>ordered_idom) = X1"  | 
|
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
632  | 
by (metis Ring_and_Field.mult_cancel_right2 mult_commute)  | 
| 23449 | 633  | 
have 11: "\<And>X1\<Colon>'b\<Colon>ordered_idom. \<bar>\<bar>X1\<bar>\<bar> = \<bar>X1\<bar> * \<bar>1\<Colon>'b\<Colon>ordered_idom\<bar>"  | 
634  | 
by (metis Ring_and_Field.abs_mult OrderedGroup.abs_idempotent 10)  | 
|
635  | 
have 12: "\<And>X1\<Colon>'b\<Colon>ordered_idom. \<bar>\<bar>X1\<bar>\<bar> = \<bar>X1\<bar>"  | 
|
636  | 
by (metis 11 8 10)  | 
|
637  | 
have 13: "\<And>X1\<Colon>'b\<Colon>ordered_idom. (0\<Colon>'b\<Colon>ordered_idom) \<le> \<bar>X1\<bar>"  | 
|
638  | 
by (metis OrderedGroup.abs_ge_zero 12)  | 
|
639  | 
have 14: "\<not> (0\<Colon>'b\<Colon>ordered_idom)  | 
|
640  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>(f\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar> \<or>  | 
|
641  | 
\<not> (0\<Colon>'b\<Colon>ordered_idom) \<le> \<bar>(b\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar> \<or>  | 
|
642  | 
\<not> \<bar>b x\<bar> \<le> (ca\<Colon>'b\<Colon>ordered_idom) * \<bar>(g\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar> \<or>  | 
|
643  | 
\<not> \<bar>(a\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar> \<le> c * \<bar>f x\<bar>"  | 
|
644  | 
by (metis 3 Ring_and_Field.mult_mono)  | 
|
645  | 
have 15: "\<not> (0\<Colon>'b\<Colon>ordered_idom) \<le> \<bar>(b\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar> \<or>  | 
|
646  | 
\<not> \<bar>b x\<bar> \<le> (ca\<Colon>'b\<Colon>ordered_idom) * \<bar>(g\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar> \<or>  | 
|
647  | 
\<not> \<bar>(a\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>  | 
|
648  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>(f\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>"  | 
|
649  | 
by (metis 14 9)  | 
|
650  | 
have 16: "\<not> \<bar>(b\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar>  | 
|
651  | 
\<le> (ca\<Colon>'b\<Colon>ordered_idom) * \<bar>(g\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar> \<or>  | 
|
652  | 
\<not> \<bar>(a\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>  | 
|
653  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>(f\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>"  | 
|
654  | 
by (metis 15 13)  | 
|
655  | 
have 17: "\<not> \<bar>(a\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) (x\<Colon>'a)\<bar>  | 
|
656  | 
\<le> (c\<Colon>'b\<Colon>ordered_idom) * \<bar>(f\<Colon>'a \<Rightarrow> 'b\<Colon>ordered_idom) x\<bar>"  | 
|
657  | 
by (metis 16 2)  | 
|
658  | 
show 18: "False"  | 
|
659  | 
by (metis 17 1)  | 
|
660  | 
qed  | 
|
661  | 
||
662  | 
||
| 28592 | 663  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult2"*}
 | 
| 23449 | 664  | 
lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)"  | 
665  | 
apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult)  | 
|
666  | 
(*sledgehammer*);  | 
|
667  | 
apply (rule_tac x = c in exI)  | 
|
668  | 
apply clarify  | 
|
669  | 
apply (drule_tac x = x in spec)  | 
|
| 28592 | 670  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult2_simpler"*}
 | 
| 24942 | 671  | 
(*sledgehammer [no luck]*);  | 
| 23449 | 672  | 
apply (subgoal_tac "abs(f x) * abs(b x) <= abs(f x) * (c * abs(g x))")  | 
673  | 
apply (simp add: mult_ac)  | 
|
674  | 
apply (rule mult_left_mono, assumption)  | 
|
675  | 
apply (rule abs_ge_zero)  | 
|
676  | 
done  | 
|
677  | 
||
| 28592 | 678  | 
ML_command{*AtpWrapper.problem_name:="BigO__bigo_mult3"*}
 | 
| 23449 | 679  | 
lemma bigo_mult3: "f : O(h) ==> g : O(j) ==> f * g : O(h * j)"  | 
680  | 
by (metis bigo_mult set_times_intro subset_iff)  | 
|
681  | 
||
| 28592 | 682  | 
ML_command{*AtpWrapper.problem_name:="BigO__bigo_mult4"*}
 | 
| 23449 | 683  | 
lemma bigo_mult4 [intro]:"f : k +o O(h) ==> g * f : (g * k) +o O(g * h)"  | 
684  | 
by (metis bigo_mult2 set_plus_mono_b set_times_intro2 set_times_plus_distrib)  | 
