| author | huffman | 
| Thu, 15 Jan 2009 12:43:12 -0800 | |
| changeset 29539 | abfe2af6883e | 
| parent 28592 | 824f8390aaa2 | 
| child 30198 | 922f944f03b2 | 
| permissions | -rw-r--r-- | 
| 23449 | 1  | 
(* Title: HOL/MetisTest/Tarski.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
||
5  | 
Testing the metis method  | 
|
6  | 
*)  | 
|
7  | 
||
8  | 
header {* The Full Theorem of Tarski *}
 | 
|
9  | 
||
| 27368 | 10  | 
theory Tarski  | 
11  | 
imports Main FuncSet  | 
|
12  | 
begin  | 
|
| 23449 | 13  | 
|
14  | 
(*Many of these higher-order problems appear to be impossible using the  | 
|
15  | 
current linkup. They often seem to need either higher-order unification  | 
|
16  | 
or explicit reasoning about connectives such as conjunction. The numerous  | 
|
17  | 
set comprehensions are to blame.*)  | 
|
18  | 
||
19  | 
||
20  | 
record 'a potype =  | 
|
21  | 
pset :: "'a set"  | 
|
22  | 
  order :: "('a * 'a) set"
 | 
|
23  | 
||
24  | 
constdefs  | 
|
25  | 
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
 | 
|
26  | 
"monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r"  | 
|
27  | 
||
28  | 
least :: "['a => bool, 'a potype] => 'a"  | 
|
29  | 
"least P po == @ x. x: pset po & P x &  | 
|
30  | 
(\<forall>y \<in> pset po. P y --> (x,y): order po)"  | 
|
31  | 
||
32  | 
greatest :: "['a => bool, 'a potype] => 'a"  | 
|
33  | 
"greatest P po == @ x. x: pset po & P x &  | 
|
34  | 
(\<forall>y \<in> pset po. P y --> (y,x): order po)"  | 
|
35  | 
||
36  | 
lub :: "['a set, 'a potype] => 'a"  | 
|
37  | 
"lub S po == least (%x. \<forall>y\<in>S. (y,x): order po) po"  | 
|
38  | 
||
39  | 
glb :: "['a set, 'a potype] => 'a"  | 
|
40  | 
"glb S po == greatest (%x. \<forall>y\<in>S. (x,y): order po) po"  | 
|
41  | 
||
42  | 
isLub :: "['a set, 'a potype, 'a] => bool"  | 
|
43  | 
"isLub S po == %L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &  | 
|
44  | 
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po))"  | 
|
45  | 
||
46  | 
isGlb :: "['a set, 'a potype, 'a] => bool"  | 
|
47  | 
"isGlb S po == %G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &  | 
|
48  | 
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po))"  | 
|
49  | 
||
50  | 
  "fix"    :: "[('a => 'a), 'a set] => 'a set"
 | 
|
51  | 
  "fix f A  == {x. x: A & f x = x}"
 | 
|
52  | 
||
53  | 
  interval :: "[('a*'a) set,'a, 'a ] => 'a set"
 | 
|
54  | 
  "interval r a b == {x. (a,x): r & (x,b): r}"
 | 
|
55  | 
||
56  | 
constdefs  | 
|
57  | 
Bot :: "'a potype => 'a"  | 
|
58  | 
"Bot po == least (%x. True) po"  | 
|
59  | 
||
60  | 
Top :: "'a potype => 'a"  | 
|
61  | 
"Top po == greatest (%x. True) po"  | 
|
62  | 
||
63  | 
  PartialOrder :: "('a potype) set"
 | 
|
64  | 
  "PartialOrder == {P. refl (pset P) (order P) & antisym (order P) &
 | 
|
65  | 
trans (order P)}"  | 
|
66  | 
||
67  | 
  CompleteLattice :: "('a potype) set"
 | 
|
68  | 
  "CompleteLattice == {cl. cl: PartialOrder &
 | 
|
69  | 
(\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &  | 
|
70  | 
(\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"  | 
|
71  | 
||
72  | 
  induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
 | 
|
73  | 
  "induced A r == {(a,b). a : A & b: A & (a,b): r}"
 | 
|
74  | 
||
75  | 
constdefs  | 
|
76  | 
  sublattice :: "('a potype * 'a set)set"
 | 
|
77  | 
"sublattice ==  | 
|
78  | 
SIGMA cl: CompleteLattice.  | 
|
79  | 
          {S. S \<subseteq> pset cl &
 | 
|
80  | 
(| pset = S, order = induced S (order cl) |): CompleteLattice }"  | 
|
81  | 
||
82  | 
syntax  | 
|
83  | 
  "@SL"  :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50)
 | 
|
84  | 
||
85  | 
translations  | 
|
86  | 
  "S <<= cl" == "S : sublattice `` {cl}"
 | 
|
87  | 
||
88  | 
constdefs  | 
|
89  | 
dual :: "'a potype => 'a potype"  | 
|
90  | 
"dual po == (| pset = pset po, order = converse (order po) |)"  | 
|
91  | 
||
| 27681 | 92  | 
locale PO =  | 
| 23449 | 93  | 
fixes cl :: "'a potype"  | 
94  | 
and A :: "'a set"  | 
|
95  | 
    and r  :: "('a * 'a) set"
 | 
|
96  | 
assumes cl_po: "cl : PartialOrder"  | 
|
97  | 
defines A_def: "A == pset cl"  | 
|
98  | 
and r_def: "r == order cl"  | 
|
99  | 
||
| 27681 | 100  | 
locale CL = PO +  | 
| 23449 | 101  | 
assumes cl_co: "cl : CompleteLattice"  | 
102  | 
||
| 27681 | 103  | 
definition CLF_set :: "('a potype * ('a => 'a)) set" where
 | 
104  | 
"CLF_set = (SIGMA cl: CompleteLattice.  | 
|
105  | 
            {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
 | 
|
106  | 
||
107  | 
locale CLF = CL +  | 
|
| 23449 | 108  | 
fixes f :: "'a => 'a"  | 
109  | 
and P :: "'a set"  | 
|
| 27681 | 110  | 
  assumes f_cl:  "(cl,f) : CLF_set" (*was the equivalent "f : CLF``{cl}"*)
 | 
| 23449 | 111  | 
defines P_def: "P == fix f A"  | 
112  | 
||
113  | 
||
| 27681 | 114  | 
locale Tarski = CLF +  | 
| 23449 | 115  | 
fixes Y :: "'a set"  | 
116  | 
and intY1 :: "'a set"  | 
|
117  | 
and v :: "'a"  | 
|
118  | 
assumes  | 
|
119  | 
Y_ss: "Y \<subseteq> P"  | 
|
120  | 
defines  | 
|
121  | 
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"  | 
|
122  | 
    and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
 | 
|
123  | 
x: intY1}  | 
|
124  | 
(| pset=intY1, order=induced intY1 r|)"  | 
|
125  | 
||
126  | 
||
127  | 
subsection {* Partial Order *}
 | 
|
128  | 
||
129  | 
lemma (in PO) PO_imp_refl: "refl A r"  | 
|
130  | 
apply (insert cl_po)  | 
|
131  | 
apply (simp add: PartialOrder_def A_def r_def)  | 
|
132  | 
done  | 
|
133  | 
||
134  | 
lemma (in PO) PO_imp_sym: "antisym r"  | 
|
135  | 
apply (insert cl_po)  | 
|
136  | 
apply (simp add: PartialOrder_def r_def)  | 
|
137  | 
done  | 
|
138  | 
||
139  | 
lemma (in PO) PO_imp_trans: "trans r"  | 
|
140  | 
apply (insert cl_po)  | 
|
141  | 
apply (simp add: PartialOrder_def r_def)  | 
|
142  | 
done  | 
|
143  | 
||
144  | 
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"  | 
|
145  | 
apply (insert cl_po)  | 
|
146  | 
apply (simp add: PartialOrder_def refl_def A_def r_def)  | 
|
147  | 
done  | 
|
148  | 
||
149  | 
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"  | 
|
150  | 
apply (insert cl_po)  | 
|
151  | 
apply (simp add: PartialOrder_def antisym_def r_def)  | 
|
152  | 
done  | 
|
153  | 
||
154  | 
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"  | 
|
155  | 
apply (insert cl_po)  | 
|
156  | 
apply (simp add: PartialOrder_def r_def)  | 
|
157  | 
apply (unfold trans_def, fast)  | 
|
158  | 
done  | 
|
159  | 
||
160  | 
