| author | wenzelm | 
| Fri, 08 Dec 2023 12:10:53 +0100 | |
| changeset 79197 | ad98105148e5 | 
| parent 75865 | 62c64e3e4741 | 
| child 79566 | f783490c6c99 | 
| permissions | -rw-r--r-- | 
| 66589 | 1  | 
(* Title: HOL/Factorial.thy  | 
| 65812 | 2  | 
Author: Jacques D. Fleuriot  | 
3  | 
Author: Lawrence C Paulson  | 
|
4  | 
Author: Jeremy Avigad  | 
|
5  | 
Author: Chaitanya Mangla  | 
|
6  | 
Author: Manuel Eberl  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
section \<open>Factorial Function, Rising Factorials\<close>  | 
|
10  | 
||
11  | 
theory Factorial  | 
|
| 65813 | 12  | 
imports Groups_List  | 
| 65812 | 13  | 
begin  | 
14  | 
||
15  | 
subsection \<open>Factorial Function\<close>  | 
|
16  | 
||
17  | 
context semiring_char_0  | 
|
18  | 
begin  | 
|
19  | 
||
20  | 
definition fact :: "nat \<Rightarrow> 'a"  | 
|
21  | 
  where fact_prod: "fact n = of_nat (\<Prod>{1..n})"
 | 
|
22  | 
||
23  | 
lemma fact_prod_Suc: "fact n = of_nat (prod Suc {0..<n})"
 | 
|
| 
70113
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
24  | 
unfolding fact_prod using atLeast0LessThan prod.atLeast1_atMost_eq by auto  | 
| 65812 | 25  | 
|
26  | 
lemma fact_prod_rev: "fact n = of_nat (\<Prod>i = 0..<n. n - i)"  | 
|
| 
70113
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
27  | 
proof -  | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
28  | 
  have "prod Suc {0..<n} = \<Prod>{1..n}"
 | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
29  | 
by (simp add: atLeast0LessThan prod.atLeast1_atMost_eq)  | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
30  | 
  then have "prod Suc {0..<n} = prod ((-) (n + 1)) {1..n}"
 | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
31  | 
using prod.atLeastAtMost_rev [of "\<lambda>i. i" 1 n] by presburger  | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
32  | 
then show ?thesis  | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
33  | 
unfolding fact_prod_Suc by (simp add: atLeast0LessThan prod.atLeast1_atMost_eq)  | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
34  | 
qed  | 
| 65812 | 35  | 
|
36  | 
lemma fact_0 [simp]: "fact 0 = 1"  | 
|
37  | 
by (simp add: fact_prod)  | 
|
38  | 
||
39  | 
lemma fact_1 [simp]: "fact 1 = 1"  | 
|
40  | 
by (simp add: fact_prod)  | 
|
41  | 
||
42  | 
lemma fact_Suc_0 [simp]: "fact (Suc 0) = 1"  | 
|
43  | 
by (simp add: fact_prod)  | 
|
44  | 
||
45  | 
lemma fact_Suc [simp]: "fact (Suc n) = of_nat (Suc n) * fact n"  | 
|
46  | 
by (simp add: fact_prod atLeastAtMostSuc_conv algebra_simps)  | 
|
47  | 
||
48  | 
lemma fact_2 [simp]: "fact 2 = 2"  | 
|
49  | 
by (simp add: numeral_2_eq_2)  | 
|
50  | 
||
51  | 
lemma fact_split: "k \<le> n \<Longrightarrow> fact n = of_nat (prod Suc {n - k..<n}) * fact (n - k)"
 | 
|
52  | 
by (simp add: fact_prod_Suc prod.union_disjoint [symmetric]  | 
|
53  | 
ivl_disj_un ac_simps of_nat_mult [symmetric])  | 
|
54  | 
||
55  | 
end  | 
|
56  | 
||
57  | 
lemma of_nat_fact [simp]: "of_nat (fact n) = fact n"  | 