|
685  | 
||
686  | 
||
687  | 
lemma bigo_mult5: "ALL x. f x ~= 0 ==>  | 
|
688  | 
    O(f * g) <= (f::'a => ('b::ordered_field)) *o O(g)"
 | 
|
689  | 
proof -  | 
|
690  | 
assume "ALL x. f x ~= 0"  | 
|
691  | 
show "O(f * g) <= f *o O(g)"  | 
|
692  | 
proof  | 
|
693  | 
fix h  | 
|
694  | 
assume "h : O(f * g)"  | 
|
695  | 
then have "(%x. 1 / (f x)) * h : (%x. 1 / f x) *o O(f * g)"  | 
|
696  | 
by auto  | 
|
697  | 
also have "... <= O((%x. 1 / f x) * (f * g))"  | 
|
698  | 
by (rule bigo_mult2)  | 
|
699  | 
also have "(%x. 1 / f x) * (f * g) = g"  | 
|
700  | 
apply (simp add: func_times)  | 
|
701  | 
apply (rule ext)  | 
|
702  | 
apply (simp add: prems nonzero_divide_eq_eq mult_ac)  | 
|
703  | 
done  | 
|
704  | 
finally have "(%x. (1::'b) / f x) * h : O(g)".  | 
|
705  | 
then have "f * ((%x. (1::'b) / f x) * h) : f *o O(g)"  | 
|
706  | 
by auto  | 
|
707  | 
also have "f * ((%x. (1::'b) / f x) * h) = h"  | 
|
708  | 
apply (simp add: func_times)  | 
|
709  | 
apply (rule ext)  | 
|
710  | 
apply (simp add: prems nonzero_divide_eq_eq mult_ac)  | 
|
711  | 
done  | 
|
712  | 
finally show "h : f *o O(g)".  | 
|
713  | 
qed  | 
|
714  | 
qed  | 
|
715  | 
||
| 28592 | 716  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult6"*}
 | 
| 23449 | 717  | 
lemma bigo_mult6: "ALL x. f x ~= 0 ==>  | 
718  | 
    O(f * g) = (f::'a => ('b::ordered_field)) *o O(g)"
 | 
|
719  | 
by (metis bigo_mult2 bigo_mult5 order_antisym)  | 
|
720  | 
||
721  | 
(*proof requires relaxing relevance: 2007-01-25*)  | 
|
| 28592 | 722  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult7"*}
 | 
| 23449 | 723  | 
declare bigo_mult6 [simp]  | 
724  | 
lemma bigo_mult7: "ALL x. f x ~= 0 ==>  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
725  | 
    O(f * g) <= O(f::'a => ('b::ordered_field)) \<otimes> O(g)"
 | 
| 23449 | 726  | 
(*sledgehammer*)  | 
727  | 
apply (subst bigo_mult6)  | 
|
728  | 
apply assumption  | 
|
729  | 
apply (rule set_times_mono3)  | 
|
730  | 
apply (rule bigo_refl)  | 
|
731  | 
done  | 
|
732  | 
declare bigo_mult6 [simp del]  | 
|
733  | 
||
| 28592 | 734  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_mult8"*}
 | 
| 23449 | 735  | 
declare bigo_mult7[intro!]  | 
736  | 
lemma bigo_mult8: "ALL x. f x ~= 0 ==>  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
737  | 
    O(f * g) = O(f::'a => ('b::ordered_field)) \<otimes> O(g)"
 | 
| 23449 | 738  | 
by (metis bigo_mult bigo_mult7 order_antisym_conv)  | 
739  | 
||
740  | 
lemma bigo_minus [intro]: "f : O(g) ==> - f : O(g)"  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
741  | 
by (auto simp add: bigo_def fun_Compl_def)  | 
| 23449 | 742  | 
|
743  | 
lemma bigo_minus2: "f : g +o O(h) ==> -f : -g +o O(h)"  | 
|
744  | 
apply (rule set_minus_imp_plus)  | 
|
745  | 
apply (drule set_plus_imp_minus)  | 
|
746  | 
apply (drule bigo_minus)  | 
|
747  | 
apply (simp add: diff_minus)  | 
|
748  | 
done  | 
|
749  | 
||
750  | 
lemma bigo_minus3: "O(-f) = O(f)"  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
751  | 
by (auto simp add: bigo_def fun_Compl_def abs_minus_cancel)  | 
| 23449 | 752  | 
|
753  | 
lemma bigo_plus_absorb_lemma1: "f : O(g) ==> f +o O(g) <= O(g)"  | 
|
754  | 
proof -  | 
|
755  | 
assume a: "f : O(g)"  | 
|
756  | 
show "f +o O(g) <= O(g)"  | 
|
757  | 
proof -  | 
|
758  | 
have "f : O(f)" by auto  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
759  | 
then have "f +o O(g) <= O(f) \<oplus> O(g)"  | 
| 23449 | 760  | 
by (auto del: subsetI)  | 
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
761  | 
also have "... <= O(g) \<oplus> O(g)"  | 
| 23449 | 762  | 
proof -  | 
763  | 
from a have "O(f) <= O(g)" by (auto del: subsetI)  | 
|
764  | 
thus ?thesis by (auto del: subsetI)  | 
|
765  | 
qed  | 
|
766  | 
also have "... <= O(g)" by (simp add: bigo_plus_idemp)  | 
|
767  | 
finally show ?thesis .  | 
|
768  | 
qed  | 
|
769  | 
qed  | 
