| author | wenzelm | 
| Thu, 16 Apr 2020 18:41:09 +0200 | |
| changeset 71761 | ad7ac7948d57 | 
| parent 71546 | 4dd5dadfc87d | 
| child 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 23146 | 1  | 
(* Title: ZF/Bin.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1994 University of Cambridge  | 
|
4  | 
||
5  | 
The sign Pls stands for an infinite string of leading 0's.  | 
|
6  | 
The sign Min stands for an infinite string of leading 1's.  | 
|
7  | 
||
8  | 
A number can have multiple representations, namely leading 0's with sign  | 
|
9  | 
Pls and leading 1's with sign Min. See twos-compl.ML/int_of_binary for  | 
|
10  | 
the numerical interpretation.  | 
|
11  | 
||
12  | 
The representation expects that (m mod 2) is 0 or 1, even if m is negative;  | 
|
13  | 
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1  | 
|
14  | 
*)  | 
|
15  | 
||
| 60770 | 16  | 
section\<open>Arithmetic on Binary Integers\<close>  | 
| 23146 | 17  | 
|
18  | 
theory Bin  | 
|
| 
68490
 
eb53f944c8cd
simplified ZF theory names (in contrast to 6a0801279f4c): session-qualification already achieves disjointness;
 
wenzelm 
parents: 
68233 
diff
changeset
 | 
19  | 
imports Int Datatype  | 
| 23146 | 20  | 
begin  | 
21  | 
||
22  | 
consts bin :: i  | 
|
23  | 
datatype  | 
|
24  | 
"bin" = Pls  | 
|
25  | 
| Min  | 
|
| 69587 | 26  | 
        | Bit ("w \<in> bin", "b \<in> bool")     (infixl \<open>BIT\<close> 90)
 | 
| 23146 | 27  | 
|
28  | 
consts  | 
|
29  | 
integ_of :: "i=>i"  | 
|
30  | 
NCons :: "[i,i]=>i"  | 
|
31  | 
bin_succ :: "i=>i"  | 
|
32  | 
bin_pred :: "i=>i"  | 
|
33  | 
bin_minus :: "i=>i"  | 
|
34  | 
bin_adder :: "i=>i"  | 
|
35  | 
bin_mult :: "[i,i]=>i"  | 
|
36  | 
||
37  | 
primrec  | 
|
38  | 
integ_of_Pls: "integ_of (Pls) = $# 0"  | 
|
39  | 
integ_of_Min: "integ_of (Min) = $-($#1)"  | 
|
40  | 
integ_of_BIT: "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)"  | 
|
41  | 
||
42  | 
(** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)  | 
|
43  | 
||
44  | 
primrec (*NCons adds a bit, suppressing leading 0s and 1s*)  | 
|
45  | 
NCons_Pls: "NCons (Pls,b) = cond(b,Pls BIT b,Pls)"  | 
|
46  | 
NCons_Min: "NCons (Min,b) = cond(b,Min,Min BIT b)"  | 
|
47  | 
NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b"  | 
|
48  | 
||
49  | 
primrec (*successor. If a BIT, can change a 0 to a 1 without recursion.*)  | 
|
50  | 
bin_succ_Pls: "bin_succ (Pls) = Pls BIT 1"  | 
|
51  | 
bin_succ_Min: "bin_succ (Min) = Pls"  | 
|
52  | 
bin_succ_BIT: "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))"  | 
|
53  | 
||
54  | 
primrec (*predecessor*)  | 
|
55  | 
bin_pred_Pls: "bin_pred (Pls) = Min"  | 
|
56  | 
bin_pred_Min: "bin_pred (Min) = Min BIT 0"  | 
|
57  | 
bin_pred_BIT: "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)"  | 
|
58  | 
||
59  | 
primrec (*unary negation*)  | 
|
60  | 
bin_minus_Pls:  | 
|
61  | 
"bin_minus (Pls) = Pls"  | 
|
62  | 
bin_minus_Min:  | 
|
63  | 
"bin_minus (Min) = Pls BIT 1"  | 
|
64  | 
bin_minus_BIT:  | 
|
65  | 
"bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)),  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
66  | 
bin_minus(w) BIT 0)"  | 
| 23146 | 67  | 
|
68  | 
primrec (*sum*)  | 
|
69  | 
bin_adder_Pls:  | 
|
| 46820 | 70  | 
"bin_adder (Pls) = (\<lambda>w\<in>bin. w)"  | 
| 23146 | 71  | 
bin_adder_Min:  | 
| 46820 | 72  | 
"bin_adder (Min) = (\<lambda>w\<in>bin. bin_pred(w))"  | 
| 23146 | 73  | 
bin_adder_BIT:  | 
| 46820 | 74  | 
"bin_adder (v BIT x) =  | 
75  | 
(\<lambda>w\<in>bin.  | 
|
76  | 
bin_case (v BIT x, bin_pred(v BIT x),  | 
|
77  | 
%w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w),  | 
|
| 23146 | 78  | 
x xor y),  | 
79  | 
w))"  | 
|
80  | 
||
81  | 
(*The bin_case above replaces the following mutually recursive function:  | 
|
82  | 
primrec  | 
|
83  | 
"adding (v,x,Pls) = v BIT x"  | 
|
84  | 
"adding (v,x,Min) = bin_pred(v BIT x)"  | 
|
| 46820 | 85  | 
"adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)),  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
86  | 
x xor y)"  | 
| 23146 | 87  | 
*)  | 
88  | 
||
| 24893 | 89  | 
definition  | 
90  | 
bin_add :: "[i,i]=>i" where  | 
|
| 23146 | 91  | 
"bin_add(v,w) == bin_adder(v)`w"  | 
92  | 
||
93  | 
||
94  | 
primrec  | 
|
95  | 
bin_mult_Pls:  | 
|
96  | 
"bin_mult (Pls,w) = Pls"  | 
|
97  | 
bin_mult_Min:  | 
|