lemma (in PO) monotoneE:  | 
|
161  | 
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"  | 
|
162  | 
by (simp add: monotone_def)  | 
|
163  | 
||
164  | 
lemma (in PO) po_subset_po:  | 
|
165  | 
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"  | 
|
166  | 
apply (simp (no_asm) add: PartialOrder_def)  | 
|
167  | 
apply auto  | 
|
168  | 
-- {* refl *}
 | 
|
169  | 
apply (simp add: refl_def induced_def)  | 
|
170  | 
apply (blast intro: reflE)  | 
|
171  | 
-- {* antisym *}
 | 
|
172  | 
apply (simp add: antisym_def induced_def)  | 
|
173  | 
apply (blast intro: antisymE)  | 
|
174  | 
-- {* trans *}
 | 
|
175  | 
apply (simp add: trans_def induced_def)  | 
|
176  | 
apply (blast intro: transE)  | 
|
177  | 
done  | 
|
178  | 
||
179  | 
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"  | 
|
180  | 
by (simp add: add: induced_def)  | 
|
181  | 
||
182  | 
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"  | 
|
183  | 
by (simp add: add: induced_def)  | 
|
184  | 
||
185  | 
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"  | 
|
186  | 
apply (insert cl_co)  | 
|
187  | 
apply (simp add: CompleteLattice_def A_def)  | 
|
188  | 
done  | 
|
189  | 
||
190  | 
declare (in CL) cl_co [simp]  | 
|
191  | 
||
192  | 
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"  | 
|
193  | 
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])  | 
|
194  | 
||
195  | 
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"  | 
|
196  | 
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])  | 
|
197  | 
||
198  | 
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"  | 
|
199  | 
by (simp add: isLub_def isGlb_def dual_def converse_def)  | 
|
200  | 
||
201  | 
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"  | 
|
202  | 
by (simp add: isLub_def isGlb_def dual_def converse_def)  | 
|
203  | 
||
204  | 
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"  | 
|
205  | 
apply (insert cl_po)  | 
|
206  | 
apply (simp add: PartialOrder_def dual_def refl_converse  | 
|
207  | 
trans_converse antisym_converse)  | 
|
208  | 
done  | 
|
209  | 
||
210  | 
lemma Rdual:  | 
|
211  | 
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))  | 
|
212  | 
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"  | 
|
213  | 
apply safe  | 
|
214  | 
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
 | 
|
215  | 
(|pset = A, order = r|) " in exI)  | 
|
216  | 
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
 | 
|
217  | 
apply (drule mp, fast)  | 
|
218  | 
apply (simp add: isLub_lub isGlb_def)  | 
|
219  | 
apply (simp add: isLub_def, blast)  | 
|
220  | 
done  | 
|
221  | 
||
222  | 
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"  | 
|
223  | 
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)  | 
|
224  | 
||
225  | 
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"  | 
|
226  | 
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)  | 
|
227  | 
||
228  | 
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"  | 
|
229  | 
by (simp add: PartialOrder_def CompleteLattice_def, fast)  | 
|
230  | 
||
231  | 
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]  | 
|
232  | 
||
| 27681 | 233  | 
declare PO.PO_imp_refl [OF PO.intro [OF CL_imp_PO], simp]  | 
234  | 
declare PO.PO_imp_sym [OF PO.intro [OF CL_imp_PO], simp]  | 
|
235  | 
declare PO.PO_imp_trans [OF PO.intro [OF CL_imp_PO], simp]  | 
|
| 23449 | 236  | 
|
237  | 
lemma (in CL) CO_refl: "refl A r"  | 
|
238  | 
by (rule PO_imp_refl)  | 
|
239  | 
||
240  | 
lemma (in CL) CO_antisym: "antisym r"  | 
|
241  | 
by (rule PO_imp_sym)  | 
|
242  | 
||
243  | 
lemma (in CL) CO_trans: "trans r"  | 
|
244  | 
by (rule PO_imp_trans)  | 
|
245  | 
||
246  | 
lemma CompleteLatticeI:  | 
|
247  | 
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));  | 
|
248  | 
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]  | 
|
249  | 
==> po \<in> CompleteLattice"  | 
|
250  | 
apply (unfold CompleteLattice_def, blast)  | 
|
251  | 
done  | 
|
252  | 
||
253  | 
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"  | 
|
254  | 
apply (insert cl_co)  | 
|
255  | 
apply (simp add: CompleteLattice_def dual_def)  | 
|
256  | 
apply (fold dual_def)  | 
|
257  | 
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]  | 
|
258  | 
dualPO)  | 
|
259  | 
done  | 
|
260  | 
||
261  | 
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"  | 
|
262  | 
by (simp add: dual_def)  | 
|
263  | 
||
264  | 
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"  | 
|
265  | 
by (simp add: dual_def)  | 
|
266  | 
||
267  | 
lemma (in PO) monotone_dual:  | 
|
268  | 
"monotone f (pset cl) (order cl)  | 
|
269  | 
==> monotone f (pset (dual cl)) (order(dual cl))"  | 
|
270  | 
by (simp add: monotone_def dualA_iff dualr_iff)  | 
|
271  | 
||
272  | 
lemma (in PO) interval_dual:  | 
|
273  | 
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"  | 
|
274  | 
apply (simp add: interval_def dualr_iff)  | 
|
275  | 
apply (fold r_def, fast)  | 
|
276  | 
done  | 
|
277  | 
||
278  | 
lemma (in PO) interval_not_empty:  | 
|
279  | 
     "[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
 | 
|
280  | 
apply (simp add: interval_def)  | 
|
281  | 
apply (unfold trans_def, blast)  | 
|
282  | 
done  | 
|
283  | 
||
284  | 
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"  | 
|
285  | 
by (simp add: interval_def)  | 
|
286  | 
||
287  | 
lemma (in PO) left_in_interval:  | 
|
288  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
 | 
|
289  | 
apply (simp (no_asm_simp) add: interval_def)  | 
|
290  | 
apply (simp add: PO_imp_trans interval_not_empty)  | 
|
291  | 
apply (simp add: reflE)  | 
|
292  | 
done  | 
|
293  | 
||
294  | 
lemma (in PO) right_in_interval:  | 
|
295  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
 | 
|
296  | 
apply (simp (no_asm_simp) add: interval_def)  | 
|
297  | 
apply (simp add: PO_imp_trans interval_not_empty)  | 
|
298  | 
apply (simp add: reflE)  | 
|
299  | 
done  | 
|
300  | 
||
301  | 
||
302  | 
subsection {* sublattice *}
 | 
|
303  | 
||
304  | 
lemma (in PO) sublattice_imp_CL:  | 
|
305  | 
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"  | 
|
306  | 
by (simp add: sublattice_def CompleteLattice_def A_def r_def)  | 
|
307  | 
||
308  | 
lemma (in CL) sublatticeI:  | 
|
309  | 
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]  | 
|
310  | 
==> S <<= cl"  | 
|
311  | 
by (simp add: sublattice_def A_def r_def)  | 
|
312  | 
||
313  | 
||
314  | 
subsection {* lub *}