|
58  | 
by (simp add: fact_prod)  | 
|
59  | 
||
60  | 
lemma of_int_fact [simp]: "of_int (fact n) = fact n"  | 
|
61  | 
by (simp only: fact_prod of_int_of_nat_eq)  | 
|
62  | 
||
63  | 
lemma fact_reduce: "n > 0 \<Longrightarrow> fact n = of_nat n * fact (n - 1)"  | 
|
64  | 
by (cases n) auto  | 
|
65  | 
||
66  | 
lemma fact_nonzero [simp]: "fact n \<noteq> (0::'a::{semiring_char_0,semiring_no_zero_divisors})"
 | 
|
| 
75865
 
62c64e3e4741
The same, without adding a new simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
74969 
diff
changeset
 | 
67  | 
using of_nat_0_neq by (induct n) auto  | 
| 65812 | 68  | 
|
69  | 
lemma fact_mono_nat: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: nat)"  | 
|
70  | 
by (induct n) (auto simp: le_Suc_eq)  | 
|
71  | 
||
72  | 
lemma fact_in_Nats: "fact n \<in> \<nat>"  | 
|
73  | 
by (induct n) auto  | 
|
74  | 
||
75  | 
lemma fact_in_Ints: "fact n \<in> \<int>"  | 
|
76  | 
by (induct n) auto  | 
|
77  | 
||
78  | 
context  | 
|
79  | 
  assumes "SORT_CONSTRAINT('a::linordered_semidom)"
 | 
|
80  | 
begin  | 
|
81  | 
||
82  | 
lemma fact_mono: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: 'a)"  | 
|
83  | 
by (metis of_nat_fact of_nat_le_iff fact_mono_nat)  | 
|
84  | 
||
85  | 
lemma fact_ge_1 [simp]: "fact n \<ge> (1 :: 'a)"  | 
|
86  | 
by (metis le0 fact_0 fact_mono)  | 
|
87  | 
||
88  | 
lemma fact_gt_zero [simp]: "fact n > (0 :: 'a)"  | 
|
89  | 
using fact_ge_1 less_le_trans zero_less_one by blast  | 
|
90  | 
||
91  | 
lemma fact_ge_zero [simp]: "fact n \<ge> (0 :: 'a)"  | 
|
92  | 
by (simp add: less_imp_le)  | 
|
93  | 
||
94  | 
lemma fact_not_neg [simp]: "\<not> fact n < (0 :: 'a)"  | 
|
95  | 
by (simp add: not_less_iff_gr_or_eq)  | 
|
96  | 
||
97  | 
lemma fact_le_power: "fact n \<le> (of_nat (n^n) :: 'a)"  | 
|
98  | 
proof (induct n)  | 
|
99  | 
case 0  | 
|
100  | 
then show ?case by simp  | 
|
101  | 
next  | 
|
102  | 
case (Suc n)  | 
|
103  | 
then have *: "fact n \<le> (of_nat (Suc n ^ n) ::'a)"  | 
|
104  | 
by (rule order_trans) (simp add: power_mono del: of_nat_power)  | 
|
105  | 
have "fact (Suc n) = (of_nat (Suc n) * fact n ::'a)"  | 
|
106  | 
by (simp add: algebra_simps)  | 
|
107  | 
also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n ^ n)"  | 
|
108  | 
by (simp add: * ordered_comm_semiring_class.comm_mult_left_mono del: of_nat_power)  | 
|
109  | 
also have "\<dots> \<le> of_nat (Suc n ^ Suc n)"  | 
|
110  | 
by (metis of_nat_mult order_refl power_Suc)  | 
|
111  | 
finally show ?case .  | 
|
112  | 
qed  | 
|
113  | 
||
114  | 
end  | 
|
115  | 
||
116  | 
lemma fact_less_mono_nat: "0 < m \<Longrightarrow> m < n \<Longrightarrow> fact m < (fact n :: nat)"  | 
|
117  | 
by (induct n) (auto simp: less_Suc_eq)  | 
|
118  | 
||
119  | 
lemma fact_less_mono: "0 < m \<Longrightarrow> m < n \<Longrightarrow> fact m < (fact n :: 'a::linordered_semidom)"  | 
|
120  | 
by (metis of_nat_fact of_nat_less_iff fact_less_mono_nat)  | 
