| author | schirmer | 
| Fri, 01 Nov 2002 13:16:28 +0100 | |
| changeset 13690 | ac335b2f4a39 | 
| parent 12018 | ec054019c910 | 
| permissions | -rw-r--r-- | 
| 7334 | 1 | (* Title: HOL/Real/Real.ML | 
| 2 | ID: $Id$ | |
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 3 | Author: Jacques D. Fleuriot and Lawrence C. Paulson | 
| 7334 | 4 | Copyright: 1998 University of Cambridge | 
| 5 | Description: Type "real" is a linear order | |
| 6 | *) | |
| 7 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 8 | (**** The simproc abel_cancel ****) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 9 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 10 | (*** Two lemmas needed for the simprocs ***) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 11 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 12 | (*Deletion of other terms in the formula, seeking the -x at the front of z*) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 13 | Goal "((x::real) + (y + z) = y + u) = ((x + z) = u)"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 14 | by (stac real_add_left_commute 1); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 15 | by (rtac real_add_left_cancel 1); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 16 | qed "real_add_cancel_21"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 17 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 18 | (*A further rule to deal with the case that | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 19 | everything gets cancelled on the right.*) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 20 | Goal "((x::real) + (y + z) = y) = (x = -z)"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 21 | by (stac real_add_left_commute 1); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 22 | by (res_inst_tac [("t", "y")] (real_add_zero_right RS subst) 1
 | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 23 | THEN stac real_add_left_cancel 1); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 24 | by (simp_tac (simpset() addsimps [real_eq_diff_eq RS sym]) 1); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 25 | qed "real_add_cancel_end"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 26 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 27 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 28 | structure Real_Cancel_Data = | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 29 | struct | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 30 | val ss = HOL_ss | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 31 | val eq_reflection = eq_reflection | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 32 | |
| 9434 | 33 | val sg_ref = Sign.self_ref (Theory.sign_of (the_context ())) | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 34 | val T = HOLogic.realT | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 35 |   val zero		= Const ("0", T)
 | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 36 | val restrict_to_left = restrict_to_left | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 37 | val add_cancel_21 = real_add_cancel_21 | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 38 | val add_cancel_end = real_add_cancel_end | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 39 | val add_left_cancel = real_add_left_cancel | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 40 | val add_assoc = real_add_assoc | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 41 | val add_commute = real_add_commute | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 42 | val add_left_commute = real_add_left_commute | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 43 | val add_0 = real_add_zero_left | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 44 | val add_0_right = real_add_zero_right | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 45 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 46 | val eq_diff_eq = real_eq_diff_eq | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 47 | val eqI_rules = [real_less_eqI, real_eq_eqI, real_le_eqI] | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 48 | fun dest_eqI th = | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 49 | #1 (HOLogic.dest_bin "op =" HOLogic.boolT | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 50 | (HOLogic.dest_Trueprop (concl_of th))) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 51 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 52 | val diff_def = real_diff_def | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 53 | val minus_add_distrib = real_minus_add_distrib | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 54 | val minus_minus = real_minus_minus | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 55 | val minus_0 = real_minus_zero | 
| 10606 | 56 | val add_inverses = [real_add_minus, real_add_minus_left] | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 57 | val cancel_simps = [real_add_minus_cancel, real_minus_add_cancel] | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 58 | end; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 59 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 60 | structure Real_Cancel = Abel_Cancel (Real_Cancel_Data); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 61 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 62 | Addsimprocs [Real_Cancel.sum_conv, Real_Cancel.rel_conv]; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 63 | |
