| author | wenzelm | 
| Fri, 17 Jan 2025 11:49:31 +0100 | |
| changeset 81845 | acd9849d4e9e | 
| parent 81583 | b6df83045178 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Representable.thy | 
| 25903 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 62175 | 5 | section \<open>Representable domains\<close> | 
| 25903 | 6 | |
| 41285 | 7 | theory Representable | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
63040diff
changeset | 8 | imports Algebraic Map_Functions "HOL-Library.Countable" | 
| 25903 | 9 | begin | 
| 10 | ||
| 62175 | 11 | subsection \<open>Class of representable domains\<close> | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 12 | |
| 62175 | 13 | text \<open> | 
| 40497 | 14 | We define a ``domain'' as a pcpo that is isomorphic to some | 
| 15 | algebraic deflation over the universal domain; this is equivalent | |
| 16 | to being omega-bifinite. | |
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 17 | |
| 40497 | 18 | A predomain is a cpo that, when lifted, becomes a domain. | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 19 | Predomains are represented by deflations over a lifted universal | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 20 | domain type. | 
| 62175 | 21 | \<close> | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 22 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 23 | class predomain_syn = cpo + | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 24 | fixes liftemb :: "'a\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 25 | fixes liftprj :: "udom\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 26 | fixes liftdefl :: "'a itself \<Rightarrow> udom u defl" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 27 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 28 | class predomain = predomain_syn + | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 29 | assumes predomain_ep: "ep_pair liftemb liftprj" | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 30 |   assumes cast_liftdefl: "cast\<cdot>(liftdefl TYPE('a)) = liftemb oo liftprj"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 31 | |
| 80914 
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
 wenzelm parents: 
80768diff
changeset | 32 | syntax "_LIFTDEFL" :: "type \<Rightarrow> logic" (\<open>(1LIFTDEFL/(1'(_')))\<close>) | 
| 80768 | 33 | syntax_consts "_LIFTDEFL" \<rightleftharpoons> liftdefl | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 34 | translations "LIFTDEFL('t)" \<rightleftharpoons> "CONST liftdefl TYPE('t)"
 | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 35 | |
| 41436 | 36 | definition liftdefl_of :: "udom defl \<rightarrow> udom u defl" | 
| 37 | where "liftdefl_of = defl_fun1 ID ID u_map" | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 38 | |
| 41436 | 39 | lemma cast_liftdefl_of: "cast\<cdot>(liftdefl_of\<cdot>t) = u_map\<cdot>(cast\<cdot>t)" | 
| 40 | by (simp add: liftdefl_of_def cast_defl_fun1 ep_pair_def finite_deflation_u_map) | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 41 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 42 | class "domain" = predomain_syn + pcpo + | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 43 | fixes emb :: "'a \<rightarrow> udom" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 44 | fixes prj :: "udom \<rightarrow> 'a" | 
| 41287 
029a6fc1bfb8
type 'defl' takes a type parameter again (cf. b525988432e9)
 huffman parents: 
41286diff
changeset | 45 | fixes defl :: "'a itself \<Rightarrow> udom defl" | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 46 | assumes ep_pair_emb_prj: "ep_pair emb prj" | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 47 |   assumes cast_DEFL: "cast\<cdot>(defl TYPE('a)) = emb oo prj"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 48 | assumes liftemb_eq: "liftemb = u_map\<cdot>emb" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 49 | assumes liftprj_eq: "liftprj = u_map\<cdot>prj" | 
| 41436 | 50 |   assumes liftdefl_eq: "liftdefl TYPE('a) = liftdefl_of\<cdot>(defl TYPE('a))"
 | 
| 31113 
15cf300a742f
move bifinite instance for product type from Cprod.thy to Bifinite.thy
 huffman parents: 
31076diff
changeset | 51 | |
| 80914 
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
 wenzelm parents: 
80768diff
changeset | 52 | syntax "_DEFL" :: "type \<Rightarrow> logic" (\<open>(1DEFL/(1'(_')))\<close>) | 
| 80768 | 53 | syntax_consts "_DEFL" \<rightleftharpoons> defl | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 54 | translations "DEFL('t)" \<rightleftharpoons> "CONST defl TYPE('t)"
 | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 55 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 56 | instance "domain" \<subseteq> predomain | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 57 | proof | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 58 | show "ep_pair liftemb (liftprj::udom\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>)" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 59 | unfolding liftemb_eq liftprj_eq | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 60 | by (intro ep_pair_u_map ep_pair_emb_prj) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 61 |   show "cast\<cdot>LIFTDEFL('a) = liftemb oo (liftprj::udom\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>)"
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 62 | unfolding liftemb_eq liftprj_eq liftdefl_eq | 
| 41436 | 63 | by (simp add: cast_liftdefl_of cast_DEFL u_map_oo) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 64 | qed | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 65 | |
| 62175 | 66 | text \<open> | 
| 69597 | 67 | Constants \<^const>\<open>liftemb\<close> and \<^const>\<open>liftprj\<close> imply class predomain. | 
| 62175 | 68 | \<close> | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 69 | |
| 62175 | 70 | setup \<open> | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 71 | fold Sign.add_const_constraint | 
| 69597 | 72 | [(\<^const_name>\<open>liftemb\<close>, SOME \<^typ>\<open>'a::predomain u \<rightarrow> udom u\<close>), | 
| 73 | (\<^const_name>\<open>liftprj\<close>, SOME \<^typ>\<open>udom u \<rightarrow> 'a::predomain u\<close>), | |
| 74 | (\<^const_name>\<open>liftdefl\<close>, SOME \<^typ>\<open>'a::predomain itself \<Rightarrow> udom u defl\<close>)] | |
| 62175 | 75 | \<close> | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 76 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 77 | interpretation predomain: pcpo_ep_pair liftemb liftprj | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 78 | unfolding pcpo_ep_pair_def by (rule predomain_ep) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 79 | |