 | 
|
315  | 
||
316  | 
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"  | 
|
317  | 
apply (rule antisymE)  | 
|
318  | 
apply (auto simp add: isLub_def r_def)  | 
|
319  | 
done  | 
|
320  | 
||
321  | 
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"  | 
|
322  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
|
323  | 
apply (unfold lub_def least_def)  | 
|
324  | 
apply (rule some_equality [THEN ssubst])  | 
|
325  | 
apply (simp add: isLub_def)  | 
|
326  | 
apply (simp add: lub_unique A_def isLub_def)  | 
|
327  | 
apply (simp add: isLub_def r_def)  | 
|
328  | 
done  | 
|
329  | 
||
330  | 
lemma (in CL) lub_least:  | 
|
331  | 
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"  | 
|
332  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
|
333  | 
apply (unfold lub_def least_def)  | 
|
334  | 
apply (rule_tac s=x in some_equality [THEN ssubst])  | 
|
335  | 
apply (simp add: isLub_def)  | 
|
336  | 
apply (simp add: lub_unique A_def isLub_def)  | 
|
337  | 
apply (simp add: isLub_def r_def A_def)  | 
|
338  | 
done  | 
|
339  | 
||
340  | 
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"  | 
|
341  | 
apply (rule CL_imp_ex_isLub [THEN exE], assumption)  | 
|
342  | 
apply (unfold lub_def least_def)  | 
|
343  | 
apply (subst some_equality)  | 
|
344  | 
apply (simp add: isLub_def)  | 
|
345  | 
prefer 2 apply (simp add: isLub_def A_def)  | 
|
346  | 
apply (simp add: lub_unique A_def isLub_def)  | 
|
347  | 
done  | 
|
348  | 
||
349  | 
lemma (in CL) lubI:  | 
|
350  | 
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;  | 
|
351  | 
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"  | 
|
352  | 
apply (rule lub_unique, assumption)  | 
|
353  | 
apply (simp add: isLub_def A_def r_def)  | 
|
354  | 
apply (unfold isLub_def)  | 
|
355  | 
apply (rule conjI)  | 
|
356  | 
apply (fold A_def r_def)  | 
|
357  | 
apply (rule lub_in_lattice, assumption)  | 
|
358  | 
apply (simp add: lub_upper lub_least)  | 
|
359  | 
done  | 
|
360  | 
||
361  | 
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"  | 
|
362  | 
by (simp add: lubI isLub_def A_def r_def)  | 
|
363  | 
||
364  | 
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"  | 
|
365  | 
by (simp add: isLub_def A_def)  | 
|
366  | 
||
367  | 
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"  | 
|
368  | 
by (simp add: isLub_def r_def)  | 
|
369  | 
||
370  | 
lemma (in CL) isLub_least:  | 
|
371  | 
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"  | 
|
372  | 
by (simp add: isLub_def A_def r_def)  | 
|
373  | 
||
374  | 
lemma (in CL) isLubI:  | 
|
375  | 
"[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;  | 
|
376  | 
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"  | 
|
377  | 
by (simp add: isLub_def A_def r_def)  | 
|
378  | 
||
379  | 
||
380  | 
||
381  | 
subsection {* glb *}
 | 
|
382  | 
||
383  | 
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"  | 
|
384  | 
apply (subst glb_dual_lub)  | 
|
385  | 
apply (simp add: A_def)  | 
|
386  | 
apply (rule dualA_iff [THEN subst])  | 
|
387  | 
apply (rule CL.lub_in_lattice)  | 
|
| 27681 | 388  | 
apply (rule CL.intro)  | 
389  | 
apply (rule PO.intro)  | 
|
| 23449 | 390  | 
apply (rule dualPO)  | 
| 27681 | 391  | 
apply (rule CL_axioms.intro)  | 
| 23449 | 392  | 
apply (rule CL_dualCL)  | 
393  | 
apply (simp add: dualA_iff)  | 
|
394  | 
done  | 
|
395  | 
||
396  | 
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"  | 
|
397  | 
apply (subst glb_dual_lub)  | 
|
398  | 
apply (simp add: r_def)  | 
|
399  | 
apply (rule dualr_iff [THEN subst])  | 
|
400  | 
apply (rule CL.lub_upper)  | 
|
| 27681 | 401  | 
apply (rule CL.intro)  | 
402  | 
apply (rule PO.intro)  | 
|
| 23449 | 403  | 
apply (rule dualPO)  | 
| 27681 | 404  | 
apply (rule CL_axioms.intro)  | 
| 23449 | 405  | 
apply (rule CL_dualCL)  | 
406  | 
apply (simp add: dualA_iff A_def, assumption)  | 
|
407  | 
done  | 
|
408  | 
||
409  | 
text {*
 | 
|
410  | 
Reduce the sublattice property by using substructural properties;  | 
|
411  | 
  abandoned see @{text "Tarski_4.ML"}.
 | 
|
412  | 
*}  | 
|
413  | 
||
414  | 
declare (in CLF) f_cl [simp]  | 
|
415  | 
||
416  | 
(*never proved, 2007-01-22: Tarski__CLF_unnamed_lemma  | 
|
417  | 
NOT PROVABLE because of the conjunction used in the definition: we don't  | 
|
418  | 
allow reasoning with rules like conjE, which is essential here.*)  | 
|
| 28592 | 419  | 
ML_command{*AtpWrapper.problem_name:="Tarski__CLF_unnamed_lemma"*}
 | 
| 23449 | 420  | 
lemma (in CLF) [simp]:  | 
421  | 
"f: pset cl -> pset cl & monotone f (pset cl) (order cl)"  | 
|
422  | 
apply (insert f_cl)  | 
|
| 27681 | 423  | 
apply (unfold CLF_set_def)  | 
| 23449 | 424  | 
apply (erule SigmaE2)  | 
425  | 
apply (erule CollectE)  | 
|
| 27681 | 426  | 
apply assumption  | 
| 23449 | 427  | 
done  | 
428  | 
||
429  | 
lemma (in CLF) f_in_funcset: "f \<in> A -> A"  | 
|
430  | 
by (simp add: A_def)  | 
|
431  | 
||
432  | 
lemma (in CLF) monotone_f: "monotone f A r"  | 
|
433  | 
by (simp add: A_def r_def)  | 
|
434  | 
||
435  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 436  | 
ML_command{*AtpWrapper.problem_name:="Tarski__CLF_CLF_dual"*}
 | 
| 27681 | 437  | 
declare (in CLF) CLF_set_def [simp] CL_dualCL [simp] monotone_dual [simp] dualA_iff [simp]  | 
438  | 
||
439  | 
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set"  | 
|
| 23449 | 440  | 
apply (simp del: dualA_iff)  | 
441  | 
apply (simp)  | 
|
442  | 
done  | 
|
| 27681 | 443  | 
|
444  | 
declare (in CLF) CLF_set_def[simp del] CL_dualCL[simp del] monotone_dual[simp del]  | 
|
| 23449 | 445  | 
dualA_iff[simp del]  | 
446  | 
||
447  | 
||
448  | 
subsection {* fixed points *}
 | 
|
449  | 
||
450  | 
lemma fix_subset: "fix f A \<subseteq> A"  | 
|
451  | 
by (simp add: fix_def, fast)  | 
|
452  | 
||
453  | 
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"  | 
|
454  | 
by (simp add: fix_def)  | 
|
455  | 
||
456  | 
lemma fixf_subset:  | 
|
457  | 
"[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"  | 
|
458  | 
by (simp add: fix_def, auto)  | 
|
459  | 
||
460  | 
||
461  | 
subsection {* lemmas for Tarski, lub *}
 | 
|
462  | 
||
463  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 464  | 
ML{*AtpWrapper.problem_name:="Tarski__CLF_lubH_le_flubH"*}
 | 
| 23449 | 465  | 
declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]  | 
466  | 
lemma (in CLF) lubH_le_flubH:  | 
|
467  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