| 9081 | 64 | Goal "- (z - y) = y - (z::real)"; | 
| 65 | by (Simp_tac 1); | |
| 66 | qed "real_minus_diff_eq"; | |
| 67 | Addsimps [real_minus_diff_eq]; | |
| 68 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 69 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 70 | (**** Theorems about the ordering ****) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 71 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 72 | Goal "(0 < x) = (EX y. x = real_of_preal y)"; | 
| 7334 | 73 | by (auto_tac (claset(), simpset() addsimps [real_of_preal_zero_less])); | 
| 74 | by (cut_inst_tac [("x","x")] real_of_preal_trichotomy 1);
 | |
| 75 | by (blast_tac (claset() addSEs [real_less_irrefl, | |
| 76 | real_of_preal_not_minus_gt_zero RS notE]) 1); | |
| 77 | qed "real_gt_zero_preal_Ex"; | |
| 78 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 79 | Goal "real_of_preal z < x ==> EX y. x = real_of_preal y"; | 
| 7334 | 80 | by (blast_tac (claset() addSDs [real_of_preal_zero_less RS real_less_trans] | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 81 | addIs [real_gt_zero_preal_Ex RS iffD1]) 1); | 
| 7334 | 82 | qed "real_gt_preal_preal_Ex"; | 
| 83 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 84 | Goal "real_of_preal z <= x ==> EX y. x = real_of_preal y"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 85 | by (blast_tac (claset() addDs [order_le_imp_less_or_eq, | 
| 7334 | 86 | real_gt_preal_preal_Ex]) 1); | 
| 87 | qed "real_ge_preal_preal_Ex"; | |
| 88 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 89 | Goal "y <= 0 ==> ALL x. y < real_of_preal x"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 90 | by (auto_tac (claset() addEs [order_le_imp_less_or_eq RS disjE] | 
| 7334 | 91 | addIs [real_of_preal_zero_less RSN(2,real_less_trans)], | 
| 92 | simpset() addsimps [real_of_preal_zero_less])); | |
| 93 | qed "real_less_all_preal"; | |
| 94 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 95 | Goal "~ 0 < y ==> ALL x. y < real_of_preal x"; | 
| 7334 | 96 | by (blast_tac (claset() addSIs [real_less_all_preal,real_leI]) 1); | 
| 97 | qed "real_less_all_real2"; | |
| 98 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 99 | Goal "[| R + L = S; (0::real) < L |] ==> R < S"; | 
| 7334 | 100 | by (rtac (real_less_sum_gt_0_iff RS iffD1) 1); | 
| 101 | by (auto_tac (claset(), simpset() addsimps real_add_ac)); | |
| 102 | qed "real_lemma_add_positive_imp_less"; | |
| 103 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 104 | Goal "EX T::real. 0 < T & R + T = S ==> R < S"; | 
| 7334 | 105 | by (blast_tac (claset() addIs [real_lemma_add_positive_imp_less]) 1); | 
| 106 | qed "real_ex_add_positive_left_less"; | |
| 107 | ||
| 108 | (*Alternative definition for real_less. NOT for rewriting*) | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 109 | Goal "(R < S) = (EX T::real. 0 < T & R + T = S)"; | 
| 7334 | 110 | by (blast_tac (claset() addSIs [real_less_add_positive_left_Ex, | 
| 111 | real_ex_add_positive_left_less]) 1); | |
| 112 | qed "real_less_iff_add"; | |
| 113 | ||
| 114 | Goal "(real_of_preal m1 <= real_of_preal m2) = (m1 <= m2)"; | |
| 115 | by (auto_tac (claset() addSIs [preal_leI], | |
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 116 | simpset() addsimps [real_less_le_iff RS sym])); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 117 | by (dtac order_le_less_trans 1 THEN assume_tac 1); | 
| 7334 | 118 | by (etac preal_less_irrefl 1); | 
| 119 | qed "real_of_preal_le_iff"; | |
| 120 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 121 | Goal "[| 0 < x; 0 < y |] ==> (0::real) < x * y"; | 
| 7334 | 122 | by (auto_tac (claset(), simpset() addsimps [real_gt_zero_preal_Ex])); | 
| 123 | by (res_inst_tac [("x","y*ya")] exI 1);
 | |
| 124 | by (full_simp_tac (simpset() addsimps [real_of_preal_mult]) 1); | |
| 125 | qed "real_mult_order"; | |
| 126 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 127 | Goal "[| x < 0; y < 0 |] ==> (0::real) < x * y"; | 
| 7334 | 128 | by (REPEAT(dtac (real_minus_zero_less_iff RS iffD2) 1)); | 
| 129 | by (dtac real_mult_order 1 THEN assume_tac 1); | |
| 130 | by (Asm_full_simp_tac 1); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 131 | qed "neg_real_mult_order"; | 
| 7334 | 132 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 133 | Goal "[| 0 < x; y < 0 |] ==> x*y < (0::real)"; | 
| 7334 | 134 | by (dtac (real_minus_zero_less_iff RS iffD2) 1); | 
| 135 | by (dtac real_mult_order 1 THEN assume_tac 1); | |
| 136 | by (rtac (real_minus_zero_less_iff RS iffD1) 1); | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 137 | by (Asm_full_simp_tac 1); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 138 | qed "real_mult_less_0"; | 
| 7334 | 139 | |
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 140 | Goalw [real_one_def] "0 < (1::real)"; | 
| 7334 | 141 | by (auto_tac (claset() addIs [real_gt_zero_preal_Ex RS iffD2], | 
| 142 | simpset() addsimps [real_of_preal_def])); | |
| 143 | qed "real_zero_less_one"; | |
| 144 | ||
| 145 | (*** Monotonicity results ***) | |
| 146 | ||
| 147 | Goal "(v+z < w+z) = (v < (w::real))"; | |