|
770  | 
||
771  | 
lemma bigo_plus_absorb_lemma2: "f : O(g) ==> O(g) <= f +o O(g)"  | 
|
772  | 
proof -  | 
|
773  | 
assume a: "f : O(g)"  | 
|
774  | 
show "O(g) <= f +o O(g)"  | 
|
775  | 
proof -  | 
|
776  | 
from a have "-f : O(g)" by auto  | 
|
777  | 
then have "-f +o O(g) <= O(g)" by (elim bigo_plus_absorb_lemma1)  | 
|
778  | 
then have "f +o (-f +o O(g)) <= f +o O(g)" by auto  | 
|
779  | 
also have "f +o (-f +o O(g)) = O(g)"  | 
|
780  | 
by (simp add: set_plus_rearranges)  | 
|
781  | 
finally show ?thesis .  | 
|
782  | 
qed  | 
|
783  | 
qed  | 
|
784  | 
||
| 28592 | 785  | 
ML_command{*AtpWrapper.problem_name:="BigO__bigo_plus_absorb"*}
 | 
| 23449 | 786  | 
lemma bigo_plus_absorb [simp]: "f : O(g) ==> f +o O(g) = O(g)"  | 
787  | 
by (metis bigo_plus_absorb_lemma1 bigo_plus_absorb_lemma2 order_eq_iff);  | 
|
788  | 
||
789  | 
lemma bigo_plus_absorb2 [intro]: "f : O(g) ==> A <= O(g) ==> f +o A <= O(g)"  | 
|
790  | 
apply (subgoal_tac "f +o A <= f +o O(g)")  | 
|
791  | 
apply force+  | 
|
792  | 
done  | 
|
793  | 
||
794  | 
lemma bigo_add_commute_imp: "f : g +o O(h) ==> g : f +o O(h)"  | 
|
795  | 
apply (subst set_minus_plus [symmetric])  | 
|
796  | 
apply (subgoal_tac "g - f = - (f - g)")  | 
|
797  | 
apply (erule ssubst)  | 
|
798  | 
apply (rule bigo_minus)  | 
|
799  | 
apply (subst set_minus_plus)  | 
|
800  | 
apply assumption  | 
|
801  | 
apply (simp add: diff_minus add_ac)  | 
|
802  | 
done  | 
|
803  | 
||
804  | 
lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))"  | 
|
805  | 
apply (rule iffI)  | 
|
806  | 
apply (erule bigo_add_commute_imp)+  | 
|
807  | 
done  | 
|
808  | 
||
809  | 
lemma bigo_const1: "(%x. c) : O(%x. 1)"  | 
|
810  | 
by (auto simp add: bigo_def mult_ac)  | 
|
811  | 
||
| 28592 | 812  | 
ML_command{*AtpWrapper.problem_name:="BigO__bigo_const2"*}
 | 
| 23449 | 813  | 
lemma (*bigo_const2 [intro]:*) "O(%x. c) <= O(%x. 1)"  | 
814  | 
by (metis bigo_const1 bigo_elt_subset);  | 
|
815  | 
||
| 24855 | 816  | 
lemma bigo_const2 [intro]: "O(%x. c::'b::ordered_idom) <= O(%x. 1)";  | 
| 23449 | 817  | 
(*??FAILS because the two occurrences of COMBK have different polymorphic types  | 
818  | 
proof (neg_clausify)  | 
|
819  | 
assume 0: "\<not> O(COMBK (c\<Colon>'b\<Colon>ordered_idom)) \<subseteq> O(COMBK (1\<Colon>'b\<Colon>ordered_idom))"  | 
|
820  | 
have 1: "COMBK (c\<Colon>'b\<Colon>ordered_idom) \<notin> O(COMBK (1\<Colon>'b\<Colon>ordered_idom))"  | 
|
821  | 
apply (rule notI)  | 
|
822  | 
apply (rule 0 [THEN notE])  | 
|
823  | 
apply (rule bigo_elt_subset)  | 
|
824  | 
apply assumption;  | 
|
825  | 
sorry  | 
|
826  | 
by (metis 0 bigo_elt_subset) loops??  | 
|
827  | 
show "False"  | 
|
828  | 
by (metis 1 bigo_const1)  | 
|
829  | 
qed  | 
|
830  | 
*)  | 
|
831  | 
apply (rule bigo_elt_subset)  | 
|
832  | 
apply (rule bigo_const1)  | 
|
833  | 
done  | 
|
834  | 
||
| 28592 | 835  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_const3"*}
 | 
| 23449 | 836  | 
lemma bigo_const3: "(c::'a::ordered_field) ~= 0 ==> (%x. 1) : O(%x. c)"  | 
837  | 
apply (simp add: bigo_def)  | 
|
838  | 
proof (neg_clausify)  | 
|
839  | 
assume 0: "(c\<Colon>'a\<Colon>ordered_field) \<noteq> (0\<Colon>'a\<Colon>ordered_field)"  | 
|
| 23519 | 840  | 
assume 1: "\<And>A\<Colon>'a\<Colon>ordered_field. \<not> (1\<Colon>'a\<Colon>ordered_field) \<le> A * \<bar>c\<Colon>'a\<Colon>ordered_field\<bar>"  | 
| 23449 | 841  | 
have 2: "(0\<Colon>'a\<Colon>ordered_field) = \<bar>c\<Colon>'a\<Colon>ordered_field\<bar> \<or>  | 
842  | 
\<not> (1\<Colon>'a\<Colon>ordered_field) \<le> (1\<Colon>'a\<Colon>ordered_field)"  | 
|
843  | 
by (metis 1 field_inverse)  | 
|
844  | 
have 3: "\<bar>c\<Colon>'a\<Colon>ordered_field\<bar> = (0\<Colon>'a\<Colon>ordered_field)"  | 
|
| 23519 | 845  | 
by (metis linorder_neq_iff linorder_antisym_conv1 2)  | 
| 23449 | 846  | 
have 4: "(0\<Colon>'a\<Colon>ordered_field) = (c\<Colon>'a\<Colon>ordered_field)"  | 