 | 
|
468  | 
apply (rule lub_least, fast)  | 
|
469  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
470  | 
apply (rule lub_in_lattice, fast)  | 
|
471  | 
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
 | 
|
472  | 
apply (rule ballI)  | 
|
473  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 474  | 
ML_command{*AtpWrapper.problem_name:="Tarski__CLF_lubH_le_flubH_simpler"*}
 | 
| 23449 | 475  | 
apply (rule transE)  | 
476  | 
-- {* instantiates @{text "(x, ?z) \<in> order cl to (x, f x)"}, *}
 | 
|
477  | 
-- {* because of the def of @{text H} *}
 | 
|
478  | 
apply fast  | 
|
479  | 
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
 | 
|
480  | 
apply (rule_tac f = "f" in monotoneE)  | 
|
481  | 
apply (rule monotone_f, fast)  | 
|
482  | 
apply (rule lub_in_lattice, fast)  | 
|
483  | 
apply (rule lub_upper, fast)  | 
|
484  | 
apply assumption  | 
|
485  | 
done  | 
|
486  | 
declare CL.lub_least[rule del] CLF.f_in_funcset[rule del]  | 
|
487  | 
funcset_mem[rule del] CL.lub_in_lattice[rule del]  | 
|
488  | 
PO.transE[rule del] PO.monotoneE[rule del]  | 
|
489  | 
CLF.monotone_f[rule del] CL.lub_upper[rule del]  | 
|
490  | 
||
491  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 492  | 
ML{*AtpWrapper.problem_name:="Tarski__CLF_flubH_le_lubH"*}
 | 
| 23449 | 493  | 
declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro]  | 
494  | 
PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]  | 
|
495  | 
CLF.lubH_le_flubH[simp]  | 
|
496  | 
lemma (in CLF) flubH_le_lubH:  | 
|
497  | 
     "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
 | 
|
498  | 
apply (rule lub_upper, fast)  | 
|
499  | 
apply (rule_tac t = "H" in ssubst, assumption)  | 
|
500  | 
apply (rule CollectI)  | 
|
501  | 
apply (rule conjI)  | 
|
| 28592 | 502  | 
ML_command{*AtpWrapper.problem_name:="Tarski__CLF_flubH_le_lubH_simpler"*}
 | 
| 24827 | 503  | 
(*??no longer terminates, with combinators  | 
504  | 
apply (metis CO_refl lubH_le_flubH monotone_def monotone_f reflD1 reflD2)  | 
|
505  | 
*)  | 
|
| 24855 | 506  | 
apply (metis CO_refl lubH_le_flubH monotoneE [OF monotone_f] reflD1 reflD2)  | 
| 23449 | 507  | 
apply (metis CO_refl lubH_le_flubH reflD2)  | 
508  | 
done  | 
|
509  | 
declare CLF.f_in_funcset[rule del] funcset_mem[rule del]  | 
|
510  | 
CL.lub_in_lattice[rule del] PO.monotoneE[rule del]  | 
|
511  | 
CLF.monotone_f[rule del] CL.lub_upper[rule del]  | 
|
512  | 
CLF.lubH_le_flubH[simp del]  | 
|
513  | 
||
514  | 
||
515  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 516  | 
ML{*AtpWrapper.problem_name:="Tarski__CLF_lubH_is_fixp"*}
 | 
| 23449 | 517  | 
(*Single-step version fails. The conjecture clauses refer to local abstraction  | 
518  | 
functions (Frees), which prevents expand_defs_tac from removing those  | 
|
| 24827 | 519  | 
"definitions" at the end of the proof. *)  | 
| 23449 | 520  | 
lemma (in CLF) lubH_is_fixp:  | 
521  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | 
|
522  | 
apply (simp add: fix_def)  | 
|
523  | 
apply (rule conjI)  | 
|
| 24827 | 524  | 
proof (neg_clausify)  | 
525  | 
assume 0: "H =  | 
|
526  | 
Collect  | 
|
527  | 
(COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) (COMBC op \<in> A))"  | 
|
528  | 
assume 1: "lub (Collect  | 
|
529  | 
(COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))  | 
|
530  | 
(COMBC op \<in> A)))  | 
|
531  | 
cl  | 
|
532  | 
\<notin> A"  | 
|
533  | 
have 2: "lub H cl \<notin> A"  | 
|
534  | 
by (metis 1 0)  | 
|
535  | 
have 3: "(lub H cl, f (lub H cl)) \<in> r"  | 
|
536  | 
by (metis lubH_le_flubH 0)  | 
|
537  | 
have 4: "(f (lub H cl), lub H cl) \<in> r"  | 
|
538  | 
by (metis flubH_le_lubH 0)  | 
|
539  | 
have 5: "lub H cl = f (lub H cl) \<or> (lub H cl, f (lub H cl)) \<notin> r"  | 
|
540  | 
by (metis antisymE 4)  | 
|
541  | 
have 6: "lub H cl = f (lub H cl)"  | 
|
542  | 
by (metis 5 3)  | 
|
543  | 
have 7: "(lub H cl, lub H cl) \<in> r"  | 
|
544  | 
by (metis 6 4)  | 
|
545  | 
have 8: "\<And>X1. lub H cl \<in> X1 \<or> \<not> refl X1 r"  | 
|
546  | 
by (metis 7 reflD2)  | 
|
| 23449 | 547  | 
have 9: "\<not> refl A r"  | 
| 24827 | 548  | 
by (metis 8 2)  | 
| 23449 | 549  | 
show "False"  | 
| 24827 | 550  | 
by (metis CO_refl 9);  | 
551  | 
next --{*apparently the way to insert a second structured proof*}
 | 
|
552  | 
  show "H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow>
 | 
|
553  | 
  f (lub {x. (x, f x) \<in> r \<and> x \<in> A} cl) = lub {x. (x, f x) \<in> r \<and> x \<in> A} cl"
 | 
|
554  | 
proof (neg_clausify)  | 
|
555  | 
assume 0: "H =  | 
|
556  | 
Collect  | 
|
557  | 
(COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) (COMBC op \<in> A))"  | 
|
558  | 
assume 1: "f (lub (Collect  | 
|
559  | 
(COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))  | 
|
560  | 
(COMBC op \<in> A)))  | 
|
561  | 
cl) \<noteq>  | 
|
562  | 
lub (Collect  | 
|
563  | 
(COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))  | 
|
564  | 
(COMBC op \<in> A)))  | 
|
565  | 
cl"  | 
|
566  | 
have 2: "f (lub H cl) \<noteq>  | 
|
567  | 
lub (Collect  | 
|
568  | 
(COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))  | 
|
569  | 
(COMBC op \<in> A)))  | 
|
570  | 
cl"  | 
|
571  | 
by (metis 1 0)  | 
|
572  | 
have 3: "f (lub H cl) \<noteq> lub H cl"  | 
|
573  | 
by (metis 2 0)  | 
|
574  | 
have 4: "(lub H cl, f (lub H cl)) \<in> r"  | 
|
575  | 
by (metis lubH_le_flubH 0)  | 
|
576  | 
have 5: "(f (lub H cl), lub H cl) \<in> r"  | 
|
577  | 
by (metis flubH_le_lubH 0)  | 
|
578  | 
have 6: "lub H cl = f (lub H cl) \<or> (lub H cl, f (lub H cl)) \<notin> r"  | 
|
579  | 
by (metis antisymE 5)  | 
|
580  | 
have 7: "lub H cl = f (lub H cl)"  | 
|
581  | 
by (metis 6 4)  | 
|
582  | 
show "False"  | 
|
583  | 
by (metis 3 7)  | 
|
584  | 
qed  | 
|
585  | 
qed  | 
|
| 23449 | 586  | 
|
| 
25710
 
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
 
paulson 
parents: 
24855 
diff
changeset
 | 
587  | 
lemma (in CLF) (*lubH_is_fixp:*)  | 
| 23449 | 588  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | 
589  | 
apply (simp add: fix_def)  | 
|
590  | 
apply (rule conjI)  | 
|
| 28592 | 591  | 
ML_command{*AtpWrapper.problem_name:="Tarski__CLF_lubH_is_fixp_simpler"*} 
 | 
| 24855 | 592  | 
apply (metis CO_refl lubH_le_flubH reflD1)  | 
| 23449 | 593  | 
apply (metis antisymE flubH_le_lubH lubH_le_flubH)  | 
594  | 
done  | 
|
595  | 
||
596  | 
lemma (in CLF) fix_in_H:  | 
|
597  | 