| 148 | by (Simp_tac 1); | |
| 149 | qed "real_add_right_cancel_less"; | |
| 150 | ||
| 151 | Goal "(z+v < z+w) = (v < (w::real))"; | |
| 152 | by (Simp_tac 1); | |
| 153 | qed "real_add_left_cancel_less"; | |
| 154 | ||
| 155 | Addsimps [real_add_right_cancel_less, real_add_left_cancel_less]; | |
| 156 | ||
| 157 | Goal "(v+z <= w+z) = (v <= (w::real))"; | |
| 158 | by (Simp_tac 1); | |
| 159 | qed "real_add_right_cancel_le"; | |
| 160 | ||
| 161 | Goal "(z+v <= z+w) = (v <= (w::real))"; | |
| 162 | by (Simp_tac 1); | |
| 163 | qed "real_add_left_cancel_le"; | |
| 164 | ||
| 165 | Addsimps [real_add_right_cancel_le, real_add_left_cancel_le]; | |
| 166 | ||
| 167 | (*"v<=w ==> v+z <= w+z"*) | |
| 168 | bind_thm ("real_add_less_mono1", real_add_right_cancel_less RS iffD2);
 | |
| 169 | ||
| 170 | (*"v<=w ==> v+z <= w+z"*) | |
| 171 | bind_thm ("real_add_le_mono1", real_add_right_cancel_le RS iffD2);
 | |
| 172 | ||
| 173 | Goal "!!z z'::real. [| w'<w; z'<=z |] ==> w' + z' < w + z"; | |
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 174 | by (etac (real_add_less_mono1 RS order_less_le_trans) 1); | 
| 7334 | 175 | by (Simp_tac 1); | 
| 176 | qed "real_add_less_le_mono"; | |
| 177 | ||
| 178 | Goal "!!z z'::real. [| w'<=w; z'<z |] ==> w' + z' < w + z"; | |
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 179 | by (etac (real_add_le_mono1 RS order_le_less_trans) 1); | 
| 7334 | 180 | by (Simp_tac 1); | 
| 181 | qed "real_add_le_less_mono"; | |
| 182 | ||
| 183 | Goal "!!(A::real). A < B ==> C + A < C + B"; | |
| 184 | by (Simp_tac 1); | |
| 185 | qed "real_add_less_mono2"; | |
| 186 | ||
| 187 | Goal "!!(A::real). A + C < B + C ==> A < B"; | |
| 188 | by (Full_simp_tac 1); | |
| 189 | qed "real_less_add_right_cancel"; | |
| 190 | ||
| 191 | Goal "!!(A::real). C + A < C + B ==> A < B"; | |
| 192 | by (Full_simp_tac 1); | |
| 193 | qed "real_less_add_left_cancel"; | |
| 194 | ||
| 195 | Goal "!!(A::real). A + C <= B + C ==> A <= B"; | |
| 196 | by (Full_simp_tac 1); | |
| 197 | qed "real_le_add_right_cancel"; | |
| 198 | ||
| 199 | Goal "!!(A::real). C + A <= C + B ==> A <= B"; | |
| 200 | by (Full_simp_tac 1); | |
| 201 | qed "real_le_add_left_cancel"; | |
| 202 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 203 | Goal "[| 0 < x; 0 < y |] ==> (0::real) < x + y"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 204 | by (etac order_less_trans 1); | 
| 7334 | 205 | by (dtac real_add_less_mono2 1); | 
| 206 | by (Full_simp_tac 1); | |
| 207 | qed "real_add_order"; | |
| 208 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 209 | Goal "[| 0 <= x; 0 <= y |] ==> (0::real) <= x + y"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 210 | by (REPEAT(dtac order_le_imp_less_or_eq 1)); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 211 | by (auto_tac (claset() addIs [real_add_order, order_less_imp_le], | 
| 7334 | 212 | simpset())); | 
| 213 | qed "real_le_add_order"; | |
| 214 | ||
| 215 | Goal "[| R1 < S1; R2 < S2 |] ==> R1 + R2 < S1 + (S2::real)"; | |
| 216 | by (dtac real_add_less_mono1 1); | |
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 217 | by (etac order_less_trans 1); | 
| 7334 | 218 | by (etac real_add_less_mono2 1); | 
| 219 | qed "real_add_less_mono"; | |
| 220 | ||
| 221 | Goal "!!(q1::real). q1 <= q2 ==> x + q1 <= x + q2"; | |
| 222 | by (Simp_tac 1); | |
| 223 | qed "real_add_left_le_mono1"; | |
| 224 | ||
| 225 | Goal "[|i<=j; k<=l |] ==> i + k <= j + (l::real)"; | |
| 226 | by (dtac real_add_le_mono1 1); | |
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 227 | by (etac order_trans 1); | 
| 7334 | 228 | by (Simp_tac 1); | 
| 229 | qed "real_add_le_mono"; | |
| 230 | ||
| 231 | Goal "EX (x::real). x < y"; | |
| 232 | by (rtac (real_add_zero_right RS subst) 1); | |
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 233 | by (res_inst_tac [("x","y + (- (1::real))")] exI 1);
 | 
| 7334 | 234 | by (auto_tac (claset() addSIs [real_add_less_mono2], | 
| 235 | simpset() addsimps [real_minus_zero_less_iff2, real_zero_less_one])); | |
| 236 | qed "real_less_Ex"; | |
| 237 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 238 | Goal "(0::real) < r ==> u + (-r) < u"; | 
| 7334 | 239 | by (res_inst_tac [("C","r")] real_less_add_right_cancel 1);
 | 
| 240 | by (simp_tac (simpset() addsimps [real_add_assoc]) 1); | |
| 241 | qed "real_add_minus_positive_less_self"; | |
| 242 | ||
| 10699 | 243 | Goal "(-s <= -r) = ((r::real) <= s)"; | 
| 244 | by (rtac sym 1); | |
| 7334 | 245 | by (Step_tac 1); | 
| 246 | by (dres_inst_tac [("x","-s")] real_add_left_le_mono1 1);
 | |
| 247 | by (dres_inst_tac [("x","r")] real_add_left_le_mono1 2);
 | |
| 248 | by Auto_tac; | |
| 249 | by (dres_inst_tac [("z","-r")] real_add_le_mono1 1);
 | |
| 250 | by (dres_inst_tac [("z","s")] real_add_le_mono1 2);
 | |
| 251 | by (auto_tac (claset(), simpset() addsimps [real_add_assoc])); | |
| 252 | qed "real_le_minus_iff"; | |
| 10699 | 253 | Addsimps [real_le_minus_iff]; | 
| 7334 | 254 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 255 | Goal "(0::real) <= x*x"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 256 | by (res_inst_tac [("R2.0","0"),("R1.0","x")] real_linear_less2 1);
 | 
| 7334 | 257 | by (auto_tac (claset() addIs [real_mult_order, | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 258 | neg_real_mult_order,order_less_imp_le], | 