| 40497 | 80 | interpretation "domain": pcpo_ep_pair emb prj | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 81 | unfolding pcpo_ep_pair_def by (rule ep_pair_emb_prj) | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 82 | |
| 40497 | 83 | lemmas emb_inverse = domain.e_inverse | 
| 84 | lemmas emb_prj_below = domain.e_p_below | |
| 85 | lemmas emb_eq_iff = domain.e_eq_iff | |
| 86 | lemmas emb_strict = domain.e_strict | |
| 87 | lemmas prj_strict = domain.p_strict | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 88 | |
| 81577 | 89 | |
| 62175 | 90 | subsection \<open>Domains are bifinite\<close> | 
| 33587 | 91 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 92 | lemma approx_chain_ep_cast: | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 93 | assumes ep: "ep_pair (e::'a::pcpo \<rightarrow> 'b::bifinite) (p::'b \<rightarrow> 'a)" | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 94 | assumes cast_t: "cast\<cdot>t = e oo p" | 
| 41287 
029a6fc1bfb8
type 'defl' takes a type parameter again (cf. b525988432e9)
 huffman parents: 
41286diff
changeset | 95 | shows "\<exists>(a::nat \<Rightarrow> 'a::pcpo \<rightarrow> 'a). approx_chain a" | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 96 | proof - | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 97 | interpret ep_pair e p by fact | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 98 | obtain Y where Y: "\<forall>i. Y i \<sqsubseteq> Y (Suc i)" | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 99 | and t: "t = (\<Squnion>i. defl_principal (Y i))" | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 100 | by (rule defl.obtain_principal_chain) | 
| 63040 | 101 | define approx where "approx i = (p oo cast\<cdot>(defl_principal (Y i)) oo e)" for i | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 102 | have "approx_chain approx" | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 103 | proof (rule approx_chain.intro) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 104 | show "chain (\<lambda>i. approx i)" | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 105 | unfolding approx_def by (simp add: Y) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 106 | show "(\<Squnion>i. approx i) = ID" | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 107 | unfolding approx_def | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 108 | by (simp add: lub_distribs Y t [symmetric] cast_t cfun_eq_iff) | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 109 | show "\<And>i. finite_deflation (approx i)" | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 110 | unfolding approx_def | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 111 | apply (rule finite_deflation_p_d_e) | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 112 | apply (rule finite_deflation_cast) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 113 | apply (rule defl.compact_principal) | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 114 | apply (rule below_trans [OF monofun_cfun_fun]) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 115 | apply (rule is_ub_thelub, simp add: Y) | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 116 | apply (simp add: lub_distribs Y t [symmetric] cast_t) | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 117 | done | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 118 | qed | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 119 | thus "\<exists>(a::nat \<Rightarrow> 'a \<rightarrow> 'a). approx_chain a" by - (rule exI) | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 120 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 121 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 122 | instance "domain" \<subseteq> bifinite | 
| 61169 | 123 | by standard (rule approx_chain_ep_cast [OF ep_pair_emb_prj cast_DEFL]) | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 124 | |
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 125 | instance predomain \<subseteq> profinite | 
| 61169 | 126 | by standard (rule approx_chain_ep_cast [OF predomain_ep cast_liftdefl]) | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 127 | |
| 81577 | 128 | |
| 62175 | 129 | subsection \<open>Universal domain ep-pairs\<close> | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 130 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 131 | definition "u_emb = udom_emb (\<lambda>i. u_map\<cdot>(udom_approx i))" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 132 | definition "u_prj = udom_prj (\<lambda>i. u_map\<cdot>(udom_approx i))" | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 133 | |
| 41297 | 134 | definition "prod_emb = udom_emb (\<lambda>i. prod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 135 | definition "prod_prj = udom_prj (\<lambda>i. prod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | |
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 136 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 137 | definition "sprod_emb = udom_emb (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 138 | definition "sprod_prj = udom_prj (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 139 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 140 | definition "ssum_emb = udom_emb (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 141 | definition "ssum_prj = udom_prj (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 142 | |
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 143 | definition "sfun_emb = udom_emb (\<lambda>i. sfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 144 | definition "sfun_prj = udom_prj (\<lambda>i. sfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))" | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 145 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 146 | lemma ep_pair_u: "ep_pair u_emb u_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 147 | unfolding u_emb_def u_prj_def | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 148 | by (simp add: ep_pair_udom approx_chain_u_map) | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 149 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 150 | lemma ep_pair_prod: "ep_pair prod_emb prod_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 151 | unfolding prod_emb_def prod_prj_def | 