98  | 
"bin_mult (Min,w) = bin_minus(w)"  | 
|
99  | 
bin_mult_BIT:  | 
|
100  | 
"bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w),  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26190 
diff
changeset
 | 
101  | 
NCons(bin_mult(v,w),0))"  | 
| 23146 | 102  | 
|
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
32960 
diff
changeset
 | 
103  | 
syntax  | 
| 71546 | 104  | 
"_Int0" :: i (\<open>#' 0\<close>)  | 
105  | 
"_Int1" :: i (\<open>#' 1\<close>)  | 
|
106  | 
"_Int2" :: i (\<open>#' 2\<close>)  | 
|
107  | 
"_Neg_Int1" :: i (\<open>#-' 1\<close>)  | 
|
108  | 
"_Neg_Int2" :: i (\<open>#-' 2\<close>)  | 
|
| 58421 | 109  | 
translations  | 
110  | 
"#0" \<rightleftharpoons> "CONST integ_of(CONST Pls)"  | 
|
111  | 
"#1" \<rightleftharpoons> "CONST integ_of(CONST Pls BIT 1)"  | 
|
112  | 
"#2" \<rightleftharpoons> "CONST integ_of(CONST Pls BIT 1 BIT 0)"  | 
|
113  | 
"#-1" \<rightleftharpoons> "CONST integ_of(CONST Min)"  | 
|
114  | 
"#-2" \<rightleftharpoons> "CONST integ_of(CONST Min BIT 0)"  | 
|
115  | 
||
116  | 
syntax  | 
|
| 69587 | 117  | 
"_Int" :: "num_token => i" (\<open>#_\<close> 1000)  | 
118  | 
"_Neg_Int" :: "num_token => i" (\<open>#-_\<close> 1000)  | 
|
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
32960 
diff
changeset
 | 
119  | 
|
| 69605 | 120  | 
ML_file \<open>Tools/numeral_syntax.ML\<close>  | 
| 23146 | 121  | 
|
122  | 
||
123  | 
declare bin.intros [simp,TC]  | 
|
124  | 
||
125  | 
lemma NCons_Pls_0: "NCons(Pls,0) = Pls"  | 
|
126  | 
by simp  | 
|
127  | 
||
128  | 
lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1"  | 
|
129  | 
by simp  | 
|
130  | 
||
131  | 
lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0"  | 
|
132  | 
by simp  | 
|
133  | 
||
134  | 
lemma NCons_Min_1: "NCons(Min,1) = Min"  | 
|
135  | 
by simp  | 
|
136  | 
||
137  | 
lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b"  | 
|
138  | 
by (simp add: bin.case_eqns)  | 
|
139  | 
||
| 46820 | 140  | 
lemmas NCons_simps [simp] =  | 
| 23146 | 141  | 
NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT  | 
142  | 
||
143  | 
||
144  | 
||
145  | 
(** Type checking **)  | 
|
146  | 
||
| 46953 | 147  | 
lemma integ_of_type [TC]: "w \<in> bin ==> integ_of(w) \<in> int"  | 
| 23146 | 148  | 
apply (induct_tac "w")  | 
149  | 
apply (simp_all add: bool_into_nat)  | 
|
150  | 
done  | 
|
151  | 
||
| 46953 | 152  | 
lemma NCons_type [TC]: "[| w \<in> bin; b \<in> bool |] ==> NCons(w,b) \<in> bin"  | 
| 23146 | 153  | 
by (induct_tac "w", auto)  | 
154  | 
||
| 46953 | 155  | 
lemma bin_succ_type [TC]: "w \<in> bin ==> bin_succ(w) \<in> bin"  | 
| 23146 | 156  | 
by (induct_tac "w", auto)  | 
157  | 
||
| 46953 | 158  | 
lemma bin_pred_type [TC]: "w \<in> bin ==> bin_pred(w) \<in> bin"  | 
| 23146 | 159  | 
by (induct_tac "w", auto)  | 
160  | 
||
| 46953 | 161  | 
lemma bin_minus_type [TC]: "w \<in> bin ==> bin_minus(w) \<in> bin"  | 
| 23146 | 162  | 
by (induct_tac "w", auto)  | 
163  | 
||
164  | 
(*This proof is complicated by the mutual recursion*)  | 
|
| 71082 | 165  | 
lemma bin_add_type [rule_format]:  | 
| 46953 | 166  | 
"v \<in> bin ==> \<forall>w\<in>bin. bin_add(v,w) \<in> bin"  | 
| 23146 | 167  | 
apply (unfold bin_add_def)  | 
168  | 
apply (induct_tac "v")  | 
|
169  | 
apply (rule_tac [3] ballI)  | 
|
170  | 
apply (rename_tac [3] "w'")  | 
|
171  | 
apply (induct_tac [3] "w'")  | 
|
172  | 
apply (simp_all add: NCons_type)  | 
|
173  | 
done  | 
|
174  | 
||
| 71082 | 175  | 
declare bin_add_type [TC]  | 
176  | 
||
| 46953 | 177  | 
lemma bin_mult_type [TC]: "[| v \<in> bin; w \<in> bin |] ==> bin_mult(v,w) \<in> bin"  | 
| 23146 | 178  | 
by (induct_tac "v", auto)  | 
179  | 
||
180  | 
||
| 60770 | 181  | 
subsubsection\<open>The Carry and Borrow Functions,  | 
| 69593 | 182  | 
\<^term>\<open>bin_succ\<close> and \<^term>\<open>bin_pred\<close>\<close>  | 
| 23146 | 183  | 
|
184  | 
(*NCons preserves the integer value of its argument*)  | 
|
185  | 
lemma integ_of_NCons [simp]:  | 
|
| 46953 | 186  | 
"[| w \<in> bin; b \<in> bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)"  | 
| 23146 | 187  | 
apply (erule bin.cases)  | 
| 46820 | 188  | 
apply (auto elim!: boolE)  | 
| 23146 | 189  | 
done  | 
190  | 
||
191  | 
lemma integ_of_succ [simp]:  | 
|
| 46953 | 192  | 
"w \<in> bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)"  | 