| 7334 | 259 | simpset())); | 
| 260 | qed "real_le_square"; | |
| 261 | Addsimps [real_le_square]; | |
| 262 | ||
| 263 | (*---------------------------------------------------------------------------- | |
| 264 | An embedding of the naturals in the reals | |
| 265 | ----------------------------------------------------------------------------*) | |
| 266 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 267 | Goalw [real_of_posnat_def] "real_of_posnat 0 = (1::real)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 268 | by (simp_tac (simpset() addsimps [pnat_one_iff RS sym,real_of_preal_def, | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 269 | symmetric real_one_def]) 1); | 
| 7334 | 270 | qed "real_of_posnat_one"; | 
| 271 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 272 | Goalw [real_of_posnat_def] "real_of_posnat (Suc 0) = (1::real) + (1::real)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 273 | by (simp_tac (simpset() addsimps [real_of_preal_def,real_one_def, | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 274 | pnat_two_eq,real_add,prat_of_pnat_add RS sym, | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 275 | preal_of_prat_add RS sym] @ pnat_add_ac) 1); | 
| 7334 | 276 | qed "real_of_posnat_two"; | 
| 277 | ||
| 278 | Goalw [real_of_posnat_def] | |
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 279 | "real_of_posnat n1 + real_of_posnat n2 = real_of_posnat (n1 + n2) + (1::real)"; | 
| 7334 | 280 | by (full_simp_tac (simpset() addsimps [real_of_posnat_one RS sym, | 
| 281 | real_of_posnat_def,real_of_preal_add RS sym,preal_of_prat_add RS sym, | |
| 282 | prat_of_pnat_add RS sym,pnat_of_nat_add]) 1); | |
| 283 | qed "real_of_posnat_add"; | |
| 284 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 285 | Goal "real_of_posnat (n + 1) = real_of_posnat n + (1::real)"; | 
| 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 286 | by (res_inst_tac [("x1","(1::real)")] (real_add_right_cancel RS iffD1) 1);
 | 
| 7334 | 287 | by (rtac (real_of_posnat_add RS subst) 1); | 
| 288 | by (full_simp_tac (simpset() addsimps [real_of_posnat_two,real_add_assoc]) 1); | |
| 289 | qed "real_of_posnat_add_one"; | |
| 290 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 291 | Goal "real_of_posnat (Suc n) = real_of_posnat n + (1::real)"; | 
| 7334 | 292 | by (stac (real_of_posnat_add_one RS sym) 1); | 
| 293 | by (Simp_tac 1); | |
| 294 | qed "real_of_posnat_Suc"; | |
| 295 | ||
| 296 | Goal "inj(real_of_posnat)"; | |
| 297 | by (rtac injI 1); | |
| 298 | by (rewtac real_of_posnat_def); | |
| 299 | by (dtac (inj_real_of_preal RS injD) 1); | |
| 300 | by (dtac (inj_preal_of_prat RS injD) 1); | |
| 301 | by (dtac (inj_prat_of_pnat RS injD) 1); | |
| 302 | by (etac (inj_pnat_of_nat RS injD) 1); | |
| 303 | qed "inj_real_of_posnat"; | |
| 304 | ||
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 305 | Goalw [real_of_nat_def] "real (0::nat) = 0"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 306 | by (simp_tac (simpset() addsimps [real_of_posnat_one]) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 307 | qed "real_of_nat_zero"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 308 | |
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 309 | Goalw [real_of_nat_def] "real (Suc 0) = (1::real)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 310 | by (simp_tac (simpset() addsimps [real_of_posnat_two, real_add_assoc]) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 311 | qed "real_of_nat_one"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 312 | Addsimps [real_of_nat_zero, real_of_nat_one]; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 313 | |
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 314 | Goalw [real_of_nat_def] | 
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 315 | "real (m + n) = real (m::nat) + real n"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 316 | by (simp_tac (simpset() addsimps | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 317 | [real_of_posnat_add,real_add_assoc RS sym]) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 318 | qed "real_of_nat_add"; | 
| 10784 | 319 | Addsimps [real_of_nat_add]; | 
| 7334 | 320 | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 321 | (*Not for addsimps: often the LHS is used to represent a positive natural*) | 
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 322 | Goalw [real_of_nat_def] "real (Suc n) = real n + (1::real)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 323 | by (simp_tac (simpset() addsimps [real_of_posnat_Suc] @ real_add_ac) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 324 | qed "real_of_nat_Suc"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 325 | |
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 326 | Goalw [real_of_nat_def, real_of_posnat_def] | 
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 327 | "(real (n::nat) < real m) = (n < m)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 328 | by Auto_tac; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 329 | qed "real_of_nat_less_iff"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 330 | AddIffs [real_of_nat_less_iff]; | 
