| author | haftmann | 
| Mon, 20 Sep 2010 15:10:21 +0200 | |
| changeset 39564 | acfd10e38e80 | 
| parent 37596 | 248db70c9bcf | 
| child 41775 | 6214816d79d3 | 
| permissions | -rw-r--r-- | 
| 13508 | 1  | 
(******************************************************************************  | 
2  | 
very similar to Guard except:  | 
|
3  | 
- Guard is replaced by GuardK, guard by guardK, Nonce by Key  | 
|
4  | 
- some scripts are slightly modified (+ keyset_in, kparts_parts)  | 
|
5  | 
- the hypothesis Key n ~:G (keyset G) is added  | 
|
6  | 
||
7  | 
date: march 2002  | 
|
8  | 
author: Frederic Blanqui  | 
|
9  | 
email: blanqui@lri.fr  | 
|
10  | 
webpage: http://www.lri.fr/~blanqui/  | 
|
11  | 
||
12  | 
University of Cambridge, Computer Laboratory  | 
|
13  | 
William Gates Building, JJ Thomson Avenue  | 
|
14  | 
Cambridge CB3 0FD, United Kingdom  | 
|
15  | 
******************************************************************************)  | 
|
16  | 
||
17  | 
header{*protocol-independent confidentiality theorem on keys*}
 | 
|
18  | 
||
| 27108 | 19  | 
theory GuardK  | 
20  | 
imports Analz Extensions  | 
|
21  | 
begin  | 
|
| 13508 | 22  | 
|
23  | 
(******************************************************************************  | 
|
24  | 
messages where all the occurrences of Key n are  | 
|
25  | 
in a sub-message of the form Crypt (invKey K) X with K:Ks  | 
|
26  | 
******************************************************************************)  | 
|
27  | 
||
| 23746 | 28  | 
inductive_set  | 
29  | 
guardK :: "nat => key set => msg set"  | 
|
30  | 
for n :: nat and Ks :: "key set"  | 
|
31  | 
where  | 
|
32  | 
  No_Key [intro]: "Key n ~:parts {X} ==> X:guardK n Ks"
 | 
|
33  | 
| Guard_Key [intro]: "invKey K:Ks ==> Crypt K X:guardK n Ks"  | 
|
34  | 
| Crypt [intro]: "X:guardK n Ks ==> Crypt K X:guardK n Ks"  | 
|
35  | 
| Pair [intro]: "[| X:guardK n Ks; Y:guardK n Ks |] ==> {|X,Y|}:guardK n Ks"
 | 
|
| 13508 | 36  | 
|
37  | 
subsection{*basic facts about @{term guardK}*}
 | 
|
38  | 
||
39  | 
lemma Nonce_is_guardK [iff]: "Nonce p:guardK n Ks"  | 
|
40  | 
by auto  | 
|
41  | 
||
42  | 
lemma Agent_is_guardK [iff]: "Agent A:guardK n Ks"  | 
|
43  | 
by auto  | 
|
44  | 
||
45  | 
lemma Number_is_guardK [iff]: "Number r:guardK n Ks"  | 
|
46  | 
by auto  | 
|
47  | 
||
48  | 
lemma Key_notin_guardK: "X:guardK n Ks ==> X ~= Key n"  | 
|
49  | 
by (erule guardK.induct, auto)  | 
|
50  | 
||
51  | 
lemma Key_notin_guardK_iff [iff]: "Key n ~:guardK n Ks"  | 
|
52  | 
by (auto dest: Key_notin_guardK)  | 
|
53  | 
||
54  | 
lemma guardK_has_Crypt [rule_format]: "X:guardK n Ks ==> Key n:parts {X}
 | 
|
55  | 