| 23146 | 193  | 
apply (erule bin.induct)  | 
| 46820 | 194  | 
apply (auto simp add: zadd_ac elim!: boolE)  | 
| 23146 | 195  | 
done  | 
196  | 
||
197  | 
lemma integ_of_pred [simp]:  | 
|
| 46953 | 198  | 
"w \<in> bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)"  | 
| 23146 | 199  | 
apply (erule bin.induct)  | 
| 46820 | 200  | 
apply (auto simp add: zadd_ac elim!: boolE)  | 
| 23146 | 201  | 
done  | 
202  | 
||
203  | 
||
| 69593 | 204  | 
subsubsection\<open>\<^term>\<open>bin_minus\<close>: Unary Negation of Binary Integers\<close>  | 
| 23146 | 205  | 
|
| 46953 | 206  | 
lemma integ_of_minus: "w \<in> bin ==> integ_of(bin_minus(w)) = $- integ_of(w)"  | 
| 23146 | 207  | 
apply (erule bin.induct)  | 
| 46820 | 208  | 
apply (auto simp add: zadd_ac zminus_zadd_distrib elim!: boolE)  | 
| 23146 | 209  | 
done  | 
210  | 
||
211  | 
||
| 69593 | 212  | 
subsubsection\<open>\<^term>\<open>bin_add\<close>: Binary Addition\<close>  | 
| 23146 | 213  | 
|
| 46953 | 214  | 
lemma bin_add_Pls [simp]: "w \<in> bin ==> bin_add(Pls,w) = w"  | 
| 23146 | 215  | 
by (unfold bin_add_def, simp)  | 
216  | 
||
| 46953 | 217  | 
lemma bin_add_Pls_right: "w \<in> bin ==> bin_add(w,Pls) = w"  | 
| 23146 | 218  | 
apply (unfold bin_add_def)  | 
219  | 
apply (erule bin.induct, auto)  | 
|
220  | 
done  | 
|
221  | 
||
| 46953 | 222  | 
lemma bin_add_Min [simp]: "w \<in> bin ==> bin_add(Min,w) = bin_pred(w)"  | 
| 23146 | 223  | 
by (unfold bin_add_def, simp)  | 
224  | 
||
| 46953 | 225  | 
lemma bin_add_Min_right: "w \<in> bin ==> bin_add(w,Min) = bin_pred(w)"  | 
| 23146 | 226  | 
apply (unfold bin_add_def)  | 
227  | 
apply (erule bin.induct, auto)  | 
|
228  | 
done  | 
|
229  | 
||
230  | 
lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x"  | 
|
231  | 
by (unfold bin_add_def, simp)  | 
|
232  | 
||
233  | 
lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)"  | 
|
234  | 
by (unfold bin_add_def, simp)  | 
|
235  | 
||
236  | 
lemma bin_add_BIT_BIT [simp]:  | 
|
| 46953 | 237  | 
"[| w \<in> bin; y \<in> bool |]  | 
| 46820 | 238  | 
==> bin_add(v BIT x, w BIT y) =  | 
| 23146 | 239  | 
NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)"  | 
240  | 
by (unfold bin_add_def, simp)  | 
|
241  | 
||
242  | 
lemma integ_of_add [rule_format]:  | 
|
| 46953 | 243  | 
"v \<in> bin ==>  | 
| 46820 | 244  | 
\<forall>w\<in>bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)"  | 
| 23146 | 245  | 
apply (erule bin.induct, simp, simp)  | 
246  | 
apply (rule ballI)  | 
|
247  | 
apply (induct_tac "wa")  | 
|
| 46820 | 248  | 
apply (auto simp add: zadd_ac elim!: boolE)  | 
| 23146 | 249  | 
done  | 
250  | 
||
251  | 
(*Subtraction*)  | 
|
| 46820 | 252  | 
lemma diff_integ_of_eq:  | 
| 46953 | 253  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 23146 | 254  | 
==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))"  | 
255  | 
apply (unfold zdiff_def)  | 
|
256  | 
apply (simp add: integ_of_add integ_of_minus)  | 
|
257  | 
done  | 
|
258  | 
||
259  | 
||
| 69593 | 260  | 
subsubsection\<open>\<^term>\<open>bin_mult\<close>: Binary Multiplication\<close>  | 
| 23146 | 261  | 
|
262  | 
lemma integ_of_mult:  | 
|
| 46953 | 263  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 23146 | 264  | 
==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)"  | 
265  | 
apply (induct_tac "v", simp)  | 
|
266  | 
apply (simp add: integ_of_minus)  | 
|
| 46820 | 267  | 
apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib elim!: boolE)  | 
| 23146 | 268  | 
done  | 
269  | 
||
270  | 
||
| 60770 | 271  | 
subsection\<open>Computations\<close>  | 
| 23146 | 272  | 
|
273  | 
(** extra rules for bin_succ, bin_pred **)  | 
|
274  | 
||
275  | 
lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0"  | 
|
276  | 
by simp  | 
|
277  | 
||
278  | 
lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)"  | 
|
279  | 
by simp  | 
|
280  | 
||
281  | 
lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)"  | 
|
282  | 
by simp  | 
|
283  | 
||
284  | 
lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1"  | 
|
285  | 
by simp  | 
|
286  | 
||
287  | 
(** extra rules for bin_minus **)  | 
|
288  | 
||
289  | 
lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))"  | 
|
290  | 
by simp  | 
|
291  | 
||
292  | 
lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0"  | 