| 41297 | 152 | by (simp add: ep_pair_udom approx_chain_prod_map) | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 153 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 154 | lemma ep_pair_sprod: "ep_pair sprod_emb sprod_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 155 | unfolding sprod_emb_def sprod_prj_def | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 156 | by (simp add: ep_pair_udom approx_chain_sprod_map) | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 157 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 158 | lemma ep_pair_ssum: "ep_pair ssum_emb ssum_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 159 | unfolding ssum_emb_def ssum_prj_def | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 160 | by (simp add: ep_pair_udom approx_chain_ssum_map) | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 161 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 162 | lemma ep_pair_sfun: "ep_pair sfun_emb sfun_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 163 | unfolding sfun_emb_def sfun_prj_def | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 164 | by (simp add: ep_pair_udom approx_chain_sfun_map) | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 165 | |
| 81577 | 166 | |
| 62175 | 167 | subsection \<open>Type combinators\<close> | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 168 | |
| 41437 | 169 | definition u_defl :: "udom defl \<rightarrow> udom defl" | 
| 170 | where "u_defl = defl_fun1 u_emb u_prj u_map" | |
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 171 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 172 | definition prod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl" | 
| 41297 | 173 | where "prod_defl = defl_fun2 prod_emb prod_prj prod_map" | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 174 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 175 | definition sprod_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 176 | where "sprod_defl = defl_fun2 sprod_emb sprod_prj sprod_map" | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 177 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 178 | definition ssum_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 179 | where "ssum_defl = defl_fun2 ssum_emb ssum_prj ssum_map" | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 180 | |
| 41287 
029a6fc1bfb8
type 'defl' takes a type parameter again (cf. b525988432e9)
 huffman parents: 
41286diff
changeset | 181 | definition sfun_defl :: "udom defl \<rightarrow> udom defl \<rightarrow> udom defl" | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 182 | where "sfun_defl = defl_fun2 sfun_emb sfun_prj sfun_map" | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 183 | |
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 184 | lemma cast_u_defl: | 
| 41437 | 185 | "cast\<cdot>(u_defl\<cdot>A) = u_emb oo u_map\<cdot>(cast\<cdot>A) oo u_prj" | 
| 186 | using ep_pair_u finite_deflation_u_map | |
| 187 | unfolding u_defl_def by (rule cast_defl_fun1) | |
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 188 | |
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 189 | lemma cast_prod_defl: | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 190 | "cast\<cdot>(prod_defl\<cdot>A\<cdot>B) = | 
| 41297 | 191 | prod_emb oo prod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo prod_prj" | 
| 192 | using ep_pair_prod finite_deflation_prod_map | |
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 193 | unfolding prod_defl_def by (rule cast_defl_fun2) | 
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 194 | |
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 195 | lemma cast_sprod_defl: | 
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 196 | "cast\<cdot>(sprod_defl\<cdot>A\<cdot>B) = | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 197 | sprod_emb oo sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo sprod_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 198 | using ep_pair_sprod finite_deflation_sprod_map | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 199 | unfolding sprod_defl_def by (rule cast_defl_fun2) | 
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 200 | |
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 201 | lemma cast_ssum_defl: | 
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 202 | "cast\<cdot>(ssum_defl\<cdot>A\<cdot>B) = | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 203 | ssum_emb oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo ssum_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 204 | using ep_pair_ssum finite_deflation_ssum_map | 
| 40484 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 205 | unfolding ssum_defl_def by (rule cast_defl_fun2) | 
| 
768f7e264e2b
reorganize Bifinite.thy; simplify some proofs related to bifinite class instances
 huffman parents: 
40086diff
changeset | 206 | |
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 207 | lemma cast_sfun_defl: | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 208 | "cast\<cdot>(sfun_defl\<cdot>A\<cdot>B) = | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 209 | sfun_emb oo sfun_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo sfun_prj" | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 210 | using ep_pair_sfun finite_deflation_sfun_map | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 211 | unfolding sfun_defl_def by (rule cast_defl_fun2) | 
| 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 212 | |
| 62175 | 213 | text \<open>Special deflation combinator for unpointed types.\<close> | 
| 41437 | 214 | |
| 215 | definition u_liftdefl :: "udom u defl \<rightarrow> udom defl" | |
| 216 | where "u_liftdefl = defl_fun1 u_emb u_prj ID" | |
| 217 | ||
| 218 | lemma cast_u_liftdefl: | |
| 219 | "cast\<cdot>(u_liftdefl\<cdot>A) = u_emb oo cast\<cdot>A oo u_prj" | |
| 220 | unfolding u_liftdefl_def by (simp add: cast_defl_fun1 ep_pair_u) | |
| 221 | ||
| 222 | lemma u_liftdefl_liftdefl_of: | |
| 223 | "u_liftdefl\<cdot>(liftdefl_of\<cdot>A) = u_defl\<cdot>A" | |
| 224 | by (rule cast_eq_imp_eq) | |
| 225 | (simp add: cast_u_liftdefl cast_liftdefl_of cast_u_defl) | |
| 226 | ||
| 81577 | 227 | |
| 62175 | 228 | subsection \<open>Class instance proofs\<close> | 
| 40506 | 229 | |
| 62175 | 230 | subsubsection \<open>Universal domain\<close> | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 231 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 232 | instantiation udom :: "domain" | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 233 | begin | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 234 | |
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 235 | definition [simp]: | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 236 | "emb = (ID :: udom \<rightarrow> udom)" | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 237 | |
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 238 | definition [simp]: | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 239 | "prj = (ID :: udom \<rightarrow> udom)" | 
| 25903 | 240 | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 241 | definition | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 242 | "defl (t::udom itself) = (\<Squnion>i. defl_principal (Abs_fin_defl (udom_approx i)))" | 
| 33808 | 243 | |