--> (EX K Y. Crypt K Y:kparts {X} & Key n:parts {Y})"
 | 
|
56  | 
by (erule guardK.induct, auto)  | 
|
57  | 
||
58  | 
lemma Key_notin_kparts_msg: "X:guardK n Ks ==> Key n ~:kparts {X}"
 | 
|
59  | 
by (erule guardK.induct, auto dest: kparts_parts)  | 
|
60  | 
||
61  | 
lemma Key_in_kparts_imp_no_guardK: "Key n:kparts H  | 
|
62  | 
==> EX X. X:H & X ~:guardK n Ks"  | 
|
63  | 
apply (drule in_kparts, clarify)  | 
|
64  | 
apply (rule_tac x=X in exI, clarify)  | 
|
65  | 
by (auto dest: Key_notin_kparts_msg)  | 
|
66  | 
||
67  | 
lemma guardK_kparts [rule_format]: "X:guardK n Ks ==>  | 
|
68  | 
Y:kparts {X} --> Y:guardK n Ks"
 | 
|
69  | 
by (erule guardK.induct, auto dest: kparts_parts parts_sub)  | 
|
70  | 
||
71  | 
lemma guardK_Crypt: "[| Crypt K Y:guardK n Ks; K ~:invKey`Ks |] ==> Y:guardK n Ks"  | 
|
72  | 
by (ind_cases "Crypt K Y:guardK n Ks", auto)  | 
|
73  | 
||
74  | 
lemma guardK_MPair [iff]: "({|X,Y|}:guardK n Ks)
 | 
|
75  | 
= (X:guardK n Ks & Y:guardK n Ks)"  | 
|
76  | 
by (auto, (ind_cases "{|X,Y|}:guardK n Ks", auto)+)
 | 
|
77  | 
||
78  | 
lemma guardK_not_guardK [rule_format]: "X:guardK n Ks ==>  | 
|
79  | 
Crypt K Y:kparts {X} --> Key n:kparts {Y} --> Y ~:guardK n Ks"
 | 
|
80  | 
by (erule guardK.induct, auto dest: guardK_kparts)  | 
|
81  | 
||
82  | 
lemma guardK_extand: "[| X:guardK n Ks; Ks <= Ks';  | 
|
83  | 
[| K:Ks'; K ~:Ks |] ==> Key K ~:parts {X} |] ==> X:guardK n Ks'"
 | 
|
84  | 
by (erule guardK.induct, auto)  | 
|
85  | 
||
86  | 
subsection{*guarded sets*}
 | 
|
87  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
27108 
diff
changeset
 | 
88  | 
definition GuardK :: "nat => key set => msg set => bool" where  | 
| 13508 | 89  | 
"GuardK n Ks H == ALL X. X:H --> X:guardK n Ks"  | 
90  | 
||
91  | 
subsection{*basic facts about @{term GuardK}*}
 | 
|
92  | 
||
93  | 
lemma GuardK_empty [iff]: "GuardK n Ks {}"
 | 
|
94  | 
by (simp add: GuardK_def)  | 
|
95  | 
||
96  | 
lemma Key_notin_kparts [simplified]: "GuardK n Ks H ==> Key n ~:kparts H"  | 
|
97  | 
by (auto simp: GuardK_def dest: in_kparts Key_notin_kparts_msg)  | 
|
98  | 
||
99  | 
lemma GuardK_must_decrypt: "[| GuardK n Ks H; Key n:analz H |] ==>  | 
|
100  | 
EX K Y. Crypt K Y:kparts H & Key (invKey K):kparts H"  | 
|
101  | 
apply (drule_tac P="%G. Key n:G" in analz_pparts_kparts_substD, simp)  | 
|
102  | 
by (drule must_decrypt, auto dest: Key_notin_kparts)  | 
|
103  | 
||
104  | 
lemma GuardK_kparts [intro]: "GuardK n Ks H ==> GuardK n Ks (kparts H)"  | 
|
105  | 
by (auto simp: GuardK_def dest: in_kparts guardK_kparts)  | 
|
106  | 
||
107  | 
lemma GuardK_mono: "[| GuardK n Ks H; G <= H |] ==> GuardK n Ks G"  | 
|
108  | 
by (auto simp: GuardK_def)  | 