|
293  | 
by simp  | 
|
294  | 
||
295  | 
(** extra rules for bin_add **)  | 
|
296  | 
||
| 46953 | 297  | 
lemma bin_add_BIT_11: "w \<in> bin ==> bin_add(v BIT 1, w BIT 1) =  | 
| 23146 | 298  | 
NCons(bin_add(v, bin_succ(w)), 0)"  | 
299  | 
by simp  | 
|
300  | 
||
| 46953 | 301  | 
lemma bin_add_BIT_10: "w \<in> bin ==> bin_add(v BIT 1, w BIT 0) =  | 
| 23146 | 302  | 
NCons(bin_add(v,w), 1)"  | 
303  | 
by simp  | 
|
304  | 
||
| 46953 | 305  | 
lemma bin_add_BIT_0: "[| w \<in> bin; y \<in> bool |]  | 
| 23146 | 306  | 
==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)"  | 
307  | 
by simp  | 
|
308  | 
||
309  | 
(** extra rules for bin_mult **)  | 
|
310  | 
||
311  | 
lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)"  | 
|
312  | 
by simp  | 
|
313  | 
||
314  | 
lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)"  | 
|
315  | 
by simp  | 
|
316  | 
||
317  | 
||
318  | 
(** Simplification rules with integer constants **)  | 
|
319  | 
||
320  | 
lemma int_of_0: "$#0 = #0"  | 
|
321  | 
by simp  | 
|
322  | 
||
323  | 
lemma int_of_succ: "$# succ(n) = #1 $+ $#n"  | 
|
324  | 
by (simp add: int_of_add [symmetric] natify_succ)  | 
|
325  | 
||
326  | 
lemma zminus_0 [simp]: "$- #0 = #0"  | 
|
327  | 
by simp  | 
|
328  | 
||
329  | 
lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)"  | 
|
330  | 
by simp  | 
|
331  | 
||
332  | 
lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)"  | 
|
333  | 
by simp  | 
|
334  | 
||
335  | 
lemma zmult_1_intify [simp]: "#1 $* z = intify(z)"  | 
|
336  | 
by simp  | 
|
337  | 
||
338  | 
lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)"  | 
|
339  | 
by (subst zmult_commute, simp)  | 
|
340  | 
||
341  | 
lemma zmult_0 [simp]: "#0 $* z = #0"  | 
|
342  | 
by simp  | 
|
343  | 
||
344  | 
lemma zmult_0_right [simp]: "z $* #0 = #0"  | 
|
345  | 
by (subst zmult_commute, simp)  | 
|
346  | 
||
347  | 
lemma zmult_minus1 [simp]: "#-1 $* z = $-z"  | 
|
348  | 
by (simp add: zcompare_rls)  | 
|
349  | 
||
350  | 
lemma zmult_minus1_right [simp]: "z $* #-1 = $-z"  | 
|
351  | 
apply (subst zmult_commute)  | 
|
352  | 
apply (rule zmult_minus1)  | 
|
353  | 
done  | 
|
354  | 
||
355  | 
||
| 60770 | 356  | 
subsection\<open>Simplification Rules for Comparison of Binary Numbers\<close>  | 
357  | 
text\<open>Thanks to Norbert Voelker\<close>  | 
|
| 23146 | 358  | 
|
359  | 
(** Equals (=) **)  | 
|
360  | 
||
| 46820 | 361  | 
lemma eq_integ_of_eq:  | 
| 46953 | 362  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
363  | 
==> ((integ_of(v)) = integ_of(w)) \<longleftrightarrow>  | 
| 23146 | 364  | 
iszero (integ_of (bin_add (v, bin_minus(w))))"  | 
365  | 
apply (unfold iszero_def)  | 
|
366  | 
apply (simp add: zcompare_rls integ_of_add integ_of_minus)  | 
|
367  | 
done  | 
|
368  | 
||
369  | 
lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))"  | 
|
370  | 
by (unfold iszero_def, simp)  | 
|
371  | 
||
372  | 
||
373  | 
lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))"  | 
|
374  | 
apply (unfold iszero_def)  | 
|
375  | 
apply (simp add: zminus_equation)  | 
|
376  | 
done  | 
|
377  | 
||
| 46820 | 378  | 
lemma iszero_integ_of_BIT:  | 
| 46953 | 379  | 
"[| w \<in> bin; x \<in> bool |]  | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
380  | 
==> iszero (integ_of (w BIT x)) \<longleftrightarrow> (x=0 & iszero (integ_of(w)))"  | 
| 23146 | 381  | 
apply (unfold iszero_def, simp)  | 
| 46820 | 382  | 
apply (subgoal_tac "integ_of (w) \<in> int")  | 
| 23146 | 383  | 
apply typecheck  | 
384  | 
apply (drule int_cases)  | 
|
385  | 
apply (safe elim!: boolE)  | 
|
386  | 
apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric]  | 
|
387  | 
int_of_add [symmetric])  | 
|
388  | 
done  | 
|
389  | 
||
390  | 
lemma iszero_integ_of_0:  | 
|
| 46953 | 391  | 
"w \<in> bin ==> iszero (integ_of (w BIT 0)) \<longleftrightarrow> iszero (integ_of(w))"  | 
| 46820 | 392  | 
by (simp only: iszero_integ_of_BIT, blast)  | 
| 23146 | 393  | 
|
| 46953 | 394  | 
lemma iszero_integ_of_1: "w \<in> bin ==> ~ iszero (integ_of (w BIT 1))"  | 
| 23146 | 395  | 
by (simp only: iszero_integ_of_BIT, blast)  | 
396  | 
||
397  | 
||
398  | 
||
399  | 
(** Less-than (<) **)  | 
|
400  | 
||
| 46820 | 401  | 
lemma less_integ_of_eq_neg:  | 
| 46953 | 402  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 46820 | 403  | 