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 244 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 245 | "(liftemb :: udom u \<rightarrow> udom u) = u_map\<cdot>emb" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 246 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 247 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 248 | "(liftprj :: udom u \<rightarrow> udom u) = u_map\<cdot>prj" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 249 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 250 | definition | 
| 41436 | 251 | "liftdefl (t::udom itself) = liftdefl_of\<cdot>DEFL(udom)" | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 252 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 253 | instance proof | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 254 | show "ep_pair emb (prj :: udom \<rightarrow> udom)" | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 255 | by (simp add: ep_pair.intro) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 256 | show "cast\<cdot>DEFL(udom) = emb oo (prj :: udom \<rightarrow> udom)" | 
| 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 257 | unfolding defl_udom_def | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 258 | apply (subst contlub_cfun_arg) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 259 | apply (rule chainI) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 260 | apply (rule defl.principal_mono) | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 261 | apply (simp add: below_fin_defl_def) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 262 | apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 263 | apply (rule chainE) | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 264 | apply (rule chain_udom_approx) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 265 | apply (subst cast_defl_principal) | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 266 | apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx) | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 267 | done | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 268 | qed (fact liftemb_udom_def liftprj_udom_def liftdefl_udom_def)+ | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 269 | |
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 270 | end | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 271 | |
| 81577 | 272 | |
| 62175 | 273 | subsubsection \<open>Lifted cpo\<close> | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 274 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 275 | instantiation u :: (predomain) "domain" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 276 | begin | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 277 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 278 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 279 | "emb = u_emb oo liftemb" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 280 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 281 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 282 | "prj = liftprj oo u_prj" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 283 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 284 | definition | 
| 41437 | 285 |   "defl (t::'a u itself) = u_liftdefl\<cdot>LIFTDEFL('a)"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 286 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 287 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 288 | "(liftemb :: 'a u u \<rightarrow> udom u) = u_map\<cdot>emb" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 289 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 290 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 291 | "(liftprj :: udom u \<rightarrow> 'a u u) = u_map\<cdot>prj" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 292 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 293 | definition | 
| 41436 | 294 |   "liftdefl (t::'a u itself) = liftdefl_of\<cdot>DEFL('a u)"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 295 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 296 | instance proof | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 297 | show "ep_pair emb (prj :: udom \<rightarrow> 'a u)" | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 298 | unfolding emb_u_def prj_u_def | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 299 | by (intro ep_pair_comp ep_pair_u predomain_ep) | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 300 |   show "cast\<cdot>DEFL('a u) = emb oo (prj :: udom \<rightarrow> 'a u)"
 | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 301 | unfolding emb_u_def prj_u_def defl_u_def | 
| 41437 | 302 | by (simp add: cast_u_liftdefl cast_liftdefl assoc_oo) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 303 | qed (fact liftemb_u_def liftprj_u_def liftdefl_u_def)+ | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 304 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 305 | end | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 306 | |
| 41437 | 307 | lemma DEFL_u: "DEFL('a::predomain u) = u_liftdefl\<cdot>LIFTDEFL('a)"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 308 | by (rule defl_u_def) | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 309 | |
| 81577 | 310 | |
| 62175 | 311 | subsubsection \<open>Strict function space\<close> | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 312 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 313 | instantiation sfun :: ("domain", "domain") "domain"
 | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 314 | begin | 
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 315 | |
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 316 | definition | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 317 | "emb = sfun_emb oo sfun_map\<cdot>prj\<cdot>emb" | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 318 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 319 | definition | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 320 | "prj = sfun_map\<cdot>emb\<cdot>prj oo sfun_prj" | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 321 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 322 | definition | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 323 |   "defl (t::('a \<rightarrow>! 'b) itself) = sfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 324 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 325 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 326 |   "(liftemb :: ('a \<rightarrow>! 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 327 | |
| 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 328 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 329 |   "(liftprj :: udom u \<rightarrow> ('a \<rightarrow>! 'b) u) = u_map\<cdot>prj"
 | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 330 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 331 | definition | 
| 41436 | 332 |   "liftdefl (t::('a \<rightarrow>! 'b) itself) = liftdefl_of\<cdot>DEFL('a \<rightarrow>! 'b)"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 333 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 334 | instance proof | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 335 | show "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow>! 'b)" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 336 | unfolding emb_sfun_def prj_sfun_def | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 337 | by (intro ep_pair_comp ep_pair_sfun ep_pair_sfun_map ep_pair_emb_prj) | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 338 |   show "cast\<cdot>DEFL('a \<rightarrow>! 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow>! 'b)"
 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 339 | unfolding emb_sfun_def prj_sfun_def defl_sfun_def cast_sfun_defl | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 340 | by (simp add: cast_DEFL oo_def sfun_eq_iff sfun_map_map) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 341 | qed (fact liftemb_sfun_def liftprj_sfun_def liftdefl_sfun_def)+ | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 342 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 343 | end | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 344 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 345 | lemma DEFL_sfun: | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 346 |   "DEFL('a::domain \<rightarrow>! 'b::domain) = sfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 347 | by (rule defl_sfun_def) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 348 | |
| 81577 | 349 | |
| 62175 | 350 | subsubsection \<open>Continuous function space\<close> | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 351 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 352 | instantiation cfun :: (predomain, "domain") "domain" | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 353 | begin | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 354 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 355 | definition | 
| 40830 | 356 | "emb = emb oo encode_cfun" | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 357 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 358 | definition | 
| 40830 | 359 | "prj = decode_cfun oo prj" | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 360 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 361 | definition | 
| 40830 | 362 |   "defl (t::('a \<rightarrow> 'b) itself) = DEFL('a u \<rightarrow>! 'b)"
 | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 363 | |
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 364 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 365 |   "(liftemb :: ('a \<rightarrow> 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 366 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 367 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 368 |   "(liftprj :: udom u \<rightarrow> ('a \<rightarrow> 'b) u) = u_map\<cdot>prj"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 369 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 370 | definition | 
| 41436 | 371 |   "liftdefl (t::('a \<rightarrow> 'b) itself) = liftdefl_of\<cdot>DEFL('a \<rightarrow> 'b)"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 372 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 373 | instance proof | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 374 | have "ep_pair encode_cfun decode_cfun" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 375 | by (rule ep_pair.intro, simp_all) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40506diff
changeset | 376 | thus "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)" | 
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 377 | unfolding emb_cfun_def prj_cfun_def | 
| 40830 | 378 | using ep_pair_emb_prj by (rule ep_pair_comp) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 379 |   show "cast\<cdot>DEFL('a \<rightarrow> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
 | 
| 40830 | 380 | unfolding emb_cfun_def prj_cfun_def defl_cfun_def | 
| 381 | by (simp add: cast_DEFL cfcomp1) | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 382 | qed (fact liftemb_cfun_def liftprj_cfun_def liftdefl_cfun_def)+ | 
| 25903 | 383 | |
| 39985 
310f98585107
move stuff from Algebraic.thy to Bifinite.thy and elsewhere
 huffman parents: 
39974diff
changeset | 384 | end | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
31113diff
changeset | 385 | |
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 386 | lemma DEFL_cfun: | 
| 40830 | 387 |   "DEFL('a::predomain \<rightarrow> 'b::domain) = DEFL('a u \<rightarrow>! 'b)"
 | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 388 | by (rule defl_cfun_def) | 
| 39972 
4244ff4f9649
add lemmas finite_deflation_imp_compact, cast_below_cast_iff
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37678diff
changeset | 389 | |
| 81577 | 390 | |
| 62175 | 391 | subsubsection \<open>Strict product\<close> | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 392 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 393 | instantiation sprod :: ("domain", "domain") "domain"
 | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 394 | begin | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 395 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 396 | definition | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 397 | "emb = sprod_emb oo sprod_map\<cdot>emb\<cdot>emb" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 398 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 399 | definition | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 400 | "prj = sprod_map\<cdot>prj\<cdot>prj oo sprod_prj" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 401 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 402 | definition | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 403 |   "defl (t::('a \<otimes> 'b) itself) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 404 | |
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 405 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 406 |   "(liftemb :: ('a \<otimes> 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 407 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 408 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 409 |   "(liftprj :: udom u \<rightarrow> ('a \<otimes> 'b) u) = u_map\<cdot>prj"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 410 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 411 | definition | 