| 7334 | 331 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 332 | Goal "(real (n::nat) <= real m) = (n <= m)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 333 | by (simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 334 | qed "real_of_nat_le_iff"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 335 | AddIffs [real_of_nat_le_iff]; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 336 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 337 | Goal "inj (real :: nat => real)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 338 | by (rtac injI 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 339 | by (auto_tac (claset() addSIs [inj_real_of_posnat RS injD], | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 340 | simpset() addsimps [real_of_nat_def,real_add_right_cancel])); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 341 | qed "inj_real_of_nat"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 342 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 343 | Goal "0 <= real (n::nat)"; | 
| 7334 | 344 | by (induct_tac "n" 1); | 
| 345 | by (auto_tac (claset(), | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 346 | simpset () addsimps [real_of_nat_Suc])); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 347 | by (dtac real_add_le_less_mono 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 348 | by (rtac real_zero_less_one 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 349 | by (asm_full_simp_tac (simpset() addsimps [order_less_imp_le]) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 350 | qed "real_of_nat_ge_zero"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 351 | AddIffs [real_of_nat_ge_zero]; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 352 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 353 | Goal "real (m * n) = real (m::nat) * real n"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 354 | by (induct_tac "m" 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 355 | by (auto_tac (claset(), | 
| 10784 | 356 | simpset() addsimps [real_of_nat_Suc, | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 357 | real_add_mult_distrib, real_add_commute])); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 358 | qed "real_of_nat_mult"; | 
| 10784 | 359 | Addsimps [real_of_nat_mult]; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 360 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 361 | Goal "(real (n::nat) = real m) = (n = m)"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 362 | by (auto_tac (claset() addDs [inj_real_of_nat RS injD], simpset())); | 
| 11599 
12cc28aafb4d
renamed real_of_nat_eq_cancel to real_of_nat_inject, and declared as iff rule;
 wenzelm parents: 
11464diff
changeset | 363 | qed "real_of_nat_inject"; | 
| 
12cc28aafb4d
renamed real_of_nat_eq_cancel to real_of_nat_inject, and declared as iff rule;
 wenzelm parents: 
11464diff
changeset | 364 | AddIffs [real_of_nat_inject]; | 
| 7334 | 365 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 366 | Goal "n <= m --> real (m - n) = real (m::nat) - real n"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 367 | by (induct_tac "m" 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 368 | by (auto_tac (claset(), | 
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 369 | simpset() addsimps [real_diff_def, Suc_diff_le, le_Suc_eq, | 
| 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 370 | real_of_nat_Suc, real_of_nat_zero] @ real_add_ac)); | 
| 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 371 | qed_spec_mp "real_of_nat_diff"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 372 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 373 | Goal "(real (n::nat) = 0) = (n = 0)"; | 
| 11599 
12cc28aafb4d
renamed real_of_nat_eq_cancel to real_of_nat_inject, and declared as iff rule;
 wenzelm parents: 
11464diff
changeset | 374 | by (auto_tac ((claset() addIs [inj_real_of_nat RS injD], simpset()) delIffs [real_of_nat_inject])); | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 375 | qed "real_of_nat_zero_iff"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 376 | |
| 10919 
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
 paulson parents: 
10784diff
changeset | 377 | Goal "neg z ==> real (nat z) = 0"; | 
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 378 | by (asm_simp_tac (simpset() addsimps [neg_nat, real_of_nat_zero]) 1); | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 379 | qed "real_of_nat_neg_int"; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 380 | Addsimps [real_of_nat_neg_int]; | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 381 | |
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 382 | |
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 383 | (*---------------------------------------------------------------------------- | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 384 | inverse, etc. | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 385 | ----------------------------------------------------------------------------*) | 
| 7334 | 386 | |
| 10606 | 387 | Goal "0 < x ==> 0 < inverse (x::real)"; | 
| 7334 | 388 | by (EVERY1[rtac ccontr, dtac real_leI]); | 
| 389 | by (forward_tac [real_minus_zero_less_iff2 RS iffD2] 1); | |