     "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
 | 
|
598  | 
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl  | 
|
599  | 
fix_subset [of f A, THEN subsetD])  | 
|
600  | 
||
601  | 
||
602  | 
lemma (in CLF) fixf_le_lubH:  | 
|
603  | 
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
 | 
|
604  | 
apply (rule ballI)  | 
|
605  | 
apply (rule lub_upper, fast)  | 
|
606  | 
apply (rule fix_in_H)  | 
|
607  | 
apply (simp_all add: P_def)  | 
|
608  | 
done  | 
|
609  | 
||
| 28592 | 610  | 
ML{*AtpWrapper.problem_name:="Tarski__CLF_lubH_least_fixf"*}
 | 
| 23449 | 611  | 
lemma (in CLF) lubH_least_fixf:  | 
612  | 
     "H = {x. (x, f x) \<in> r & x \<in> A}
 | 
|
613  | 
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"  | 
|
614  | 
apply (metis P_def lubH_is_fixp)  | 
|
615  | 
done  | 
|
616  | 
||
617  | 
subsection {* Tarski fixpoint theorem 1, first part *}
 | 
|
| 28592 | 618  | 
ML{*AtpWrapper.problem_name:="Tarski__CLF_T_thm_1_lub"*}
 | 
| 23449 | 619  | 
declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro]  | 
620  | 
CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp]  | 
|
621  | 
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
 | 
|
622  | 
(*sledgehammer;*)  | 
|
623  | 
apply (rule sym)  | 
|
624  | 
apply (simp add: P_def)  | 
|
625  | 
apply (rule lubI)  | 
|
| 28592 | 626  | 
ML_command{*AtpWrapper.problem_name:="Tarski__CLF_T_thm_1_lub_simpler"*}
 | 
| 24855 | 627  | 
apply (metis P_def fix_subset)  | 
| 24827 | 628  | 
apply (metis Collect_conj_eq Collect_mem_eq Int_commute Int_lower1 lub_in_lattice vimage_def)  | 
629  | 
(*??no longer terminates, with combinators  | 
|
630  | 
apply (metis P_def fix_def fixf_le_lubH)  | 
|
631  | 
apply (metis P_def fix_def lubH_least_fixf)  | 
|
632  | 
*)  | 
|
633  | 
apply (simp add: fixf_le_lubH)  | 
|
634  | 
apply (simp add: lubH_least_fixf)  | 
|
| 23449 | 635  | 
done  | 
636  | 
declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del]  | 
|
637  | 
CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del]  | 
|
638  | 
||
639  | 
||
640  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 641  | 
ML{*AtpWrapper.problem_name:="Tarski__CLF_glbH_is_fixp"*}
 | 
| 23449 | 642  | 
declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro]  | 
643  | 
PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp]  | 
|
644  | 
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
 | 
|
645  | 
  -- {* Tarski for glb *}
 | 
|
646  | 
(*sledgehammer;*)  | 
|
647  | 
apply (simp add: glb_dual_lub P_def A_def r_def)  | 
|
648  | 
apply (rule dualA_iff [THEN subst])  | 
|
649  | 
apply (rule CLF.lubH_is_fixp)  | 
|
| 27681 | 650  | 
apply (rule CLF.intro)  | 
651  | 
apply (rule CL.intro)  | 
|
652  | 
apply (rule PO.intro)  | 
|
| 23449 | 653  | 
apply (rule dualPO)  | 
| 27681 | 654  | 
apply (rule CL_axioms.intro)  | 
| 23449 | 655  | 
apply (rule CL_dualCL)  | 
| 27681 | 656  | 
apply (rule CLF_axioms.intro)  | 
| 23449 | 657  | 
apply (rule CLF_dual)  | 
658  | 
apply (simp add: dualr_iff dualA_iff)  | 
|
659  | 
done  | 
|
660  | 
declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del]  | 
|
661  | 
PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del]  | 
|
662  | 
||
663  | 
||
664  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 665  | 
ML{*AtpWrapper.problem_name:="Tarski__T_thm_1_glb"*}  (*ALL THEOREMS*)
 | 
| 23449 | 666  | 
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
 | 
667  | 
(*sledgehammer;*)  | 
|
668  | 
apply (simp add: glb_dual_lub P_def A_def r_def)  | 
|
669  | 
apply (rule dualA_iff [THEN subst])  | 
|
670  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 671  | 
ML_command{*AtpWrapper.problem_name:="Tarski__T_thm_1_glb_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 672  | 
(*sledgehammer;*)  | 
| 27681 | 673  | 
apply (simp add: CLF.T_thm_1_lub [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro,  | 
674  | 
OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff)  | 
|
| 23449 | 675  | 
done  | 
676  | 
||
677  | 
subsection {* interval *}
 | 
|
678  | 
||
679  | 
||
| 28592 | 680  | 
ML{*AtpWrapper.problem_name:="Tarski__rel_imp_elem"*}
 | 
| 23449 | 681  | 
declare (in CLF) CO_refl[simp] refl_def [simp]  | 
682  | 
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"  | 
|
| 24827 | 683  | 
by (metis CO_refl reflD1)  | 
| 23449 | 684  | 
declare (in CLF) CO_refl[simp del] refl_def [simp del]  | 
685  | 
||
| 28592 | 686  | 
ML{*AtpWrapper.problem_name:="Tarski__interval_subset"*}
 | 
| 23449 | 687  | 
declare (in CLF) rel_imp_elem[intro]  | 
688  | 
declare interval_def [simp]  | 
|
689  | 
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"  | 
|
| 26806 | 690  | 
by (metis CO_refl interval_imp_mem reflD reflD2 rel_imp_elem subset_eq)  | 
| 23449 | 691  | 
declare (in CLF) rel_imp_elem[rule del]  | 
692  | 
declare interval_def [simp del]  | 
|
693  | 
||
694  | 
||
695  | 
lemma (in CLF) intervalI:  | 
|
696  | 
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"  | 
|
697  | 
by (simp add: interval_def)  | 
|
698  | 
||
699  | 
lemma (in CLF) interval_lemma1:  | 
|
700  | 
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"  | 
|
701  | 
by (unfold interval_def, fast)  | 
|
702  | 
||
703  | 
lemma (in CLF) interval_lemma2:  | 
|
704  | 
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"  | 
|
705  | 
by (unfold interval_def, fast)  | 
|
706  | 
||
707  | 
lemma (in CLF) a_less_lub:  | 
|
708  | 
     "[| S \<subseteq> A; S \<noteq> {};
 | 
|
709  | 
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"  | 
|
710  | 
by (blast intro: transE)  | 
|
711  | 
||
712  | 
lemma (in CLF) glb_less_b:  | 
|
713  | 
     "[| S \<subseteq> A; S \<noteq> {};
 | 
|
714  | 
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"  | 
|
715  | 
by (blast intro: transE)  | 
|
716  | 
||
717  | 
lemma (in CLF) S_intv_cl:  | 
|
718  | 
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"  | 
|
719  | 
by (simp add: subset_trans [OF _ interval_subset])  | 
|
720  | 
||
| 28592 | 721  | 
ML{*AtpWrapper.problem_name:="Tarski__L_in_interval"*}  (*ALL THEOREMS*)
 | 
| 23449 | 722  | 
lemma (in CLF) L_in_interval:  | 
723  | 
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;  | 
|
724  | 
         S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b" 
 | 
|
725  | 
(*WON'T TERMINATE  | 
|
726  | 
apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def)  | 
|
727  | 
*)  | 
|
728  | 
apply (rule intervalI)  | 