==> integ_of(v) $< integ_of(w)  | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
404  | 
\<longleftrightarrow> znegative (integ_of (bin_add (v, bin_minus(w))))"  | 
| 23146 | 405  | 
apply (unfold zless_def zdiff_def)  | 
406  | 
apply (simp add: integ_of_minus integ_of_add)  | 
|
407  | 
done  | 
|
408  | 
||
409  | 
lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))"  | 
|
410  | 
by simp  | 
|
411  | 
||
412  | 
lemma neg_integ_of_Min: "znegative (integ_of(Min))"  | 
|
413  | 
by simp  | 
|
414  | 
||
415  | 
lemma neg_integ_of_BIT:  | 
|
| 46953 | 416  | 
"[| w \<in> bin; x \<in> bool |]  | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
417  | 
==> znegative (integ_of (w BIT x)) \<longleftrightarrow> znegative (integ_of(w))"  | 
| 23146 | 418  | 
apply simp  | 
| 46820 | 419  | 
apply (subgoal_tac "integ_of (w) \<in> int")  | 
| 23146 | 420  | 
apply typecheck  | 
421  | 
apply (drule int_cases)  | 
|
422  | 
apply (auto elim!: boolE simp add: int_of_add [symmetric] zcompare_rls)  | 
|
| 46820 | 423  | 
apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def  | 
| 23146 | 424  | 
int_of_add [symmetric])  | 
425  | 
apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ")  | 
|
426  | 
apply (simp add: zdiff_def)  | 
|
427  | 
apply (simp add: equation_zminus int_of_diff [symmetric])  | 
|
428  | 
done  | 
|
429  | 
||
430  | 
(** Less-than-or-equals (<=) **)  | 
|
431  | 
||
432  | 
lemma le_integ_of_eq_not_less:  | 
|
| 61395 | 433  | 
"(integ_of(x) $\<le> (integ_of(w))) \<longleftrightarrow> ~ (integ_of(w) $< (integ_of(x)))"  | 
| 23146 | 434  | 
by (simp add: not_zless_iff_zle [THEN iff_sym])  | 
435  | 
||
436  | 
||
437  | 
(*Delete the original rewrites, with their clumsy conditional expressions*)  | 
|
| 46820 | 438  | 
declare bin_succ_BIT [simp del]  | 
439  | 
bin_pred_BIT [simp del]  | 
|
| 23146 | 440  | 
bin_minus_BIT [simp del]  | 
441  | 
NCons_Pls [simp del]  | 
|
442  | 
NCons_Min [simp del]  | 
|
443  | 
bin_adder_BIT [simp del]  | 
|
444  | 
bin_mult_BIT [simp del]  | 
|
445  | 
||
446  | 
(*Hide the binary representation of integer constants*)  | 
|
447  | 
declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del]  | 
|
448  | 
||
449  | 
||
450  | 
lemmas bin_arith_extra_simps =  | 
|
| 46820 | 451  | 
integ_of_add [symmetric]  | 
452  | 
integ_of_minus [symmetric]  | 
|
453  | 
integ_of_mult [symmetric]  | 
|
454  | 
bin_succ_1 bin_succ_0  | 
|
455  | 
bin_pred_1 bin_pred_0  | 
|
456  | 
bin_minus_1 bin_minus_0  | 
|
| 23146 | 457  | 
bin_add_Pls_right bin_add_Min_right  | 
458  | 
bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11  | 
|
459  | 
diff_integ_of_eq  | 
|
460  | 
bin_mult_1 bin_mult_0 NCons_simps  | 
|
461  | 
||
462  | 
||
463  | 
(*For making a minimal simpset, one must include these default simprules  | 
|
464  | 
of thy. Also include simp_thms, or at least (~False)=True*)  | 
|
465  | 
lemmas bin_arith_simps =  | 
|
466  | 
bin_pred_Pls bin_pred_Min  | 
|
467  | 
bin_succ_Pls bin_succ_Min  | 
|
468  | 
bin_add_Pls bin_add_Min  | 
|
469  | 
bin_minus_Pls bin_minus_Min  | 
|
| 46820 | 470  | 
bin_mult_Pls bin_mult_Min  | 
| 23146 | 471  | 
bin_arith_extra_simps  | 
472  | 
||
473  | 
(*Simplification of relational operations*)  | 
|
474  | 
lemmas bin_rel_simps =  | 
|
475  | 
eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min  | 
|
476  | 
iszero_integ_of_0 iszero_integ_of_1  | 
|
477  | 
less_integ_of_eq_neg  | 
|
478  | 
not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT  | 
|
479  | 
le_integ_of_eq_not_less  | 
|
480  | 
||
481  | 
declare bin_arith_simps [simp]  | 
|
482  | 
declare bin_rel_simps [simp]  | 
|
483  | 
||
484  | 
||
485  | 
(** Simplification of arithmetic when nested to the right **)  | 
|
486  | 
||
487  | 
lemma add_integ_of_left [simp]:  | 
|
| 46953 | 488  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 23146 | 489  | 
==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)"  | 
490  | 
by (simp add: zadd_assoc [symmetric])  | 
|
491  | 
||
492  | 
lemma mult_integ_of_left [simp]:  | 
|
| 46953 | 493  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 23146 | 494  | 
==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)"  | 
495  | 
by (simp add: zmult_assoc [symmetric])  | 
|
496  | 
||
| 46820 | 497  | 
lemma add_integ_of_diff1 [simp]:  | 