|
109  | 
||
110  | 
lemma GuardK_insert [iff]: "GuardK n Ks (insert X H)  | 
|
111  | 
= (GuardK n Ks H & X:guardK n Ks)"  | 
|
112  | 
by (auto simp: GuardK_def)  | 
|
113  | 
||
114  | 
lemma GuardK_Un [iff]: "GuardK n Ks (G Un H) = (GuardK n Ks G & GuardK n Ks H)"  | 
|
115  | 
by (auto simp: GuardK_def)  | 
|
116  | 
||
117  | 
lemma GuardK_synth [intro]: "GuardK n Ks G ==> GuardK n Ks (synth G)"  | 
|
118  | 
by (auto simp: GuardK_def, erule synth.induct, auto)  | 
|
119  | 
||
120  | 
lemma GuardK_analz [intro]: "[| GuardK n Ks G; ALL K. K:Ks --> Key K ~:analz G |]  | 
|
121  | 
==> GuardK n Ks (analz G)"  | 
|
122  | 
apply (auto simp: GuardK_def)  | 
|
123  | 
apply (erule analz.induct, auto)  | 
|
| 23746 | 124  | 
by (ind_cases "Crypt K Xa:guardK n Ks" for K Xa, auto)  | 
| 13508 | 125  | 
|
126  | 
lemma in_GuardK [dest]: "[| X:G; GuardK n Ks G |] ==> X:guardK n Ks"  | 
|
127  | 
by (auto simp: GuardK_def)  | 
|
128  | 
||
129  | 
lemma in_synth_GuardK: "[| X:synth G; GuardK n Ks G |] ==> X:guardK n Ks"  | 
|
130  | 
by (drule GuardK_synth, auto)  | 
|
131  | 
||
132  | 
lemma in_analz_GuardK: "[| X:analz G; GuardK n Ks G;  | 
|
133  | 
ALL K. K:Ks --> Key K ~:analz G |] ==> X:guardK n Ks"  | 
|
134  | 
by (drule GuardK_analz, auto)  | 
|
135  | 
||
136  | 
lemma GuardK_keyset [simp]: "[| keyset G; Key n ~:G |] ==> GuardK n Ks G"  | 
|
137  | 
by (simp only: GuardK_def, clarify, drule keyset_in, auto)  | 
|
138  | 
||
139  | 
lemma GuardK_Un_keyset: "[| GuardK n Ks G; keyset H; Key n ~:H |]  | 
|
140  | 
==> GuardK n Ks (G Un H)"  | 
|
141  | 
by auto  | 
|
142  | 
||
143  | 
lemma in_GuardK_kparts: "[| X:G; GuardK n Ks G; Y:kparts {X} |] ==> Y:guardK n Ks"
 | 
|
144  | 
by blast  | 
|
145  | 
||
146  | 
lemma in_GuardK_kparts_neq: "[| X:G; GuardK n Ks G; Key n':kparts {X} |]
 | 
|
147  | 
==> n ~= n'"  | 
|
148  | 
by (blast dest: in_GuardK_kparts)  | 
|
149  | 
||
150  | 
lemma in_GuardK_kparts_Crypt: "[| X:G; GuardK n Ks G; is_MPair X;  | 
|
151  | 
Crypt K Y:kparts {X}; Key n:kparts {Y} |] ==> invKey K:Ks"
 | 
|
152  | 
apply (drule in_GuardK, simp)  | 
|
153  | 
apply (frule guardK_not_guardK, simp+)  | 
|
154  | 
apply (drule guardK_kparts, simp)  | 
|
155  | 
by (ind_cases "Crypt K Y:guardK n Ks", auto)  | 
|
156  | 
||
157  | 
lemma GuardK_extand: "[| GuardK n Ks G; Ks <= Ks';  | 
|
158  | 
[| K:Ks'; K ~:Ks |] ==> Key K ~:parts G |] ==> GuardK n Ks' G"  | 
|
159  | 
by (auto simp: GuardK_def dest: guardK_extand parts_sub)  | 
|
160  | 
||
161  | 
subsection{*set obtained by decrypting a message*}
 | 
|
162  | 
||
| 20768 | 163  | 
abbreviation (input)  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20768 
diff