| 390 | by (forward_tac [real_not_refl2 RS not_sym] 1); | |
| 10606 | 391 | by (dtac (real_not_refl2 RS not_sym RS real_inverse_not_zero) 1); | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 392 | by (EVERY1[dtac order_le_imp_less_or_eq, Step_tac]); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 393 | by (dtac neg_real_mult_order 1 THEN assume_tac 1); | 
| 7334 | 394 | by (auto_tac (claset() addIs [real_zero_less_one RS real_less_asym], | 
| 9053 | 395 | simpset())); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 396 | qed "real_inverse_gt_0"; | 
| 7334 | 397 | |
| 10606 | 398 | Goal "x < 0 ==> inverse (x::real) < 0"; | 
| 7499 | 399 | by (ftac real_not_refl2 1); | 
| 7334 | 400 | by (dtac (real_minus_zero_less_iff RS iffD2) 1); | 
| 401 | by (rtac (real_minus_zero_less_iff RS iffD1) 1); | |
| 10648 | 402 | by (stac (real_minus_inverse RS sym) 1); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 403 | by (auto_tac (claset() addIs [real_inverse_gt_0], simpset())); | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 404 | qed "real_inverse_less_0"; | 
| 7334 | 405 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 406 | Goal "[| (0::real) < z; x < y |] ==> x*z < y*z"; | 
| 7334 | 407 | by (rotate_tac 1 1); | 
| 408 | by (dtac real_less_sum_gt_zero 1); | |
| 409 | by (rtac real_sum_gt_zero_less 1); | |
| 410 | by (dtac real_mult_order 1 THEN assume_tac 1); | |
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 411 | by (asm_full_simp_tac | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 412 | (simpset() addsimps [real_add_mult_distrib2, real_mult_commute ]) 1); | 
| 7334 | 413 | qed "real_mult_less_mono1"; | 
| 414 | ||
| 10606 | 415 | Goal "[| (0::real) < z; x < y |] ==> z * x < z * y"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 416 | by (asm_simp_tac | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 417 | (simpset() addsimps [real_mult_commute,real_mult_less_mono1]) 1); | 
| 7334 | 418 | qed "real_mult_less_mono2"; | 
| 419 | ||
| 10606 | 420 | Goal "[| (0::real) < z; x * z < y * z |] ==> x < y"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 421 | by (forw_inst_tac [("x","x*z")] 
 | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 422 | (real_inverse_gt_0 RS real_mult_less_mono1) 1); | 
| 7334 | 423 | by (auto_tac (claset(), | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 424 | simpset() addsimps [real_mult_assoc,real_not_refl2 RS not_sym])); | 
| 7334 | 425 | qed "real_mult_less_cancel1"; | 
| 426 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 427 | Goal "[| (0::real) < z; z*x < z*y |] ==> x < y"; | 
| 7334 | 428 | by (etac real_mult_less_cancel1 1); | 
| 429 | by (asm_full_simp_tac (simpset() addsimps [real_mult_commute]) 1); | |
| 430 | qed "real_mult_less_cancel2"; | |
| 431 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 432 | Goal "(0::real) < z ==> (x*z < y*z) = (x < y)"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 433 | by (blast_tac | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 434 | (claset() addIs [real_mult_less_mono1, real_mult_less_cancel1]) 1); | 
| 7334 | 435 | qed "real_mult_less_iff1"; | 
| 436 | ||
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 437 | Goal "(0::real) < z ==> (z*x < z*y) = (x < y)"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 438 | by (blast_tac | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 439 | (claset() addIs [real_mult_less_mono2, real_mult_less_cancel2]) 1); | 
| 7334 | 440 | qed "real_mult_less_iff2"; | 
| 441 | ||
| 442 | Addsimps [real_mult_less_iff1,real_mult_less_iff2]; | |
| 443 | ||
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 444 | (* 05/00 *) | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 445 | Goalw [real_le_def] "(0::real) < z ==> (x*z <= y*z) = (x <= y)"; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 446 | by (Auto_tac); | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 447 | qed "real_mult_le_cancel_iff1"; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 448 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 449 | Goalw [real_le_def] "(0::real) < z ==> (z*x <= z*y) = (x <= y)"; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 450 | by (Auto_tac); | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 451 | qed "real_mult_le_cancel_iff2"; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 452 | |
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 453 | Addsimps [real_mult_le_cancel_iff1,real_mult_le_cancel_iff2]; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 454 | |
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 455 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 456 | Goal "[| (0::real) <= z; x < y |] ==> x*z <= y*z"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 457 | by (EVERY1 [rtac real_less_or_eq_imp_le, dtac order_le_imp_less_or_eq]); | 
| 7334 | 458 | by (auto_tac (claset() addIs [real_mult_less_mono1],simpset())); | 
| 459 | qed "real_mult_le_less_mono1"; | |
| 460 | ||
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 461 | Goal "[| u<v; x<y; (0::real) < v; 0 < x |] ==> u*x < v* y"; | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 462 | by (etac (real_mult_less_mono1 RS order_less_trans) 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 463 | by (assume_tac 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 464 | by (etac real_mult_less_mono2 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 465 | by (assume_tac 1); | 