| 23519 | 847  | 
by (metis 3 abs_eq_0)  | 
848  | 
show "False"  | 
|
849  | 
by (metis 0 4)  | 
|
| 23449 | 850  | 
qed  | 
851  | 
||
852  | 
lemma bigo_const4: "(c::'a::ordered_field) ~= 0 ==> O(%x. 1) <= O(%x. c)"  | 
|
853  | 
by (rule bigo_elt_subset, rule bigo_const3, assumption)  | 
|
854  | 
||
855  | 
lemma bigo_const [simp]: "(c::'a::ordered_field) ~= 0 ==>  | 
|
856  | 
O(%x. c) = O(%x. 1)"  | 
|
857  | 
by (rule equalityI, rule bigo_const2, rule bigo_const4, assumption)  | 
|
858  | 
||
| 28592 | 859  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_const_mult1"*}
 | 
| 23449 | 860  | 
lemma bigo_const_mult1: "(%x. c * f x) : O(f)"  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
861  | 
apply (simp add: bigo_def abs_mult)  | 
| 23449 | 862  | 
proof (neg_clausify)  | 
863  | 
fix x  | 
|
| 
25304
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
864  | 
assume 0: "\<And>xa\<Colon>'b\<Colon>ordered_idom.  | 
| 
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
865  | 
\<not> \<bar>c\<Colon>'b\<Colon>ordered_idom\<bar> *  | 
| 
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
866  | 
\<bar>(f\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>ordered_idom) ((x\<Colon>'b\<Colon>ordered_idom \<Rightarrow> 'a\<Colon>type) xa)\<bar>  | 
| 
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
867  | 
\<le> xa * \<bar>f (x xa)\<bar>"  | 
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
868  | 
show "False"  | 
| 
25304
 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 
haftmann 
parents: 
25087 
diff
changeset
 | 
869  | 
by (metis linorder_neq_iff linorder_antisym_conv1 0)  | 
| 23449 | 870  | 
qed  | 
871  | 
||
872  | 
lemma bigo_const_mult2: "O(%x. c * f x) <= O(f)"  | 
|
873  | 
by (rule bigo_elt_subset, rule bigo_const_mult1)  | 
|
874  | 
||
| 28592 | 875  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_const_mult3"*}
 | 
| 23449 | 876  | 
lemma bigo_const_mult3: "(c::'a::ordered_field) ~= 0 ==> f : O(%x. c * f x)"  | 
877  | 
apply (simp add: bigo_def)  | 
|
| 24942 | 878  | 
(*sledgehammer [no luck]*);  | 
| 23449 | 879  | 
apply (rule_tac x = "abs(inverse c)" in exI)  | 
880  | 
apply (simp only: abs_mult [symmetric] mult_assoc [symmetric])  | 
|
881  | 
apply (subst left_inverse)  | 
|
882  | 
apply (auto );  | 
|
883  | 
done  | 
|
884  | 
||
885  | 
lemma bigo_const_mult4: "(c::'a::ordered_field) ~= 0 ==>  | 
|
886  | 
O(f) <= O(%x. c * f x)"  | 
|
887  | 
by (rule bigo_elt_subset, rule bigo_const_mult3, assumption)  | 
|
888  | 
||
889  | 
lemma bigo_const_mult [simp]: "(c::'a::ordered_field) ~= 0 ==>  | 
|
890  | 
O(%x. c * f x) = O(f)"  | 
|
891  | 
by (rule equalityI, rule bigo_const_mult2, erule bigo_const_mult4)  | 
|
892  | 
||
| 28592 | 893  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_const_mult5"*}
 | 
| 23449 | 894  | 
lemma bigo_const_mult5 [simp]: "(c::'a::ordered_field) ~= 0 ==>  | 
895  | 
(%x. c) *o O(f) = O(f)"  | 
|
896  | 
apply (auto del: subsetI)  | 
|
897  | 
apply (rule order_trans)  | 
|
898  | 
apply (rule bigo_mult2)  | 
|
899  | 
apply (simp add: func_times)  | 
|
900  | 
apply (auto intro!: subsetI simp add: bigo_def elt_set_times_def func_times)  | 
|
901  | 
apply (rule_tac x = "%y. inverse c * x y" in exI)  | 
|
| 24942 | 902  | 
apply (rename_tac g d)  | 
903  | 
apply safe  | 
|
904  | 
apply (rule_tac [2] ext)  | 
|
905  | 
prefer 2  | 
|
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
906  | 
apply simp  | 
| 24942 | 907  | 
apply (simp add: mult_assoc [symmetric] abs_mult)  | 
908  | 
(*couldn't get this proof without the step above; SLOW*)  | 
|
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25710 
diff
changeset
 | 
909  | 
apply (metis mult_assoc abs_ge_zero mult_left_mono)  | 
| 23449 | 910  | 
done  | 
911  | 
||
912  | 
||
| 28592 | 913  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_const_mult6"*}
 | 
| 23449 | 914  | 
lemma bigo_const_mult6 [intro]: "(%x. c) *o O(f) <= O(f)"  | 