changeset
 | 
164  | 
decrypt :: "msg set => key => msg => msg set" where  | 
| 20768 | 165  | 
  "decrypt H K Y == insert Y (H - {Crypt K Y})"
 | 
| 13508 | 166  | 
|
167  | 
lemma analz_decrypt: "[| Crypt K Y:H; Key (invKey K):H; Key n:analz H |]  | 
|
168  | 
==> Key n:analz (decrypt H K Y)"  | 
|
| 14307 | 169  | 
apply (drule_tac P="%H. Key n:analz H" in ssubst [OF insert_Diff])  | 
170  | 
apply assumption  | 
|
171  | 
apply (simp only: analz_Crypt_if, simp)  | 
|
172  | 
done  | 
|
| 13508 | 173  | 
|
174  | 
lemma parts_decrypt: "[| Crypt K Y:H; X:parts (decrypt H K Y) |] ==> X:parts H"  | 
|
175  | 
by (erule parts.induct, auto intro: parts.Fst parts.Snd parts.Body)  | 
|
176  | 
||
177  | 
subsection{*number of Crypt's in a message*}
 | 
|
178  | 
||
| 35418 | 179  | 
fun crypt_nb :: "msg => nat" where  | 
180  | 
"crypt_nb (Crypt K X) = Suc (crypt_nb X)" |  | 
|
181  | 
"crypt_nb {|X,Y|} = crypt_nb X + crypt_nb Y" |
 | 
|
| 13508 | 182  | 
"crypt_nb X = 0" (* otherwise *)  | 
183  | 
||
184  | 
subsection{*basic facts about @{term crypt_nb}*}
 | 
|
185  | 
||
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
23746 
diff
changeset
 | 
186  | 
lemma non_empty_crypt_msg: "Crypt K Y:parts {X} ==> crypt_nb X \<noteq> 0"
 | 
| 13508 | 187  | 
by (induct X, simp_all, safe, simp_all)  | 
188  | 
||
189  | 
subsection{*number of Crypt's in a message list*}
 | 
|
190  | 
||
| 35418 | 191  | 
primrec cnb :: "msg list => nat" where  | 
192  | 
"cnb [] = 0" |  | 
|
| 13508 | 193  | 
"cnb (X#l) = crypt_nb X + cnb l"  | 
194  | 
||
195  | 
subsection{*basic facts about @{term cnb}*}
 | 
|
196  | 
||
197  | 
lemma cnb_app [simp]: "cnb (l @ l') = cnb l + cnb l'"  | 
|
198  | 
by (induct l, auto)  | 
|
199  | 
||
| 37596 | 200  | 
lemma mem_cnb_minus: "x \<in> set l ==> cnb l = crypt_nb x + (cnb l - crypt_nb x)"  | 
| 13508 | 201  | 
by (induct l, auto)  | 
202  | 
||
203  | 
lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]  | 
|
204  | 
||
| 37596 | 205  | 
lemma cnb_minus [simp]: "x \<in> set l ==> cnb (remove l x) = cnb l - crypt_nb x"  | 
| 13508 | 206  | 
apply (induct l, auto)  | 
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
207  | 
by (erule_tac l1=l and x1=x in mem_cnb_minus_substI, simp)  | 
| 13508 | 208  | 
|
209  | 
lemma parts_cnb: "Z:parts (set l) ==>  | 
|
210  | 
cnb l = (cnb l - crypt_nb Z) + crypt_nb Z"  | 
|
211  | 
by (erule parts.induct, auto simp: in_set_conv_decomp)  | 
|
212  | 
||
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
23746 
diff
changeset
 | 
213  | 
lemma non_empty_crypt: "Crypt K Y:parts (set l) ==> cnb l \<noteq> 0"  | 
| 13508 | 214  | 
by (induct l, auto dest: non_empty_crypt_msg parts_insert_substD)  | 