| 7334 | 466 | qed "real_mult_less_mono"; | 
| 467 | ||
| 10784 | 468 | (*Variant of the theorem above; sometimes it's stronger*) | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 469 | Goal "[| x < y; r1 < r2; (0::real) <= r1; 0 <= x|] ==> r1 * x < r2 * y"; | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 470 | by (subgoal_tac "0<r2" 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 471 | by (blast_tac (claset() addIs [order_le_less_trans]) 2); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 472 | by (case_tac "x=0" 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 473 | by (auto_tac (claset() addSDs [order_le_imp_less_or_eq] | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 474 | addIs [real_mult_less_mono, real_mult_order], | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 475 | simpset())); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 476 | qed "real_mult_less_mono'"; | 
| 7334 | 477 | |
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 478 | Goal "(1::real) <= x ==> 0 < x"; | 
| 7334 | 479 | by (rtac ccontr 1 THEN dtac real_leI 1); | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 480 | by (dtac order_trans 1 THEN assume_tac 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 481 | by (auto_tac (claset() addDs [real_zero_less_one RSN (2,order_le_less_trans)], | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 482 | simpset())); | 
| 7334 | 483 | qed "real_gt_zero"; | 
| 484 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 485 | Goal "[| (1::real) < r; (1::real) <= x |] ==> x <= r * x"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 486 | by (dtac (real_gt_zero RS order_less_imp_le) 1); | 
| 7334 | 487 | by (auto_tac (claset() addSDs [real_mult_le_less_mono1], | 
| 488 | simpset())); | |
| 489 | qed "real_mult_self_le"; | |
| 490 | ||
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 491 | Goal "[| (1::real) <= r; (1::real) <= x |] ==> x <= r * x"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 492 | by (dtac order_le_imp_less_or_eq 1); | 
| 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 493 | by (auto_tac (claset() addIs [real_mult_self_le], simpset())); | 
| 7334 | 494 | qed "real_mult_self_le2"; | 
| 495 | ||
| 10606 | 496 | Goal "[| 0 < r; r < x |] ==> inverse x < inverse (r::real)"; | 
| 10752 
c4f1bf2acf4c
tidying, and separation of HOL-Hyperreal from HOL-Real
 paulson parents: 
10712diff
changeset | 497 | by (ftac order_less_trans 1 THEN assume_tac 1); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 498 | by (ftac real_inverse_gt_0 1); | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 499 | by (forw_inst_tac [("x","x")] real_inverse_gt_0 1);
 | 
| 10606 | 500 | by (forw_inst_tac [("x","r"),("z","inverse r")] real_mult_less_mono1 1);
 | 
| 7334 | 501 | by (assume_tac 1); | 
| 502 | by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS | |
| 503 | not_sym RS real_mult_inv_right]) 1); | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 504 | by (ftac real_inverse_gt_0 1); | 
| 11713 
883d559b0b8c
sane numerals (stage 3): provide generic "1" on all number types;
 wenzelm parents: 
11701diff
changeset | 505 | by (forw_inst_tac [("x","(1::real)"),("z","inverse x")] real_mult_less_mono2 1);
 | 
| 7334 | 506 | by (assume_tac 1); | 
| 507 | by (asm_full_simp_tac (simpset() addsimps [real_not_refl2 RS | |
| 508 | not_sym RS real_mult_inv_left,real_mult_assoc RS sym]) 1); | |
| 10606 | 509 | qed "real_inverse_less_swap"; | 
| 7334 | 510 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 511 | Goal "(x*y = 0) = (x = 0 | y = (0::real))"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 512 | by Auto_tac; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 513 | by (blast_tac (claset() addIs [ccontr] addDs [real_mult_not_zero]) 1); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 514 | qed "real_mult_is_0"; | 
| 10712 | 515 | AddIffs [real_mult_is_0]; | 
| 7334 | 516 | |
| 10778 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 517 | Goal "[| x ~= 0; y ~= 0 |] \ | 
| 
2c6605049646
more tidying, especially to remove real_of_posnat
 paulson parents: 
10752diff
changeset | 518 | \ ==> inverse x + inverse y = (x + y) * inverse (x * (y::real))"; | 
| 7334 | 519 | by (asm_full_simp_tac (simpset() addsimps | 
| 10606 | 520 | [real_inverse_distrib,real_add_mult_distrib, | 
| 7334 | 521 | real_mult_assoc RS sym]) 1); | 
| 522 | by (stac real_mult_assoc 1); | |
| 523 | by (rtac (real_mult_left_commute RS subst) 1); | |
| 524 | by (asm_full_simp_tac (simpset() addsimps [real_add_commute]) 1); | |
| 10606 | 525 | qed "real_inverse_add"; | 
| 7334 | 526 | |