| 46953 | 498  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 23146 | 499  | 
==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)"  | 
500  | 
apply (unfold zdiff_def)  | 
|
501  | 
apply (rule add_integ_of_left, auto)  | 
|
502  | 
done  | 
|
503  | 
||
504  | 
lemma add_integ_of_diff2 [simp]:  | 
|
| 46953 | 505  | 
"[| v \<in> bin; w \<in> bin |]  | 
| 46820 | 506  | 
==> integ_of(v) $+ (c $- integ_of(w)) =  | 
| 23146 | 507  | 
integ_of (bin_add (v, bin_minus(w))) $+ (c)"  | 
508  | 
apply (subst diff_integ_of_eq [symmetric])  | 
|
509  | 
apply (simp_all add: zdiff_def zadd_ac)  | 
|
510  | 
done  | 
|
511  | 
||
512  | 
||
513  | 
(** More for integer constants **)  | 
|
514  | 
||
515  | 
declare int_of_0 [simp] int_of_succ [simp]  | 
|
516  | 
||
517  | 
lemma zdiff0 [simp]: "#0 $- x = $-x"  | 
|
518  | 
by (simp add: zdiff_def)  | 
|
519  | 
||
520  | 
lemma zdiff0_right [simp]: "x $- #0 = intify(x)"  | 
|
521  | 
by (simp add: zdiff_def)  | 
|
522  | 
||
523  | 
lemma zdiff_self [simp]: "x $- x = #0"  | 
|
524  | 
by (simp add: zdiff_def)  | 
|
525  | 
||
| 46953 | 526  | 
lemma znegative_iff_zless_0: "k \<in> int ==> znegative(k) \<longleftrightarrow> k $< #0"  | 
| 23146 | 527  | 
by (simp add: zless_def)  | 
528  | 
||
| 46953 | 529  | 
lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k \<in> int|] ==> znegative($-k)"  | 
| 23146 | 530  | 
by (simp add: zless_def)  | 
531  | 
||
| 61395 | 532  | 
lemma zero_zle_int_of [simp]: "#0 $\<le> $# n"  | 
| 23146 | 533  | 
by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym])  | 
534  | 
||
535  | 
lemma nat_of_0 [simp]: "nat_of(#0) = 0"  | 
|
536  | 
by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of)  | 
|
537  | 
||
| 61395 | 538  | 
lemma nat_le_int0_lemma: "[| z $\<le> $#0; z \<in> int |] ==> nat_of(z) = 0"  | 
| 23146 | 539  | 
by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of)  | 
540  | 
||
| 61395 | 541  | 
lemma nat_le_int0: "z $\<le> $#0 ==> nat_of(z) = 0"  | 
| 23146 | 542  | 
apply (subgoal_tac "nat_of (intify (z)) = 0")  | 
543  | 
apply (rule_tac [2] nat_le_int0_lemma, auto)  | 
|
544  | 
done  | 
|
545  | 
||
546  | 
lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0"  | 
|
547  | 
by (rule not_znegative_imp_zero, auto)  | 
|
548  | 
||
549  | 
lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0"  | 
|
550  | 
by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int)  | 
|
551  | 
||
| 61395 | 552  | 
lemma int_of_nat_of: "#0 $\<le> z ==> $# nat_of(z) = intify(z)"  | 
| 23146 | 553  | 
apply (rule not_zneg_nat_of_intify)  | 
554  | 
apply (simp add: znegative_iff_zless_0 not_zless_iff_zle)  | 
|
555  | 
done  | 
|
556  | 
||
557  | 
declare int_of_nat_of [simp] nat_of_zminus_int_of [simp]  | 
|
558  | 
||
| 61395 | 559  | 
lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $\<le> z then intify(z) else #0)"  | 
| 23146 | 560  | 
by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless)  | 
561  | 
||
| 46953 | 562  | 
lemma zless_nat_iff_int_zless: "[| m \<in> nat; z \<in> int |] ==> (m < nat_of(z)) \<longleftrightarrow> ($#m $< z)"  | 
| 23146 | 563  | 
apply (case_tac "znegative (z) ")  | 
564  | 
apply (erule_tac [2] not_zneg_nat_of [THEN subst])  | 
|
565  | 
apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans]  | 
|
566  | 
simp add: znegative_iff_zless_0)  | 
|
567  | 
done  | 
|
568  | 
||
569  | 
||
570  | 
(** nat_of and zless **)  | 
|
571  | 
||
| 46820 | 572  | 
(*An alternative condition is  @{term"$#0 \<subseteq> w"}  *)
 | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
573  | 
lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) \<longleftrightarrow> (w $< z)"  | 
| 23146 | 574  | 
apply (rule iff_trans)  | 
575  | 
apply (rule zless_int_of [THEN iff_sym])  | 
|
576  | 
apply (auto simp add: int_of_nat_of_if simp del: zless_int_of)  | 
|
577  | 
apply (auto elim: zless_asym simp add: not_zle_iff_zless)  | 
|
578  | 
apply (blast intro: zless_zle_trans)  | 
|
579  | 
done  | 
|
580  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
581  | 
lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) \<longleftrightarrow> ($#0 $< z & w $< z)"  | 
| 23146 | 582  | 
apply (case_tac "$#0 $< z")  | 
583  | 
apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle)  | 
|
584  | 
done  | 
|
585  | 
||
586  | 
(*This simprule cannot be added unless we can find a way to make eq_integ_of_eq  | 