215  | 
||
216  | 
subsection{*list of kparts*}
 | 
|
217  | 
||
218  | 
lemma kparts_msg_set: "EX l. kparts {X} = set l & cnb l = crypt_nb X"
 | 
|
219  | 
apply (induct X, simp_all)  | 
|
220  | 
apply (rule_tac x="[Agent agent]" in exI, simp)  | 
|
221  | 
apply (rule_tac x="[Number nat]" in exI, simp)  | 
|
222  | 
apply (rule_tac x="[Nonce nat]" in exI, simp)  | 
|
223  | 
apply (rule_tac x="[Key nat]" in exI, simp)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
224  | 
apply (rule_tac x="[Hash X]" in exI, simp)  | 
| 13508 | 225  | 
apply (clarify, rule_tac x="l@la" in exI, simp)  | 
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
226  | 
by (clarify, rule_tac x="[Crypt nat X]" in exI, simp)  | 
| 13508 | 227  | 
|
228  | 
lemma kparts_set: "EX l'. kparts (set l) = set l' & cnb l' = cnb l"  | 
|
229  | 
apply (induct l)  | 
|
230  | 
apply (rule_tac x="[]" in exI, simp, clarsimp)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
231  | 
apply (subgoal_tac "EX l''.  kparts {a} = set l'' & cnb l'' = crypt_nb a", clarify)
 | 
| 
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
232  | 
apply (rule_tac x="l''@l'" in exI, simp)  | 
| 13508 | 233  | 
apply (rule kparts_insert_substI, simp)  | 
234  | 
by (rule kparts_msg_set)  | 
|
235  | 
||
236  | 
subsection{*list corresponding to "decrypt"*}
 | 
|
237  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
27108 
diff
changeset
 | 
238  | 
definition decrypt' :: "msg list => key => msg => msg list" where  | 
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
239  | 
"decrypt' l K Y == Y # remove l (Crypt K Y)"  | 
| 13508 | 240  | 
|
241  | 
declare decrypt'_def [simp]  | 
|
242  | 
||
243  | 
subsection{*basic facts about @{term decrypt'}*}
 | 
|
244  | 
||
245  | 
lemma decrypt_minus: "decrypt (set l) K Y <= set (decrypt' l K Y)"  | 
|
246  | 
by (induct l, auto)  | 
|
247  | 
||
248  | 
text{*if the analysis of a finite guarded set gives n then it must also give
 | 
|
249  | 
one of the keys of Ks*}  | 
|
250  | 
||
251  | 
lemma GuardK_invKey_by_list [rule_format]: "ALL l. cnb l = p  | 
|
252  | 
--> GuardK n Ks (set l) --> Key n:analz (set l)  | 
|
253  | 
--> (EX K. K:Ks & Key K:analz (set l))"  | 
|
254  | 
apply (induct p)  | 
|
255  | 
(* case p=0 *)  | 
|
256  | 
apply (clarify, drule GuardK_must_decrypt, simp, clarify)  | 
|
257  | 
apply (drule kparts_parts, drule non_empty_crypt, simp)  | 
|
258  | 
(* case p>0 *)  | 
|
259  | 
apply (clarify, frule GuardK_must_decrypt, simp, clarify)  | 
|
260  | 
apply (drule_tac P="%G. Key n:G" in analz_pparts_kparts_substD, simp)  | 
|
261  | 
apply (frule analz_decrypt, simp_all)  | 
|
262  | 