|
729  | 
apply (rule a_less_lub)  | 
|
730  | 
prefer 2 apply assumption  | 
|
731  | 
apply (simp add: S_intv_cl)  | 
|
732  | 
apply (rule ballI)  | 
|
733  | 
apply (simp add: interval_lemma1)  | 
|
734  | 
apply (simp add: isLub_upper)  | 
|
735  | 
-- {* @{text "(L, b) \<in> r"} *}
 | 
|
736  | 
apply (simp add: isLub_least interval_lemma2)  | 
|
737  | 
done  | 
|
738  | 
||
739  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 740  | 
ML{*AtpWrapper.problem_name:="Tarski__G_in_interval"*}  (*ALL THEOREMS*)
 | 
| 23449 | 741  | 
lemma (in CLF) G_in_interval:  | 
742  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
 | 
|
743  | 
         S \<noteq> {} |] ==> G \<in> interval r a b"
 | 
|
744  | 
apply (simp add: interval_dual)  | 
|
| 27681 | 745  | 
apply (simp add: CLF.L_in_interval [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]  | 
| 23449 | 746  | 
dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)  | 
747  | 
done  | 
|
748  | 
||
| 28592 | 749  | 
ML{*AtpWrapper.problem_name:="Tarski__intervalPO"*}  (*ALL THEOREMS*)
 | 
| 23449 | 750  | 
lemma (in CLF) intervalPO:  | 
751  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
|
752  | 
==> (| pset = interval r a b, order = induced (interval r a b) r |)  | 
|
753  | 
\<in> PartialOrder"  | 
|
754  | 
proof (neg_clausify)  | 
|
755  | 
assume 0: "a \<in> A"  | 
|
756  | 
assume 1: "b \<in> A"  | 
|
757  | 
assume 2: "\<lparr>pset = interval r a b, order = induced (interval r a b) r\<rparr> \<notin> PartialOrder"  | 
|
758  | 
have 3: "\<not> interval r a b \<subseteq> A"  | 
|
759  | 
by (metis 2 po_subset_po)  | 
|
760  | 
have 4: "b \<notin> A \<or> a \<notin> A"  | 
|
761  | 
by (metis 3 interval_subset)  | 
|
762  | 
have 5: "a \<notin> A"  | 
|
763  | 
by (metis 4 1)  | 
|
764  | 
show "False"  | 
|
765  | 
by (metis 5 0)  | 
|
766  | 
qed  | 
|
767  | 
||
768  | 
lemma (in CLF) intv_CL_lub:  | 
|
769  | 
 "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
|
770  | 
==> \<forall>S. S \<subseteq> interval r a b -->  | 
|
771  | 
(\<exists>L. isLub S (| pset = interval r a b,  | 
|
772  | 
order = induced (interval r a b) r |) L)"  | 
|
773  | 
apply (intro strip)  | 
|
774  | 
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])  | 
|
775  | 
prefer 2 apply assumption  | 
|
776  | 
apply assumption  | 
|
777  | 
apply (erule exE)  | 
|
778  | 
-- {* define the lub for the interval as *}
 | 
|
779  | 
apply (rule_tac x = "if S = {} then a else L" in exI)
 | 
|
780  | 
apply (simp (no_asm_simp) add: isLub_def split del: split_if)  | 
|
781  | 
apply (intro impI conjI)  | 
|
782  | 
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
 | 
|
783  | 
apply (simp add: CL_imp_PO L_in_interval)  | 
|
784  | 
apply (simp add: left_in_interval)  | 
|
785  | 
-- {* lub prop 1 *}
 | 
|
786  | 
apply (case_tac "S = {}")
 | 
|
787  | 
-- {* @{text "S = {}, y \<in> S = False => everything"} *}
 | 
|
788  | 
apply fast  | 
|
789  | 
-- {* @{text "S \<noteq> {}"} *}
 | 
|
790  | 
apply simp  | 
|
791  | 
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
 | 
|
792  | 
apply (rule ballI)  | 
|
793  | 
apply (simp add: induced_def L_in_interval)  | 
|
794  | 
apply (rule conjI)  | 
|
795  | 
apply (rule subsetD)  | 
|
796  | 
apply (simp add: S_intv_cl, assumption)  | 
|
797  | 
apply (simp add: isLub_upper)  | 
|
798  | 
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
 | 
|
799  | 
apply (rule ballI)  | 
|
800  | 
apply (rule impI)  | 
|
801  | 
apply (case_tac "S = {}")
 | 
|
802  | 
-- {* @{text "S = {}"} *}
 | 
|
803  | 
apply simp  | 
|
804  | 
apply (simp add: induced_def interval_def)  | 
|
805  | 
apply (rule conjI)  | 
|
806  | 
apply (rule reflE, assumption)  | 
|
807  | 
apply (rule interval_not_empty)  | 
|
808  | 
apply (rule CO_trans)  | 
|
809  | 
apply (simp add: interval_def)  | 
|
810  | 
-- {* @{text "S \<noteq> {}"} *}
 | 
|
811  | 
apply simp  | 
|
812  | 
apply (simp add: induced_def L_in_interval)  | 
|
813  | 
apply (rule isLub_least, assumption)  | 
|
814  | 
apply (rule subsetD)  | 
|
815  | 
prefer 2 apply assumption  | 
|
816  | 
apply (simp add: S_intv_cl, fast)  | 
|
817  | 
done  | 
|
818  | 
||
819  | 
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]  | 
|
820  | 
||
821  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 822  | 
ML{*AtpWrapper.problem_name:="Tarski__interval_is_sublattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 823  | 
lemma (in CLF) interval_is_sublattice:  | 
824  | 
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
|
825  | 
==> interval r a b <<= cl"  | 
|
826  | 
(*sledgehammer *)  | 
|
827  | 
apply (rule sublatticeI)  | 
|
828  | 
apply (simp add: interval_subset)  | 
|
829  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 830  | 
ML_command{*AtpWrapper.problem_name:="Tarski__interval_is_sublattice_simpler"*}  
 | 
| 23449 | 831  | 
(*sledgehammer *)  | 
832  | 
apply (rule CompleteLatticeI)  | 
|
833  | 
apply (simp add: intervalPO)  | 
|
834  | 
apply (simp add: intv_CL_lub)  | 
|
835  | 
apply (simp add: intv_CL_glb)  | 
|
836  | 
done  | 
|
837  | 
||
838  | 
lemmas (in CLF) interv_is_compl_latt =  | 
|
839  | 
interval_is_sublattice [THEN sublattice_imp_CL]  | 
|
840  | 
||
841  | 
||
842  | 
subsection {* Top and Bottom *}
 | 
|
843  | 
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"  | 
|
844  | 
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)  | 
|
845  | 
||
846  | 
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"  | 
|
847  | 
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)  | 
|
848  | 
||
| 28592 | 849  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Bot_in_lattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 850  | 
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"  | 
851  | 
(*sledgehammer; *)  | 
|
852  | 
apply (simp add: Bot_def least_def)  | 
|
853  | 
apply (rule_tac a="glb A cl" in someI2)  | 
|
854  | 
apply (simp_all add: glb_in_lattice glb_lower  | 
|
855  | 
r_def [symmetric] A_def [symmetric])  | 
|
856  | 
done  | 
|
857  | 
||
858  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 28592 | 859  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Top_in_lattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 860  | 
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"  | 
861  | 
(*sledgehammer;*)  | 
|
862  | 
apply (simp add: Top_dual_Bot A_def)  | 
|