915  | 
apply (auto intro!: subsetI  | 
|
916  | 
simp add: bigo_def elt_set_times_def func_times  | 
|
917  | 
simp del: abs_mult mult_ac)  | 
|
918  | 
(*sledgehammer*);  | 
|
919  | 
apply (rule_tac x = "ca * (abs c)" in exI)  | 
|
920  | 
apply (rule allI)  | 
|
921  | 
apply (subgoal_tac "ca * abs(c) * abs(f x) = abs(c) * (ca * abs(f x))")  | 
|
922  | 
apply (erule ssubst)  | 
|
923  | 
apply (subst abs_mult)  | 
|
924  | 
apply (rule mult_left_mono)  | 
|
925  | 
apply (erule spec)  | 
|
926  | 
apply simp  | 
|
927  | 
apply(simp add: mult_ac)  | 
|
928  | 
done  | 
|
929  | 
||
930  | 
lemma bigo_const_mult7 [intro]: "f =o O(g) ==> (%x. c * f x) =o O(g)"  | 
|
931  | 
proof -  | 
|
932  | 
assume "f =o O(g)"  | 
|
933  | 
then have "(%x. c) * f =o (%x. c) *o O(g)"  | 
|
934  | 
by auto  | 
|
935  | 
also have "(%x. c) * f = (%x. c * f x)"  | 
|
936  | 
by (simp add: func_times)  | 
|
937  | 
also have "(%x. c) *o O(g) <= O(g)"  | 
|
938  | 
by (auto del: subsetI)  | 
|
939  | 
finally show ?thesis .  | 
|
940  | 
qed  | 
|
941  | 
||
942  | 
lemma bigo_compose1: "f =o O(g) ==> (%x. f(k x)) =o O(%x. g(k x))"  | 
|
943  | 
by (unfold bigo_def, auto)  | 
|
944  | 
||
945  | 
lemma bigo_compose2: "f =o g +o O(h) ==> (%x. f(k x)) =o (%x. g(k x)) +o  | 
|
946  | 
O(%x. h(k x))"  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
947  | 
apply (simp only: set_minus_plus [symmetric] diff_minus fun_Compl_def  | 
| 23449 | 948  | 
func_plus)  | 
949  | 
apply (erule bigo_compose1)  | 
|
950  | 
done  | 
|
951  | 
||
952  | 
subsection {* Setsum *}
 | 
|
953  | 
||
954  | 
lemma bigo_setsum_main: "ALL x. ALL y : A x. 0 <= h x y ==>  | 
|
955  | 
EX c. ALL x. ALL y : A x. abs(f x y) <= c * (h x y) ==>  | 
|
956  | 
(%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)"  | 
|
957  | 
apply (auto simp add: bigo_def)  | 
|
958  | 
apply (rule_tac x = "abs c" in exI)  | 
|
959  | 
apply (subst abs_of_nonneg) back back  | 
|
960  | 
apply (rule setsum_nonneg)  | 
|
961  | 
apply force  | 
|
962  | 
apply (subst setsum_right_distrib)  | 
|
963  | 
apply (rule allI)  | 
|
964  | 
apply (rule order_trans)  | 
|
965  | 
apply (rule setsum_abs)  | 
|
966  | 
apply (rule setsum_mono)  | 
|
967  | 
apply (blast intro: order_trans mult_right_mono abs_ge_self)  | 
|
968  | 
done  | 
|
969  | 
||
| 28592 | 970  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_setsum1"*}
 | 
| 23449 | 971  | 
lemma bigo_setsum1: "ALL x y. 0 <= h x y ==>  | 
972  | 
EX c. ALL x y. abs(f x y) <= c * (h x y) ==>  | 
|
973  | 
(%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)"  | 
|
974  | 
apply (rule bigo_setsum_main)  | 
|
975  | 
(*sledgehammer*);  | 
|
976  | 
apply force  | 
|
977  | 
apply clarsimp  | 
|
978  | 
apply (rule_tac x = c in exI)  | 
|
979  | 
apply force  | 
|
980  | 
done  | 
|
981  | 
||
982  | 
lemma bigo_setsum2: "ALL y. 0 <= h y ==>  | 
|
983  | 
EX c. ALL y. abs(f y) <= c * (h y) ==>  | 
|
984  | 
(%x. SUM y : A x. f y) =o O(%x. SUM y : A x. h y)"  | 
|
985  | 
by (rule bigo_setsum1, auto)  | 
|
986  | 
||
| 28592 | 987  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_setsum3"*}
 | 
| 23449 | 988  | 
lemma bigo_setsum3: "f =o O(h) ==>  | 
989  | 
(%x. SUM y : A x. (l x y) * f(k x y)) =o  | 
|
990  | 
O(%x. SUM y : A x. abs(l x y * h(k x y)))"  | 
|
991  | 
apply (rule bigo_setsum1)  | 
|
992  | 
apply (rule allI)+  | 
|
993  | 
apply (rule abs_ge_zero)  | 
|
994  | 
apply (unfold bigo_def)  | 
|
995  | 
apply (auto simp add: abs_mult);  | 
|
996  | 
(*sledgehammer*);  | 
|
997  | 
apply (rule_tac x = c in exI)  | 
|
998  | 
apply (rule allI)+  | 
|
999  | 
apply (subst mult_left_commute)  | 
|
1000  | 
apply (rule mult_left_mono)  | 
|
1001  | 
apply (erule spec)  | 
|
1002  | 
apply (rule abs_ge_zero)  | 
|
1003  | 
done  | 
|
1004  | 
||
1005  | 
lemma bigo_setsum4: "f =o g +o O(h) ==>  | 
|
1006  | 
(%x. SUM y : A x. l x y * f(k x y)) =o  | 
|
1007  | 