| 41436 | 412 |   "liftdefl (t::('a \<otimes> 'b) itself) = liftdefl_of\<cdot>DEFL('a \<otimes> 'b)"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 413 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 414 | instance proof | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 415 | show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)" | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 416 | unfolding emb_sprod_def prj_sprod_def | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 417 | by (intro ep_pair_comp ep_pair_sprod ep_pair_sprod_map ep_pair_emb_prj) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 418 |   show "cast\<cdot>DEFL('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
 | 
| 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 419 | unfolding emb_sprod_def prj_sprod_def defl_sprod_def cast_sprod_defl | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39989diff
changeset | 420 | by (simp add: cast_DEFL oo_def cfun_eq_iff sprod_map_map) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 421 | qed (fact liftemb_sprod_def liftprj_sprod_def liftdefl_sprod_def)+ | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 422 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 423 | end | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 424 | |
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 425 | lemma DEFL_sprod: | 
| 40497 | 426 |   "DEFL('a::domain \<otimes> 'b::domain) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 427 | by (rule defl_sprod_def) | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 428 | |
| 81577 | 429 | |
| 62175 | 430 | subsubsection \<open>Cartesian product\<close> | 
| 40830 | 431 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 432 | definition prod_liftdefl :: "udom u defl \<rightarrow> udom u defl \<rightarrow> udom u defl" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 433 | where "prod_liftdefl = defl_fun2 (u_map\<cdot>prod_emb oo decode_prod_u) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 434 | (encode_prod_u oo u_map\<cdot>prod_prj) sprod_map" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 435 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 436 | lemma cast_prod_liftdefl: | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 437 | "cast\<cdot>(prod_liftdefl\<cdot>a\<cdot>b) = | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 438 | (u_map\<cdot>prod_emb oo decode_prod_u) oo sprod_map\<cdot>(cast\<cdot>a)\<cdot>(cast\<cdot>b) oo | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 439 | (encode_prod_u oo u_map\<cdot>prod_prj)" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 440 | unfolding prod_liftdefl_def | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 441 | apply (rule cast_defl_fun2) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 442 | apply (intro ep_pair_comp ep_pair_u_map ep_pair_prod) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 443 | apply (simp add: ep_pair.intro) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 444 | apply (erule (1) finite_deflation_sprod_map) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 445 | done | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 446 | |
| 40830 | 447 | instantiation prod :: (predomain, predomain) predomain | 
| 448 | begin | |
| 449 | ||
| 450 | definition | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 451 | "liftemb = (u_map\<cdot>prod_emb oo decode_prod_u) oo | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 452 | (sprod_map\<cdot>liftemb\<cdot>liftemb oo encode_prod_u)" | 
| 40830 | 453 | |
| 454 | definition | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 455 | "liftprj = (decode_prod_u oo sprod_map\<cdot>liftprj\<cdot>liftprj) oo | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 456 | (encode_prod_u oo u_map\<cdot>prod_prj)" | 
| 40830 | 457 | |
| 458 | definition | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 459 |   "liftdefl (t::('a \<times> 'b) itself) = prod_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
 | 
| 40830 | 460 | |
| 461 | instance proof | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 462 |   show "ep_pair liftemb (liftprj :: udom u \<rightarrow> ('a \<times> 'b) u)"
 | 
| 40830 | 463 | unfolding liftemb_prod_def liftprj_prod_def | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 464 | by (intro ep_pair_comp ep_pair_sprod_map ep_pair_u_map | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 465 | ep_pair_prod predomain_ep, simp_all add: ep_pair.intro) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 466 |   show "cast\<cdot>LIFTDEFL('a \<times> 'b) = liftemb oo (liftprj :: udom u \<rightarrow> ('a \<times> 'b) u)"
 | 
| 40830 | 467 | unfolding liftemb_prod_def liftprj_prod_def liftdefl_prod_def | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 468 | by (simp add: cast_prod_liftdefl cast_liftdefl cfcomp1 sprod_map_map) | 
| 40830 | 469 | qed | 
| 470 | ||
| 471 | end | |
| 472 | ||
| 473 | instantiation prod :: ("domain", "domain") "domain"
 | |
| 474 | begin | |
| 475 | ||
| 476 | definition | |
| 41297 | 477 | "emb = prod_emb oo prod_map\<cdot>emb\<cdot>emb" | 
| 40830 | 478 | |
| 479 | definition | |
| 41297 | 480 | "prj = prod_map\<cdot>prj\<cdot>prj oo prod_prj" | 
| 40830 | 481 | |
| 482 | definition | |
| 483 |   "defl (t::('a \<times> 'b) itself) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | |
| 484 | ||
| 485 | instance proof | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 486 | show 1: "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)" | 
| 40830 | 487 | unfolding emb_prod_def prj_prod_def | 
| 41297 | 488 | by (intro ep_pair_comp ep_pair_prod ep_pair_prod_map ep_pair_emb_prj) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 489 |   show 2: "cast\<cdot>DEFL('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
 | 
| 40830 | 490 | unfolding emb_prod_def prj_prod_def defl_prod_def cast_prod_defl | 
| 41297 | 491 | by (simp add: cast_DEFL oo_def cfun_eq_iff prod_map_map) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 492 | show 3: "liftemb = u_map\<cdot>(emb :: 'a \<times> 'b \<rightarrow> udom)" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 493 | unfolding emb_prod_def liftemb_prod_def liftemb_eq | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 494 | unfolding encode_prod_u_def decode_prod_u_def | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 495 | by (rule cfun_eqI, case_tac x, simp, clarsimp) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 496 | show 4: "liftprj = u_map\<cdot>(prj :: udom \<rightarrow> 'a \<times> 'b)" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 497 | unfolding prj_prod_def liftprj_prod_def liftprj_eq | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 498 | unfolding encode_prod_u_def decode_prod_u_def | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 499 | apply (rule cfun_eqI, case_tac x, simp) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 500 | apply (rename_tac y, case_tac "prod_prj\<cdot>y", simp) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 501 | done | 