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 527 | (* 05/00 *) | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 528 | Goal "(0 <= -R) = (R <= (0::real))"; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 529 | by (auto_tac (claset() addDs [sym], | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 530 | simpset() addsimps [real_le_less])); | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 531 | qed "real_minus_zero_le_iff"; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 532 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 533 | Goal "(-R <= 0) = ((0::real) <= R)"; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 534 | by (auto_tac (claset(),simpset() addsimps | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 535 | [real_minus_zero_less_iff2,real_le_less])); | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 536 | qed "real_minus_zero_le_iff2"; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 537 | |
| 9053 | 538 | Addsimps [real_minus_zero_le_iff, real_minus_zero_le_iff2]; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 539 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 540 | Goal "x * x + y * y = 0 ==> x = (0::real)"; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 541 | by (dtac real_add_minus_eq_minus 1); | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 542 | by (cut_inst_tac [("x","x")] real_le_square 1);
 | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 543 | by (Auto_tac THEN dtac real_le_anti_sym 1); | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 544 | by Auto_tac; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 545 | qed "real_sum_squares_cancel"; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 546 | |
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 547 | Goal "x * x + y * y = 0 ==> y = (0::real)"; | 
| 9013 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 548 | by (res_inst_tac [("y","x")] real_sum_squares_cancel 1);
 | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 549 | by (asm_full_simp_tac (simpset() addsimps [real_add_commute]) 1); | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 550 | qed "real_sum_squares_cancel2"; | 
| 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 fleuriot parents: 
8867diff
changeset | 551 | |
| 7334 | 552 | (*---------------------------------------------------------------------------- | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 553 | Some convenient biconditionals for products of signs (lcp) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 554 | ----------------------------------------------------------------------------*) | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 555 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 556 | Goal "((0::real) < x*y) = (0 < x & 0 < y | x < 0 & y < 0)"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 557 | by (auto_tac (claset(), | 
| 9069 | 558 | simpset() addsimps [order_le_less, linorder_not_less, | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 559 | real_mult_order, neg_real_mult_order])); | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 560 | by (ALLGOALS (rtac ccontr)); | 
| 9069 | 561 | by (auto_tac (claset(), simpset() addsimps [order_le_less, linorder_not_less])); | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 562 | by (ALLGOALS (etac rev_mp)); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 563 | by (ALLGOALS (dtac real_mult_less_0 THEN' assume_tac)); | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 564 | by (auto_tac (claset() addDs [order_less_not_sym], | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 565 | simpset() addsimps [real_mult_commute])); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 566 | qed "real_0_less_mult_iff"; | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 567 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 568 | Goal "((0::real) <= x*y) = (0 <= x & 0 <= y | x <= 0 & y <= 0)"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 569 | by (auto_tac (claset(), | 
| 9069 | 570 | simpset() addsimps [order_le_less, linorder_not_less, | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 571 | real_0_less_mult_iff])); | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 572 | qed "real_0_le_mult_iff"; | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 573 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 574 | Goal "(x*y < (0::real)) = (0 < x & y < 0 | x < 0 & 0 < y)"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 575 | by (auto_tac (claset(), | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 576 | simpset() addsimps [real_0_le_mult_iff, | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 577 | linorder_not_le RS sym])); | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 578 | by (auto_tac (claset() addDs [order_less_not_sym], | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 579 | simpset() addsimps [linorder_not_le])); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 580 | qed "real_mult_less_0_iff"; | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 581 | |
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 582 | Goal "(x*y <= (0::real)) = (0 <= x & y <= 0 | x <= 0 & 0 <= y)"; | 
| 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 583 | by (auto_tac (claset() addDs [order_less_not_sym], | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 584 | simpset() addsimps [real_0_less_mult_iff, | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 585 | linorder_not_less RS sym])); | 
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11713diff
changeset | 586 | qed "real_mult_le_0_iff"; | 
| 9043 
ca761fe227d8
First round of changes, towards installation of simprocs
 paulson parents: 
9013diff
changeset | 587 |