863  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 28592 | 864  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Top_in_lattice_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 865  | 
(*sledgehammer*)  | 
866  | 
apply (rule dualA_iff [THEN subst])  | 
|
| 27681 | 867  | 
apply (blast intro!: CLF.Bot_in_lattice [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] dualPO CL_dualCL CLF_dual)  | 
| 23449 | 868  | 
done  | 
869  | 
||
870  | 
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"  | 
|
871  | 
apply (simp add: Top_def greatest_def)  | 
|
872  | 
apply (rule_tac a="lub A cl" in someI2)  | 
|
873  | 
apply (rule someI2)  | 
|
874  | 
apply (simp_all add: lub_in_lattice lub_upper  | 
|
875  | 
r_def [symmetric] A_def [symmetric])  | 
|
876  | 
done  | 
|
877  | 
||
878  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 879  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Bot_prop"*}  (*ALL THEOREMS*) 
 | 
| 23449 | 880  | 
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"  | 
881  | 
(*sledgehammer*)  | 
|
882  | 
apply (simp add: Bot_dual_Top r_def)  | 
|
883  | 
apply (rule dualr_iff [THEN subst])  | 
|
| 27681 | 884  | 
apply (simp add: CLF.Top_prop [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]  | 
| 23449 | 885  | 
dualA_iff A_def dualPO CL_dualCL CLF_dual)  | 
886  | 
done  | 
|
887  | 
||
| 28592 | 888  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Bot_in_lattice"*}  (*ALL THEOREMS*)
 | 
| 23449 | 889  | 
lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}" 
 | 
890  | 
apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE)  | 
|
891  | 
done  | 
|
892  | 
||
| 28592 | 893  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Bot_intv_not_empty"*}  (*ALL THEOREMS*)
 | 
| 23449 | 894  | 
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}" 
 | 
895  | 
apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem)  | 
|
896  | 
done  | 
|
897  | 
||
898  | 
||
899  | 
subsection {* fixed points form a partial order *}
 | 
|
900  | 
||
901  | 
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"  | 
|
902  | 
by (simp add: P_def fix_subset po_subset_po)  | 
|
903  | 
||
904  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 28592 | 905  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Y_subset_A"*}
 | 
| 23449 | 906  | 
declare (in Tarski) P_def[simp] Y_ss [simp]  | 
907  | 
declare fix_subset [intro] subset_trans [intro]  | 
|
908  | 
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"  | 
|
909  | 
(*sledgehammer*)  | 
|
910  | 
apply (rule subset_trans [OF _ fix_subset])  | 
|
911  | 
apply (rule Y_ss [simplified P_def])  | 
|
912  | 
done  | 
|
913  | 
declare (in Tarski) P_def[simp del] Y_ss [simp del]  | 
|
914  | 
declare fix_subset [rule del] subset_trans [rule del]  | 
|
915  | 
||
916  | 
||
917  | 
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"  | 
|
918  | 
by (rule Y_subset_A [THEN lub_in_lattice])  | 
|
919  | 
||
920  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 921  | 
ML_command{*AtpWrapper.problem_name:="Tarski__lubY_le_flubY"*}  (*ALL THEOREMS*)
 | 
| 23449 | 922  | 
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"  | 
923  | 
(*sledgehammer*)  | 
|
924  | 
apply (rule lub_least)  | 
|
925  | 
apply (rule Y_subset_A)  | 
|
926  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
927  | 
apply (rule lubY_in_A)  | 
|
928  | 
-- {* @{text "Y \<subseteq> P ==> f x = x"} *}
 | 
|
929  | 
apply (rule ballI)  | 
|
| 28592 | 930  | 
ML_command{*AtpWrapper.problem_name:="Tarski__lubY_le_flubY_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 931  | 
(*sledgehammer *)  | 
932  | 
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])  | 
|
933  | 
apply (erule Y_ss [simplified P_def, THEN subsetD])  | 
|
934  | 
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
 | 
|
| 28592 | 935  | 
ML_command{*AtpWrapper.problem_name:="Tarski__lubY_le_flubY_simplest"*}  (*ALL THEOREMS*)
 | 
| 23449 | 936  | 
(*sledgehammer*)  | 
937  | 
apply (rule_tac f = "f" in monotoneE)  | 
|
938  | 
apply (rule monotone_f)  | 
|
939  | 
apply (simp add: Y_subset_A [THEN subsetD])  | 
|
940  | 
apply (rule lubY_in_A)  | 
|
941  | 
apply (simp add: lub_upper Y_subset_A)  | 
|
942  | 
done  | 
|
943  | 
||
944  | 
(*first proved 2007-01-25 after relaxing relevance*)  | 
|
| 28592 | 945  | 
ML_command{*AtpWrapper.problem_name:="Tarski__intY1_subset"*}  (*ALL THEOREMS*)
 | 
| 23449 | 946  | 
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"  | 
947  | 
(*sledgehammer*)  | 
|
948  | 
apply (unfold intY1_def)  | 
|
949  | 
apply (rule interval_subset)  | 
|
950  | 
apply (rule lubY_in_A)  | 
|
951  | 
apply (rule Top_in_lattice)  | 
|
952  | 
done  | 
|
953  | 
||
954  | 
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]  | 
|
955  | 
||
956  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 957  | 
ML_command{*AtpWrapper.problem_name:="Tarski__intY1_f_closed"*}  (*ALL THEOREMS*)
 | 
| 23449 | 958  | 
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"  | 
959  | 
(*sledgehammer*)  | 
|
960  | 
apply (simp add: intY1_def interval_def)  | 
|
961  | 
apply (rule conjI)  | 
|
962  | 
apply (rule transE)  | 
|
963  | 
apply (rule lubY_le_flubY)  | 
|
964  | 
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
 | 
|
| 28592 | 965  | 
ML_command{*AtpWrapper.problem_name:="Tarski__intY1_f_closed_simpler"*}  (*ALL THEOREMS*)
 | 
| 23449 | 966  | 
(*sledgehammer [has been proved before now...]*)  | 
967  | 
apply (rule_tac f=f in monotoneE)  | 
|
968  | 
apply (rule monotone_f)  | 
|
969  | 
apply (rule lubY_in_A)  | 
|
970  | 
apply (simp add: intY1_def interval_def intY1_elem)  | 
|
971  | 
apply (simp add: intY1_def interval_def)  | 
|
972  | 
-- {* @{text "(f x, Top cl) \<in> r"} *} 
 | 
|
973  | 
apply (rule Top_prop)  | 
|
974  | 
apply (rule f_in_funcset [THEN funcset_mem])  | 
|
975  | 
apply (simp add: intY1_def interval_def intY1_elem)  | 
|
976  | 
done  | 
|
977  | 
||
| 28592 | 978  | 
ML_command{*AtpWrapper.problem_name:="Tarski__intY1_func"*}  (*ALL THEOREMS*)
 | 
| 27368 | 979  | 
lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1"  | 
980  | 
apply (rule restrict_in_funcset)  | 
|
981  | 
apply (metis intY1_f_closed restrict_in_funcset)  | 
|
982  | 
done  | 
|
| 23449 | 983  | 
|
| 28592 | 984  | 
ML_command{*AtpWrapper.problem_name:="Tarski__intY1_mono"*}  (*ALL THEOREMS*)
 | 
| 24855 | 985  | 
lemma (in Tarski) intY1_mono:  | 
| 23449 | 986  | 
"monotone (%x: intY1. f x) intY1 (induced intY1 r)"  | 
987  | 
(*sledgehammer *)  | 
|
988  | 