| 41436 | 502 |   show 5: "LIFTDEFL('a \<times> 'b) = liftdefl_of\<cdot>DEFL('a \<times> 'b)"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 503 | by (rule cast_eq_imp_eq) | 
| 41436 | 504 | (simp add: cast_liftdefl cast_liftdefl_of cast_DEFL 2 3 4 u_map_oo) | 
| 40830 | 505 | qed | 
| 506 | ||
| 507 | end | |
| 508 | ||
| 509 | lemma DEFL_prod: | |
| 510 |   "DEFL('a::domain \<times> 'b::domain) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | |
| 511 | by (rule defl_prod_def) | |
| 512 | ||
| 513 | lemma LIFTDEFL_prod: | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 514 |   "LIFTDEFL('a::predomain \<times> 'b::predomain) =
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 515 |     prod_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
 | 
| 40830 | 516 | by (rule liftdefl_prod_def) | 
| 517 | ||
| 81577 | 518 | |
| 62175 | 519 | subsubsection \<open>Unit type\<close> | 
| 41034 | 520 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 521 | instantiation unit :: "domain" | 
| 41034 | 522 | begin | 
| 523 | ||
| 524 | definition | |
| 525 | "emb = (\<bottom> :: unit \<rightarrow> udom)" | |
| 526 | ||
| 527 | definition | |
| 528 | "prj = (\<bottom> :: udom \<rightarrow> unit)" | |
| 529 | ||
| 530 | definition | |
| 531 | "defl (t::unit itself) = \<bottom>" | |
| 532 | ||
| 533 | definition | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 534 | "(liftemb :: unit u \<rightarrow> udom u) = u_map\<cdot>emb" | 
| 41034 | 535 | |
| 536 | definition | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 537 | "(liftprj :: udom u \<rightarrow> unit u) = u_map\<cdot>prj" | 
| 41034 | 538 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 539 | definition | 
| 41436 | 540 | "liftdefl (t::unit itself) = liftdefl_of\<cdot>DEFL(unit)" | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 541 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 542 | instance proof | 
| 41034 | 543 | show "ep_pair emb (prj :: udom \<rightarrow> unit)" | 
| 544 | unfolding emb_unit_def prj_unit_def | |
| 545 | by (simp add: ep_pair.intro) | |
| 546 | show "cast\<cdot>DEFL(unit) = emb oo (prj :: udom \<rightarrow> unit)" | |
| 547 | unfolding emb_unit_def prj_unit_def defl_unit_def by simp | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 548 | qed (fact liftemb_unit_def liftprj_unit_def liftdefl_unit_def)+ | 
| 41034 | 549 | |
| 550 | end | |
| 551 | ||
| 81577 | 552 | |
| 62175 | 553 | subsubsection \<open>Discrete cpo\<close> | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 554 | |
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 555 | instantiation discr :: (countable) predomain | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 556 | begin | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 557 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 558 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 559 | "(liftemb :: 'a discr u \<rightarrow> udom u) = strictify\<cdot>up oo udom_emb discr_approx" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 560 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 561 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 562 | "(liftprj :: udom u \<rightarrow> 'a discr u) = udom_prj discr_approx oo fup\<cdot>ID" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 563 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 564 | definition | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 565 | "liftdefl (t::'a discr itself) = | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 566 | (\<Squnion>i. defl_principal (Abs_fin_defl (liftemb oo discr_approx i oo (liftprj::udom u \<rightarrow> 'a discr u))))" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 567 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 568 | instance proof | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 569 | show 1: "ep_pair liftemb (liftprj :: udom u \<rightarrow> 'a discr u)" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 570 | unfolding liftemb_discr_def liftprj_discr_def | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 571 | apply (intro ep_pair_comp ep_pair_udom [OF discr_approx]) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 572 | apply (rule ep_pair.intro) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 573 | apply (simp add: strictify_conv_if) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 574 | apply (case_tac y, simp, simp add: strictify_conv_if) | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 575 | done | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 576 |   show "cast\<cdot>LIFTDEFL('a discr) = liftemb oo (liftprj :: udom u \<rightarrow> 'a discr u)"
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 577 | unfolding liftdefl_discr_def | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 578 | apply (subst contlub_cfun_arg) | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 579 | apply (rule chainI) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 580 | apply (rule defl.principal_mono) | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 581 | apply (simp add: below_fin_defl_def) | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 582 | apply (simp add: Abs_fin_defl_inverse | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 583 | ep_pair.finite_deflation_e_d_p [OF 1] | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 584 | approx_chain.finite_deflation_approx [OF discr_approx]) | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 585 | apply (intro monofun_cfun below_refl) | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 586 | apply (rule chainE) | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 587 | apply (rule chain_discr_approx) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 588 | apply (subst cast_defl_principal) | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 589 | apply (simp add: Abs_fin_defl_inverse | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 590 | ep_pair.finite_deflation_e_d_p [OF 1] | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 591 | approx_chain.finite_deflation_approx [OF discr_approx]) | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 592 | apply (simp add: lub_distribs) | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 593 | done | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 594 | qed | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 595 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 596 | end | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 597 | |
| 81577 | 598 | |