|
587  | 
unconditional!  | 
|
588  | 
[The condition "True" is a hack to prevent looping.  | 
|
589  | 
Conditional rewrite rules are tried after unconditional ones, so a rule  | 
|
590  | 
like eq_nat_number_of will be tried first to eliminate #mm=#nn.]  | 
|
591  | 
lemma integ_of_reorient [simp]:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
592  | 
"True ==> (integ_of(w) = x) \<longleftrightarrow> (x = integ_of(w))"  | 
| 23146 | 593  | 
by auto  | 
594  | 
*)  | 
|
595  | 
||
596  | 
lemma integ_of_minus_reorient [simp]:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
597  | 
"(integ_of(w) = $- x) \<longleftrightarrow> ($- x = integ_of(w))"  | 
| 23146 | 598  | 
by auto  | 
599  | 
||
600  | 
lemma integ_of_add_reorient [simp]:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
601  | 
"(integ_of(w) = x $+ y) \<longleftrightarrow> (x $+ y = integ_of(w))"  | 
| 23146 | 602  | 
by auto  | 
603  | 
||
604  | 
lemma integ_of_diff_reorient [simp]:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
605  | 
"(integ_of(w) = x $- y) \<longleftrightarrow> (x $- y = integ_of(w))"  | 
| 23146 | 606  | 
by auto  | 
607  | 
||
608  | 
lemma integ_of_mult_reorient [simp]:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
609  | 
"(integ_of(w) = x $* y) \<longleftrightarrow> (x $* y = integ_of(w))"  | 
| 23146 | 610  | 
by auto  | 
611  | 
||
| 58022 | 612  | 
(** To simplify inequalities involving integer negation and literals,  | 
613  | 
such as -x = #3  | 
|
614  | 
**)  | 
|
615  | 
||
616  | 
lemmas [simp] =  | 
|
617  | 
zminus_equation [where y = "integ_of(w)"]  | 
|
618  | 
equation_zminus [where x = "integ_of(w)"]  | 
|
619  | 
for w  | 
|
620  | 
||
621  | 
lemmas [iff] =  | 
|
622  | 
zminus_zless [where y = "integ_of(w)"]  | 
|
623  | 
zless_zminus [where x = "integ_of(w)"]  | 
|
624  | 
for w  | 
|
625  | 
||
626  | 
lemmas [iff] =  | 
|
627  | 
zminus_zle [where y = "integ_of(w)"]  | 
|
628  | 
zle_zminus [where x = "integ_of(w)"]  | 
|
629  | 
for w  | 
|
630  | 
||
631  | 
lemmas [simp] =  | 
|
632  | 
Let_def [where s = "integ_of(w)"] for w  | 
|
633  | 
||
634  | 
||
635  | 
(*** Simprocs for numeric literals ***)  | 
|
636  | 
||
637  | 
(** Combining of literal coefficients in sums of products **)  | 
|
638  | 
||
639  | 
lemma zless_iff_zdiff_zless_0: "(x $< y) \<longleftrightarrow> (x$-y $< #0)"  | 
|
640  | 
by (simp add: zcompare_rls)  | 
|
641  | 
||
642  | 
lemma eq_iff_zdiff_eq_0: "[| x \<in> int; y \<in> int |] ==> (x = y) \<longleftrightarrow> (x$-y = #0)"  | 
|
643  | 
by (simp add: zcompare_rls)  | 
|
644  | 
||
| 61395 | 645  | 
lemma zle_iff_zdiff_zle_0: "(x $\<le> y) \<longleftrightarrow> (x$-y $\<le> #0)"  | 
| 58022 | 646  | 
by (simp add: zcompare_rls)  | 
647  | 
||
648  | 
||
649  | 
(** For combine_numerals **)  | 
|
650  | 
||
651  | 
lemma left_zadd_zmult_distrib: "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k"  | 
|
652  | 
by (simp add: zadd_zmult_distrib zadd_ac)  | 
|
653  | 
||
654  | 
||
655  | 
(** For cancel_numerals **)  | 
|
656  | 
||
657  | 
lemma eq_add_iff1: "(i$*u $+ m = j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m = intify(n))"  | 
|
658  | 
apply (simp add: zdiff_def zadd_zmult_distrib)  | 
|
659  | 
apply (simp add: zcompare_rls)  | 
|
660  | 
apply (simp add: zadd_ac)  | 
|
661  | 
done  | 
|
662  | 
||
663  | 
lemma eq_add_iff2: "(i$*u $+ m = j$*u $+ n) \<longleftrightarrow> (intify(m) = (j$-i)$*u $+ n)"  | 
|
664  | 
apply (simp add: zdiff_def zadd_zmult_distrib)  | 
|
665  | 
apply (simp add: zcompare_rls)  | 
|
666  | 
apply (simp add: zadd_ac)  | 
|
667  | 
done  | 
|
668  | 
||
| 68233 | 669  | 
context fixes n :: i  | 
670  | 
begin  | 
|
671  | 
||
672  | 
lemmas rel_iff_rel_0_rls =  | 
|
673  | 
zless_iff_zdiff_zless_0 [where y = "u $+ v"]  | 
|
674  | 
eq_iff_zdiff_eq_0 [where y = "u $+ v"]  | 
|
675  | 
zle_iff_zdiff_zle_0 [where y = "u $+ v"]  | 
|
676  | 
zless_iff_zdiff_zless_0 [where y = n]  | 
|
677  | 
eq_iff_zdiff_eq_0 [where y = n]  | 
|
678  | 
zle_iff_zdiff_zle_0 [where y = n]  | 
|
679  | 
for u v  | 
|
680  | 
||
| 58022 | 681  | 
lemma less_add_iff1: "(i$*u $+ m $< j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m $< n)"  | 
682  | 
apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)  | 
|
683  | 
done  | 
|
684  | 
||
685  | 