apply (subgoal_tac "EX l'. kparts (set l) = set l' & cnb l' = cnb l", clarsimp)  | 
|
263  | 
apply (drule_tac G="insert Y (set l' - {Crypt K Y})"
 | 
|
264  | 
and H="set (decrypt' l' K Y)" in analz_sub, rule decrypt_minus)  | 
|
265  | 
apply (rule_tac analz_pparts_kparts_substI, simp)  | 
|
266  | 
apply (case_tac "K:invKey`Ks")  | 
|
267  | 
(* K:invKey`Ks *)  | 
|
268  | 
apply (clarsimp, blast)  | 
|
269  | 
(* K ~:invKey`Ks *)  | 
|
270  | 
apply (subgoal_tac "GuardK n Ks (set (decrypt' l' K Y))")  | 
|
| 37596 | 271  | 
apply (drule_tac x="decrypt' l' K Y" in spec, simp)  | 
| 13508 | 272  | 
apply (subgoal_tac "Crypt K Y:parts (set l)")  | 
273  | 
apply (drule parts_cnb, rotate_tac -1, simp)  | 
|
274  | 
apply (clarify, drule_tac X="Key Ka" and H="insert Y (set l')" in analz_sub)  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
275  | 
apply (rule insert_mono, rule set_remove)  | 
| 13508 | 276  | 
apply (simp add: analz_insertD, blast)  | 
277  | 
(* Crypt K Y:parts (set l) *)  | 
|
278  | 
apply (blast dest: kparts_parts)  | 
|
279  | 
(* GuardK n Ks (set (decrypt' l' K Y)) *)  | 
|
280  | 
apply (rule_tac H="insert Y (set l')" in GuardK_mono)  | 
|
281  | 
apply (subgoal_tac "GuardK n Ks (set l')", simp)  | 
|
282  | 
apply (rule_tac K=K in guardK_Crypt, simp add: GuardK_def, simp)  | 
|
283  | 
apply (drule_tac t="set l'" in sym, simp)  | 
|
284  | 
apply (rule GuardK_kparts, simp, simp)  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
285  | 
apply (rule_tac B="set l'" in subset_trans, rule set_remove, blast)  | 
| 13508 | 286  | 
by (rule kparts_set)  | 
287  | 
||
288  | 
lemma GuardK_invKey_finite: "[| Key n:analz G; GuardK n Ks G; finite G |]  | 
|
289  | 
==> EX K. K:Ks & Key K:analz G"  | 
|
290  | 
apply (drule finite_list, clarify)  | 
|
291  | 
by (rule GuardK_invKey_by_list, auto)  | 
|
292  | 
||
293  | 
lemma GuardK_invKey: "[| Key n:analz G; GuardK n Ks G |]  | 
|
294  | 
==> EX K. K:Ks & Key K:analz G"  | 
|
295  | 
by (auto dest: analz_needs_only_finite GuardK_invKey_finite)  | 
|
296  | 
||
297  | 
text{*if the analyse of a finite guarded set and a (possibly infinite) set of
 | 
|
298  | 
keys gives n then it must also gives Ks*}  | 
|
299  | 
||
300  | 
lemma GuardK_invKey_keyset: "[| Key n:analz (G Un H); GuardK n Ks G; finite G;  | 
|
301  | 
keyset H; Key n ~:H |] ==> EX K. K:Ks & Key K:analz (G Un H)"  | 
|
302  | 
apply (frule_tac P="%G. Key n:G" and G2=G in analz_keyset_substD, simp_all)  | 
|
303  | 
apply (drule_tac G="G Un (H Int keysfor G)" in GuardK_invKey_finite)  | 
|
304  | 
apply (auto simp: GuardK_def intro: analz_sub)  | 
|
305  | 
by (drule keyset_in, auto)  | 
|
306  | 
||
307  | 
end  |