| 62175 | 599 | subsubsection \<open>Strict sum\<close> | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 600 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 601 | instantiation ssum :: ("domain", "domain") "domain"
 | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 602 | begin | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 603 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 604 | definition | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 605 | "emb = ssum_emb oo ssum_map\<cdot>emb\<cdot>emb" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 606 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 607 | definition | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 608 | "prj = ssum_map\<cdot>prj\<cdot>prj oo ssum_prj" | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 609 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 610 | definition | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 611 |   "defl (t::('a \<oplus> 'b) itself) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 612 | |
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 613 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 614 |   "(liftemb :: ('a \<oplus> 'b) u \<rightarrow> udom u) = u_map\<cdot>emb"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 615 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 616 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 617 |   "(liftprj :: udom u \<rightarrow> ('a \<oplus> 'b) u) = u_map\<cdot>prj"
 | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 618 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 619 | definition | 
| 41436 | 620 |   "liftdefl (t::('a \<oplus> 'b) itself) = liftdefl_of\<cdot>DEFL('a \<oplus> 'b)"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 621 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 622 | instance proof | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 623 | show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)" | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 624 | unfolding emb_ssum_def prj_ssum_def | 
| 41290 
e9c9577d88b5
replace foo_approx functions with foo_emb, foo_prj functions for universal domain embeddings
 huffman parents: 
41287diff
changeset | 625 | by (intro ep_pair_comp ep_pair_ssum ep_pair_ssum_map ep_pair_emb_prj) | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 626 |   show "cast\<cdot>DEFL('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
 | 
| 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 627 | unfolding emb_ssum_def prj_ssum_def defl_ssum_def cast_ssum_defl | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39989diff
changeset | 628 | by (simp add: cast_DEFL oo_def cfun_eq_iff ssum_map_map) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 629 | qed (fact liftemb_ssum_def liftprj_ssum_def liftdefl_ssum_def)+ | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 630 | |
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 631 | end | 
| 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 632 | |
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 633 | lemma DEFL_ssum: | 
| 40497 | 634 |   "DEFL('a::domain \<oplus> 'b::domain) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
 | 
| 39989 
ad60d7311f43
renamed type and constant 'sfp' to 'defl'; replaced syntax SFP('a) with DEFL('a)
 huffman parents: 
39987diff
changeset | 635 | by (rule defl_ssum_def) | 
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 636 | |
| 81577 | 637 | |
| 62175 | 638 | subsubsection \<open>Lifted HOL type\<close> | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 639 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 640 | instantiation lift :: (countable) "domain" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 641 | begin | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 642 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 643 | definition | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 644 | "emb = emb oo (\<Lambda> x. Rep_lift x)" | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 645 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 646 | definition | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 647 | "prj = (\<Lambda> y. Abs_lift y) oo prj" | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 648 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 649 | definition | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 650 |   "defl (t::'a lift itself) = DEFL('a discr u)"
 | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 651 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 652 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 653 | "(liftemb :: 'a lift u \<rightarrow> udom u) = u_map\<cdot>emb" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 654 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 655 | definition | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 656 | "(liftprj :: udom u \<rightarrow> 'a lift u) = u_map\<cdot>prj" | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 657 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 658 | definition | 
| 41436 | 659 |   "liftdefl (t::'a lift itself) = liftdefl_of\<cdot>DEFL('a lift)"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 660 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 661 | instance proof | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 662 | note [simp] = cont_Rep_lift cont_Abs_lift Rep_lift_inverse Abs_lift_inverse | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 663 | have "ep_pair (\<Lambda>(x::'a lift). Rep_lift x) (\<Lambda> y. Abs_lift y)" | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 664 | by (simp add: ep_pair_def) | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 665 | thus "ep_pair emb (prj :: udom \<rightarrow> 'a lift)" | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 666 | unfolding emb_lift_def prj_lift_def | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 667 | using ep_pair_emb_prj by (rule ep_pair_comp) | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 668 |   show "cast\<cdot>DEFL('a lift) = emb oo (prj :: udom \<rightarrow> 'a lift)"
 | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 669 | unfolding emb_lift_def prj_lift_def defl_lift_def cast_DEFL | 
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 670 | by (simp add: cfcomp1) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 671 | qed (fact liftemb_lift_def liftprj_lift_def liftdefl_lift_def)+ | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 672 | |
| 39987 
8c2f449af35a
move all bifinite class instances to Bifinite.thy
 huffman parents: 
39986diff
changeset | 673 | end | 
| 40491 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 674 | |
| 
6de5839e2fb3
add 'predomain' class: unpointed version of bifinite
 huffman parents: 
40484diff
changeset | 675 | end |