lemma less_add_iff2: "(i$*u $+ m $< j$*u $+ n) \<longleftrightarrow> (m $< (j$-i)$*u $+ n)"  | 
|
686  | 
apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)  | 
|
687  | 
done  | 
|
688  | 
||
| 68233 | 689  | 
end  | 
690  | 
||
| 61395 | 691  | 
lemma le_add_iff1: "(i$*u $+ m $\<le> j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m $\<le> n)"  | 
| 58022 | 692  | 
apply (simp add: zdiff_def zadd_zmult_distrib)  | 
693  | 
apply (simp add: zcompare_rls)  | 
|
694  | 
apply (simp add: zadd_ac)  | 
|
695  | 
done  | 
|
696  | 
||
| 61395 | 697  | 
lemma le_add_iff2: "(i$*u $+ m $\<le> j$*u $+ n) \<longleftrightarrow> (m $\<le> (j$-i)$*u $+ n)"  | 
| 58022 | 698  | 
apply (simp add: zdiff_def zadd_zmult_distrib)  | 
699  | 
apply (simp add: zcompare_rls)  | 
|
700  | 
apply (simp add: zadd_ac)  | 
|
701  | 
done  | 
|
702  | 
||
| 69605 | 703  | 
ML_file \<open>int_arith.ML\<close>  | 
| 58022 | 704  | 
|
| 60770 | 705  | 
subsection \<open>examples:\<close>  | 
| 59748 | 706  | 
|
| 61798 | 707  | 
text \<open>\<open>combine_numerals_prod\<close> (products of separate literals)\<close>  | 
| 59748 | 708  | 
lemma "#5 $* x $* #3 = y" apply simp oops  | 
709  | 
||
| 61337 | 710  | 
schematic_goal "y2 $+ ?x42 = y $+ y2" apply simp oops  | 
| 59748 | 711  | 
|
712  | 
lemma "oo : int ==> l $+ (l $+ #2) $+ oo = oo" apply simp oops  | 
|
713  | 
||
714  | 
lemma "#9$*x $+ y = x$*#23 $+ z" apply simp oops  | 
|
715  | 
lemma "y $+ x = x $+ z" apply simp oops  | 
|
716  | 
||
717  | 
lemma "x : int ==> x $+ y $+ z = x $+ z" apply simp oops  | 
|
718  | 
lemma "x : int ==> y $+ (z $+ x) = z $+ x" apply simp oops  | 
|
719  | 
lemma "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)" apply simp oops  | 
|
720  | 
lemma "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)" apply simp oops  | 
|
721  | 
||
| 61395 | 722  | 
lemma "#-3 $* x $+ y $\<le> x $* #2 $+ z" apply simp oops  | 
723  | 
lemma "y $+ x $\<le> x $+ z" apply simp oops  | 
|
724  | 
lemma "x $+ y $+ z $\<le> x $+ z" apply simp oops  | 
|
| 59748 | 725  | 
|
726  | 
lemma "y $+ (z $+ x) $< z $+ x" apply simp oops  | 
|
727  | 
lemma "x $+ y $+ z $< (z $+ y) $+ (x $+ w)" apply simp oops  | 
|
728  | 
lemma "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)" apply simp oops  | 
|
729  | 
||
730  | 
lemma "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu" apply simp oops  | 
|
731  | 
lemma "u : int ==> #2 $* u = u" apply simp oops  | 
|
732  | 
lemma "(i $+ j $+ #12 $+ k) $- #15 = y" apply simp oops  | 
|
733  | 
lemma "(i $+ j $+ #12 $+ k) $- #5 = y" apply simp oops  | 
|
734  | 
||
735  | 
lemma "y $- b $< b" apply simp oops  | 
|
736  | 
lemma "y $- (#3 $* b $+ c) $< b $- #2 $* c" apply simp oops  | 
|
737  | 
||
738  | 
lemma "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w" apply simp oops  | 
|
739  | 
lemma "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w" apply simp oops  | 
|
740  | 
lemma "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w" apply simp oops  | 
|
741  | 
lemma "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w" apply simp oops  | 
|
742  | 
||
743  | 
lemma "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y" apply simp oops  | 
|
744  | 
lemma "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y" apply simp oops  | 
|
745  | 
||
746  | 
lemma "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv" apply simp oops  | 
|
747  | 
||
748  | 
lemma "a $+ $-(b$+c) $+ b = d" apply simp oops  | 
|
749  | 
lemma "a $+ $-(b$+c) $- b = d" apply simp oops  | 
|
750  | 
||
| 60770 | 751  | 
text \<open>negative numerals\<close>  | 
| 59748 | 752  | 
lemma "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz" apply simp oops  | 
753  | 
lemma "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y" apply simp oops  | 
|
754  | 
lemma "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y" apply simp oops  | 
|
755  | 
lemma "(i $+ j $+ #-12 $+ k) $- #15 = y" apply simp oops  | 
|
756  | 
lemma "(i $+ j $+ #12 $+ k) $- #-15 = y" apply simp oops  | 
|
757  | 
lemma "(i $+ j $+ #-12 $+ k) $- #-15 = y" apply simp oops  | 
|
758  | 
||
| 60770 | 759  | 
text \<open>Multiplying separated numerals\<close>  | 
| 59748 | 760  | 
lemma "#6 $* ($# x $* #2) = uu" apply simp oops  | 
761  | 
lemma "#4 $* ($# x $* $# x) $* (#2 $* $# x) = uu" apply simp oops  | 
|
762  | 
||
| 23146 | 763  | 
end  |