(%x. SUM y : A x. l x y * g(k x y)) +o  | 
|
1008  | 
O(%x. SUM y : A x. abs(l x y * h(k x y)))"  | 
|
1009  | 
apply (rule set_minus_imp_plus)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1010  | 
apply (subst fun_diff_def)  | 
| 23449 | 1011  | 
apply (subst setsum_subtractf [symmetric])  | 
1012  | 
apply (subst right_diff_distrib [symmetric])  | 
|
1013  | 
apply (rule bigo_setsum3)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1014  | 
apply (subst fun_diff_def [symmetric])  | 
| 23449 | 1015  | 
apply (erule set_plus_imp_minus)  | 
1016  | 
done  | 
|
1017  | 
||
| 28592 | 1018  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_setsum5"*}
 | 
| 23449 | 1019  | 
lemma bigo_setsum5: "f =o O(h) ==> ALL x y. 0 <= l x y ==>  | 
1020  | 
ALL x. 0 <= h x ==>  | 
|
1021  | 
(%x. SUM y : A x. (l x y) * f(k x y)) =o  | 
|
1022  | 
O(%x. SUM y : A x. (l x y) * h(k x y))"  | 
|
1023  | 
apply (subgoal_tac "(%x. SUM y : A x. (l x y) * h(k x y)) =  | 
|
1024  | 
(%x. SUM y : A x. abs((l x y) * h(k x y)))")  | 
|
1025  | 
apply (erule ssubst)  | 
|
1026  | 
apply (erule bigo_setsum3)  | 
|
1027  | 
apply (rule ext)  | 
|
1028  | 
apply (rule setsum_cong2)  | 
|
1029  | 
apply (thin_tac "f \<in> O(h)")  | 
|
| 24942 | 1030  | 
apply (metis abs_of_nonneg zero_le_mult_iff)  | 
| 23449 | 1031  | 
done  | 
1032  | 
||
1033  | 
lemma bigo_setsum6: "f =o g +o O(h) ==> ALL x y. 0 <= l x y ==>  | 
|
1034  | 
ALL x. 0 <= h x ==>  | 
|
1035  | 
(%x. SUM y : A x. (l x y) * f(k x y)) =o  | 
|
1036  | 
(%x. SUM y : A x. (l x y) * g(k x y)) +o  | 
|
1037  | 
O(%x. SUM y : A x. (l x y) * h(k x y))"  | 
|
1038  | 
apply (rule set_minus_imp_plus)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1039  | 
apply (subst fun_diff_def)  | 
| 23449 | 1040  | 
apply (subst setsum_subtractf [symmetric])  | 
1041  | 
apply (subst right_diff_distrib [symmetric])  | 
|
1042  | 
apply (rule bigo_setsum5)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1043  | 
apply (subst fun_diff_def [symmetric])  | 
| 23449 | 1044  | 
apply (drule set_plus_imp_minus)  | 
1045  | 
apply auto  | 
|
1046  | 
done  | 
|
1047  | 
||
1048  | 
subsection {* Misc useful stuff *}
 | 
|
1049  | 
||
1050  | 
lemma bigo_useful_intro: "A <= O(f) ==> B <= O(f) ==>  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1051  | 
A \<oplus> B <= O(f)"  | 
| 23449 | 1052  | 
apply (subst bigo_plus_idemp [symmetric])  | 
1053  | 
apply (rule set_plus_mono2)  | 
|
1054  | 
apply assumption+  | 
|
1055  | 
done  | 
|
1056  | 
||
1057  | 
lemma bigo_useful_add: "f =o O(h) ==> g =o O(h) ==> f + g =o O(h)"  | 
|
1058  | 
apply (subst bigo_plus_idemp [symmetric])  | 
|
1059  | 
apply (rule set_plus_intro)  | 
|
1060  | 
apply assumption+  | 
|
1061  | 
done  | 
|
1062  | 
||
1063  | 
lemma bigo_useful_const_mult: "(c::'a::ordered_field) ~= 0 ==>  | 
|
1064  | 
(%x. c) * f =o O(h) ==> f =o O(h)"  | 
|
1065  | 
apply (rule subsetD)  | 
|
1066  | 
apply (subgoal_tac "(%x. 1 / c) *o O(h) <= O(h)")  | 
|
1067  | 
apply assumption  | 
|
1068  | 
apply (rule bigo_const_mult6)  | 
|
1069  | 
apply (subgoal_tac "f = (%x. 1 / c) * ((%x. c) * f)")  | 
|
1070  | 
apply (erule ssubst)  | 
|
1071  | 
apply (erule set_times_intro2)  | 
|
1072  | 
apply (simp add: func_times)  | 
|
1073  | 
done  | 
|
1074  | 
||
| 28592 | 1075  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_fix"*}
 | 
| 23449 | 1076  | 
lemma bigo_fix: "(%x. f ((x::nat) + 1)) =o O(%x. h(x + 1)) ==> f 0 = 0 ==>  | 
1077  | 
f =o O(h)"  | 
|
1078  | 
apply (simp add: bigo_alt_def)  | 
|
1079  | 
(*sledgehammer*);  | 
|
1080  | 
apply clarify  | 
|
1081  | 
apply (rule_tac x = c in exI)  | 
|
1082  | 
apply safe  | 
|
1083  | 
apply (case_tac "x = 0")  | 
|
| 23816 | 1084  | 
apply (metis OrderedGroup.abs_ge_zero OrderedGroup.abs_zero order_less_le Ring_and_Field.split_mult_pos_le)  | 
| 23449 | 1085  | 
apply (subgoal_tac "x = Suc (x - 1)")  | 
| 23816 | 1086  | 
apply metis  | 
| 23449 | 1087  | 
apply simp  | 