apply (auto simp add: monotone_def induced_def intY1_f_closed)  | 
|
989  | 
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])  | 
|
990  | 
done  | 
|
991  | 
||
992  | 
(*proof requires relaxing relevance: 2007-01-25*)  | 
|
| 28592 | 993  | 
ML_command{*AtpWrapper.problem_name:="Tarski__intY1_is_cl"*}  (*ALL THEOREMS*)
 | 
| 23449 | 994  | 
lemma (in Tarski) intY1_is_cl:  | 
995  | 
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"  | 
|
996  | 
(*sledgehammer*)  | 
|
997  | 
apply (unfold intY1_def)  | 
|
998  | 
apply (rule interv_is_compl_latt)  | 
|
999  | 
apply (rule lubY_in_A)  | 
|
1000  | 
apply (rule Top_in_lattice)  | 
|
1001  | 
apply (rule Top_intv_not_empty)  | 
|
1002  | 
apply (rule lubY_in_A)  | 
|
1003  | 
done  | 
|
1004  | 
||
1005  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 1006  | 
ML_command{*AtpWrapper.problem_name:="Tarski__v_in_P"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1007  | 
lemma (in Tarski) v_in_P: "v \<in> P"  | 
1008  | 
(*sledgehammer*)  | 
|
1009  | 
apply (unfold P_def)  | 
|
1010  | 
apply (rule_tac A = "intY1" in fixf_subset)  | 
|
1011  | 
apply (rule intY1_subset)  | 
|
| 27681 | 1012  | 
apply (simp add: CLF.glbH_is_fixp [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]  | 
1013  | 
v_def CL_imp_PO intY1_is_cl CLF_set_def intY1_func intY1_mono)  | 
|
| 23449 | 1014  | 
done  | 
1015  | 
||
| 28592 | 1016  | 
ML_command{*AtpWrapper.problem_name:="Tarski__z_in_interval"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1017  | 
lemma (in Tarski) z_in_interval:  | 
1018  | 
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"  | 
|
1019  | 
(*sledgehammer *)  | 
|
1020  | 
apply (unfold intY1_def P_def)  | 
|
1021  | 
apply (rule intervalI)  | 
|
1022  | 
prefer 2  | 
|
1023  | 
apply (erule fix_subset [THEN subsetD, THEN Top_prop])  | 
|
1024  | 
apply (rule lub_least)  | 
|
1025  | 
apply (rule Y_subset_A)  | 
|
1026  | 
apply (fast elim!: fix_subset [THEN subsetD])  | 
|
1027  | 
apply (simp add: induced_def)  | 
|
1028  | 
done  | 
|
1029  | 
||
| 28592 | 1030  | 
ML_command{*AtpWrapper.problem_name:="Tarski__fz_in_int_rel"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1031  | 
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]  | 
1032  | 
==> ((%x: intY1. f x) z, z) \<in> induced intY1 r"  | 
|
| 26806 | 1033  | 
apply (metis P_def acc_def fix_imp_eq fix_subset indI reflE restrict_apply subset_eq z_in_interval)  | 
| 23449 | 1034  | 
done  | 
1035  | 
||
1036  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 1037  | 
ML_command{*AtpWrapper.problem_name:="Tarski__tarski_full_lemma"*}  (*ALL THEOREMS*)
 | 
| 23449 | 1038  | 
lemma (in Tarski) tarski_full_lemma:  | 
1039  | 
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L"  | 
|
1040  | 
apply (rule_tac x = "v" in exI)  | 
|
1041  | 
apply (simp add: isLub_def)  | 
|
1042  | 
-- {* @{text "v \<in> P"} *}
 | 
|
1043  | 
apply (simp add: v_in_P)  | 
|
1044  | 
apply (rule conjI)  | 
|
1045  | 
(*sledgehammer*)  | 
|
1046  | 
-- {* @{text v} is lub *}
 | 
|
1047  | 
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
 | 
|
1048  | 
apply (rule ballI)  | 
|
1049  | 
apply (simp add: induced_def subsetD v_in_P)  | 
|
1050  | 
apply (rule conjI)  | 
|
1051  | 
apply (erule Y_ss [THEN subsetD])  | 
|
1052  | 
apply (rule_tac b = "lub Y cl" in transE)  | 
|
1053  | 
apply (rule lub_upper)  | 
|
1054  | 
apply (rule Y_subset_A, assumption)  | 
|
1055  | 
apply (rule_tac b = "Top cl" in interval_imp_mem)  | 
|
1056  | 
apply (simp add: v_def)  | 
|
1057  | 
apply (fold intY1_def)  | 
|
| 27681 | 1058  | 
apply (rule CL.glb_in_lattice [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])  | 
| 23449 | 1059  | 
apply (simp add: CL_imp_PO intY1_is_cl, force)  | 
1060  | 
-- {* @{text v} is LEAST ub *}
 | 
|
1061  | 
apply clarify  | 
|
1062  | 
apply (rule indI)  | 
|
1063  | 
prefer 3 apply assumption  | 
|
1064  | 
prefer 2 apply (simp add: v_in_P)  | 
|
1065  | 
apply (unfold v_def)  | 
|
1066  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 1067  | 
ML_command{*AtpWrapper.problem_name:="Tarski__tarski_full_lemma_simpler"*} 
 | 
| 23449 | 1068  | 
(*sledgehammer*)  | 
1069  | 
apply (rule indE)  | 
|
1070  | 
apply (rule_tac [2] intY1_subset)  | 
|
1071  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 1072  | 
ML_command{*AtpWrapper.problem_name:="Tarski__tarski_full_lemma_simplest"*} 
 | 
| 23449 | 1073  | 
(*sledgehammer*)  | 
| 27681 | 1074  | 
apply (rule CL.glb_lower [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])  | 
| 23449 | 1075  | 
apply (simp add: CL_imp_PO intY1_is_cl)  | 
1076  | 
apply force  | 
|
1077  | 
apply (simp add: induced_def intY1_f_closed z_in_interval)  | 
|
1078  | 
apply (simp add: P_def fix_imp_eq [of _ f A] reflE  | 
|
1079  | 
fix_subset [of f A, THEN subsetD])  | 
|
1080  | 
done  | 
|
1081  | 
||
1082  | 
lemma CompleteLatticeI_simp:  | 
|
1083  | 
"[| (| pset = A, order = r |) \<in> PartialOrder;  | 
|
1084  | 
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |]  | 
|
1085  | 
==> (| pset = A, order = r |) \<in> CompleteLattice"  | 
|
1086  | 
by (simp add: CompleteLatticeI Rdual)  | 
|
1087  | 
||
1088  | 
||
1089  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 1090  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Tarski_full"*}
 | 
| 23449 | 1091  | 
declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp]  | 
1092  | 
Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro]  | 
|
1093  | 
CompleteLatticeI_simp [intro]  | 
|
1094  | 
theorem (in CLF) Tarski_full:  | 
|
1095  | 
"(| pset = P, order = induced P r|) \<in> CompleteLattice"  | 
|
1096  | 
(*sledgehammer*)  | 
|
1097  | 
apply (rule CompleteLatticeI_simp)  | 
|
1098  | 
apply (rule fixf_po, clarify)  | 
|
1099  | 
(*never proved, 2007-01-22*)  | 
|
| 28592 | 1100  | 
ML_command{*AtpWrapper.problem_name:="Tarski__Tarski_full_simpler"*}
 | 
| 23449 | 1101  | 
(*sledgehammer*)  | 
1102  | 
apply (simp add: P_def A_def r_def)  | 
|
| 27681 | 1103  | 
apply (blast intro!: Tarski.tarski_full_lemma [OF Tarski.intro, OF CLF.intro Tarski_axioms.intro,  | 
1104  | 
OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] cl_po cl_co f_cl)  | 
|
| 23449 | 1105  | 
done  | 
1106  | 
declare (in CLF) fixf_po[rule del] P_def [simp del] A_def [simp del] r_def [simp del]  | 
|
1107  | 
Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del]  | 
|
1108  | 
CompleteLatticeI_simp [rule del]  | 
|
1109  | 
||
1110  | 
||
1111  | 
end  |