1088  | 
done  | 
|
1089  | 
||
1090  | 
||
1091  | 
lemma bigo_fix2:  | 
|
1092  | 
"(%x. f ((x::nat) + 1)) =o (%x. g(x + 1)) +o O(%x. h(x + 1)) ==>  | 
|
1093  | 
f 0 = g 0 ==> f =o g +o O(h)"  | 
|
1094  | 
apply (rule set_minus_imp_plus)  | 
|
1095  | 
apply (rule bigo_fix)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1096  | 
apply (subst fun_diff_def)  | 
| 
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1097  | 
apply (subst fun_diff_def [symmetric])  | 
| 23449 | 1098  | 
apply (rule set_plus_imp_minus)  | 
1099  | 
apply simp  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1100  | 
apply (simp add: fun_diff_def)  | 
| 23449 | 1101  | 
done  | 
1102  | 
||
1103  | 
subsection {* Less than or equal to *}
 | 
|
1104  | 
||
1105  | 
constdefs  | 
|
1106  | 
  lesso :: "('a => 'b::ordered_idom) => ('a => 'b) => ('a => 'b)"
 | 
|
1107  | 
(infixl "<o" 70)  | 
|
1108  | 
"f <o g == (%x. max (f x - g x) 0)"  | 
|
1109  | 
||
1110  | 
lemma bigo_lesseq1: "f =o O(h) ==> ALL x. abs (g x) <= abs (f x) ==>  | 
|
1111  | 
g =o O(h)"  | 
|
1112  | 
apply (unfold bigo_def)  | 
|
1113  | 
apply clarsimp  | 
|
1114  | 
apply (blast intro: order_trans)  | 
|
1115  | 
done  | 
|
1116  | 
||
1117  | 
lemma bigo_lesseq2: "f =o O(h) ==> ALL x. abs (g x) <= f x ==>  | 
|
1118  | 
g =o O(h)"  | 
|
1119  | 
apply (erule bigo_lesseq1)  | 
|
1120  | 
apply (blast intro: abs_ge_self order_trans)  | 
|
1121  | 
done  | 
|
1122  | 
||
1123  | 
lemma bigo_lesseq3: "f =o O(h) ==> ALL x. 0 <= g x ==> ALL x. g x <= f x ==>  | 
|
1124  | 
g =o O(h)"  | 
|
1125  | 
apply (erule bigo_lesseq2)  | 
|
1126  | 
apply (rule allI)  | 
|
1127  | 
apply (subst abs_of_nonneg)  | 
|
1128  | 
apply (erule spec)+  | 
|
1129  | 
done  | 
|
1130  | 
||
1131  | 
lemma bigo_lesseq4: "f =o O(h) ==>  | 
|
1132  | 
ALL x. 0 <= g x ==> ALL x. g x <= abs (f x) ==>  | 
|
1133  | 
g =o O(h)"  | 
|
1134  | 
apply (erule bigo_lesseq1)  | 
|
1135  | 
apply (rule allI)  | 
|
1136  | 
apply (subst abs_of_nonneg)  | 
|
1137  | 
apply (erule spec)+  | 
|
1138  | 
done  | 
|
1139  | 
||
| 28592 | 1140  | 
ML_command{*AtpWrapper.problem_name:="BigO__bigo_lesso1"*}
 | 
| 23449 | 1141  | 
lemma bigo_lesso1: "ALL x. f x <= g x ==> f <o g =o O(h)"  | 
1142  | 
apply (unfold lesso_def)  | 
|
1143  | 
apply (subgoal_tac "(%x. max (f x - g x) 0) = 0")  | 
|
| 
24937
 
340523598914
context-based treatment of generalization; also handling TFrees in axiom clauses
 
paulson 
parents: 
24855 
diff
changeset
 | 
1144  | 
(*??Translation of TSTP raised an exception: Type unification failed: Variable ?'X2.0::type not of sort ord*)  | 
| 25082 | 1145  | 
apply (metis bigo_zero)  | 
| 23449 | 1146  | 
apply (unfold func_zero)  | 
1147  | 
apply (rule ext)  | 
|
1148  | 
apply (simp split: split_max)  | 
|
1149  | 
done  | 
|
1150  | 
||
1151  | 
||
| 28592 | 1152  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_lesso2"*}
 | 
| 23449 | 1153  | 
lemma bigo_lesso2: "f =o g +o O(h) ==>  | 
1154  | 
ALL x. 0 <= k x ==> ALL x. k x <= f x ==>  | 
|
1155  | 
k <o g =o O(h)"  | 
|
1156  | 
apply (unfold lesso_def)  | 
|
1157  | 
apply (rule bigo_lesseq4)  | 
|
1158  | 
apply (erule set_plus_imp_minus)  | 
|
1159  | 
apply (rule allI)  | 
|
1160  | 
apply (rule le_maxI2)  | 
|
1161  | 
apply (rule allI)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1162  | 
apply (subst fun_diff_def)  | 
| 23449 | 1163  | 
apply (erule thin_rl)  | 
1164  | 
(*sledgehammer*);  | 
|
1165  | 
apply (case_tac "0 <= k x - g x")  | 
|
| 24545 | 1166  | 
prefer 2 (*re-order subgoals because I don't know what to put after a structured proof*)  | 
1167  | 
apply (metis abs_ge_zero abs_minus_commute linorder_linear min_max.less_eq_less_sup.sup_absorb1 min_max.less_eq_less_sup.sup_commute)  | 
|
1168  | 
proof (neg_clausify)  | 
|
1169  | 
fix x  | 
|
1170  | 
assume 0: "\<And>A. k A \<le> f A"  | 
|
1171  | 
have 1: "\<And>(X1\<Colon>'b\<Colon>ordered_idom) X2. \<not> max X1 X2 < X1"  | 
|
1172  | 
by (metis linorder_not_less le_maxI1) (*sort inserted by hand*)  | 
|
1173  | 
assume 2: "(0\<Colon>'b) \<le> k x - g x"  | 
|
1174  | 
have 3: "\<not> k x - g x < (0\<Colon>'b)"  | 
|
1175  | 
by (metis 2 linorder_not_less)  | 
|
1176  | 
have 4: "\<And>X1 X2. min X1 (k X2) \<le> f X2"  | 
|
1177  | 
by (metis min_max.less_eq_less_inf.inf_le2 min_max.less_eq_less_inf.le_inf_iff min_max.less_eq_less_inf.le_iff_inf 0)  | 
|
1178  | 
have 5: "\<bar>g x - f x\<bar> = f x - g x"  | 
|
1179  | 
by (metis abs_minus_commute combine_common_factor mult_zero_right minus_add_cancel minus_zero abs_if diff_less_eq min_max.less_eq_less_inf.inf_commute 4 linorder_not_le min_max.less_eq_less_inf.le_iff_inf 3 diff_less_0_iff_less linorder_not_less)  | 
|
1180  | 
have 6: "max (0\<Colon>'b) (k x - g x) = k x - g x"  | 
|
1181  | 
by (metis min_max.less_eq_less_sup.le_iff_sup 2)  | 
|
1182  | 
assume 7: "\<not> max (k x - g x) (0\<Colon>'b) \<le> \<bar>f x - g x\<bar>"  | 
|
1183  | 
have 8: "\<not> k x - g x \<le> f x - g x"  | 
|
1184  | 
by (metis 5 abs_minus_commute 7 min_max.less_eq_less_sup.sup_commute 6)  | 
|
1185  | 
show "False"  | 
|
1186  | 
by (metis min_max.less_eq_less_sup.sup_commute min_max.less_eq_less_inf.inf_commute min_max.less_eq_less_inf_sup.sup_inf_absorb min_max.less_eq_less_inf.le_iff_inf 0 max_diff_distrib_left 1 linorder_not_le 8)  | 
|
1187  | 
qed  | 
|
| 23449 | 1188  | 
|
| 28592 | 1189  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_lesso3"*}
 | 
| 23449 | 1190  | 
lemma bigo_lesso3: "f =o g +o O(h) ==>  | 
1191  | 
ALL x. 0 <= k x ==> ALL x. g x <= k x ==>  | 
|
1192  | 
f <o k =o O(h)"  | 
|
1193  | 
apply (unfold lesso_def)  | 
|
1194  | 
apply (rule bigo_lesseq4)  | 
|
1195  | 
apply (erule set_plus_imp_minus)  | 
|
1196  | 
apply (rule allI)  | 
|
1197  | 
apply (rule le_maxI2)  | 
|
1198  | 
apply (rule allI)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1199  | 
apply (subst fun_diff_def)  | 
| 23449 | 1200  | 
apply (erule thin_rl)  | 
1201  | 
(*sledgehammer*);  | 
|
1202  | 
apply (case_tac "0 <= f x - k x")  | 
|
1203  | 
apply (simp del: compare_rls diff_minus);  | 
|
1204  | 
apply (subst abs_of_nonneg)  | 
|
1205  | 
apply (drule_tac x = x in spec) back  | 
|
| 28592 | 1206  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_lesso3_simpler"*}
 | 
| 24545 | 1207  | 
apply (metis diff_less_0_iff_less linorder_not_le not_leE uminus_add_conv_diff xt1(12) xt1(6))  | 
1208  | 
apply (metis add_minus_cancel diff_le_eq le_diff_eq uminus_add_conv_diff)  | 
|
1209  | 
apply (metis abs_ge_zero linorder_linear min_max.less_eq_less_sup.sup_absorb1 min_max.less_eq_less_sup.sup_commute)  | 
|
| 23449 | 1210  | 
done  | 
1211  | 
||
1212  | 
lemma bigo_lesso4: "f <o g =o O(k::'a=>'b::ordered_field) ==>  | 
|
1213  | 
g =o h +o O(k) ==> f <o h =o O(k)"  | 
|
1214  | 
apply (unfold lesso_def)  | 
|
1215  | 
apply (drule set_plus_imp_minus)  | 
|
1216  | 
apply (drule bigo_abs5) back  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1217  | 
apply (simp add: fun_diff_def)  | 
| 23449 | 1218  | 
apply (drule bigo_useful_add)  | 
1219  | 
apply assumption  | 
|
1220  | 
apply (erule bigo_lesseq2) back  | 
|
1221  | 
apply (rule allI)  | 
|
| 
26814
 
b3e8d5ec721d
Replaced + and * on sets by \<oplus> and \<otimes>, to avoid clash with
 
berghofe 
parents: 
26645 
diff
changeset
 | 
1222  | 
apply (auto simp add: func_plus fun_diff_def compare_rls  | 
| 23449 | 1223  | 
split: split_max abs_split)  | 
1224  | 
done  | 
|
1225  | 
||
| 28592 | 1226  | 
ML_command{*AtpWrapper.problem_name := "BigO__bigo_lesso5"*}
 | 
| 23449 | 1227  | 
lemma bigo_lesso5: "f <o g =o O(h) ==>  | 
1228  | 
EX C. ALL x. f x <= g x + C * abs(h x)"  | 
|
1229  | 
apply (simp only: lesso_def bigo_alt_def)  | 
|
1230  | 
apply clarsimp  | 
|
| 24855 | 1231  | 
apply (metis abs_if abs_mult add_commute diff_le_eq less_not_permute)  | 
| 23449 | 1232  | 
done  | 
1233  | 
||
1234  | 
end  |