|
121  | 
||
122  | 
lemma fact_ge_Suc_0_nat [simp]: "fact n \<ge> Suc 0"  | 
|
123  | 
by (metis One_nat_def fact_ge_1)  | 
|
124  | 
||
125  | 
lemma dvd_fact: "1 \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> m dvd fact n"  | 
|
126  | 
by (induct n) (auto simp: dvdI le_Suc_eq)  | 
|
127  | 
||
128  | 
lemma fact_ge_self: "fact n \<ge> n"  | 
|
129  | 
by (cases "n = 0") (simp_all add: dvd_imp_le dvd_fact)  | 
|
130  | 
||
| 
66806
 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 
haftmann 
parents: 
66589 
diff
changeset
 | 
131  | 
lemma fact_dvd: "n \<le> m \<Longrightarrow> fact n dvd (fact m :: 'a::linordered_semidom)"  | 
| 65812 | 132  | 
by (induct m) (auto simp: le_Suc_eq)  | 
133  | 
||
| 
66806
 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 
haftmann 
parents: 
66589 
diff
changeset
 | 
134  | 
lemma fact_mod: "m \<le> n \<Longrightarrow> fact n mod (fact m :: 'a::{semidom_modulo, linordered_semidom}) = 0"
 | 
| 
 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 
haftmann 
parents: 
66589 
diff
changeset
 | 
135  | 
by (simp add: mod_eq_0_iff_dvd fact_dvd)  | 
| 65812 | 136  | 
|
| 74969 | 137  | 
lemma fact_eq_fact_times:  | 
138  | 
assumes "m \<ge> n"  | 
|
139  | 
  shows "fact m = fact n * \<Prod>{Suc n..m}"
 | 
|
140  | 
unfolding fact_prod  | 
|
141  | 
by (metis add.commute assms le_add1 le_add_diff_inverse of_nat_id plus_1_eq_Suc prod.ub_add_nat)  | 
|
142  | 
||
| 65812 | 143  | 
lemma fact_div_fact:  | 
144  | 
assumes "m \<ge> n"  | 
|
145  | 
  shows "fact m div fact n = \<Prod>{n + 1..m}"
 | 
|
| 74969 | 146  | 
by (simp add: fact_eq_fact_times [OF assms])  | 
| 65812 | 147  | 
|
148  | 
lemma fact_num_eq_if: "fact m = (if m = 0 then 1 else of_nat m * fact (m - 1))"  | 
|
149  | 
by (cases m) auto  | 
|
150  | 
||
151  | 
lemma fact_div_fact_le_pow:  | 
|
152  | 
assumes "r \<le> n"  | 
|
153  | 
shows "fact n div fact (n - r) \<le> n ^ r"  | 
|
154  | 
proof -  | 
|
155  | 
  have "r \<le> n \<Longrightarrow> \<Prod>{n - r..n} = (n - r) * \<Prod>{Suc (n - r)..n}" for r
 | 
|
156  | 
by (subst prod.insert[symmetric]) (auto simp: atLeastAtMost_insertL)  | 
|
157  | 
with assms show ?thesis  | 
|
158  | 
by (induct r rule: nat.induct) (auto simp add: fact_div_fact Suc_diff_Suc mult_le_mono)  | 
|
159  | 
qed  | 
|
160  | 
||
| 68783 | 161  | 
lemma prod_Suc_fact: "prod Suc {0..<n} = fact n"
 | 
162  | 
by (simp add: fact_prod_Suc)  | 
|
163  | 
||
164  | 
lemma prod_Suc_Suc_fact: "prod Suc {Suc 0..<n} = fact n"
 | 
|
165  | 
proof (cases "n = 0")  | 
|
166  | 
case True  | 
|
167  | 
then show ?thesis by simp  | 
|
168  | 
next  | 
|
169  | 
case False  | 
|
170  | 
  have "prod Suc {Suc 0..<n} = Suc 0 * prod Suc {Suc 0..<n}"
 | 
|
171  | 
by simp  | 
|
172  | 
  also have "\<dots> = prod Suc (insert 0 {Suc 0..<n})"
 | 
|
173  | 
by simp  | 
|
174  | 
  also have "insert 0 {Suc 0..<n} = {0..<n}"
 | 
|
175  | 
using False by auto  | 
|
176  | 
finally show ?thesis  | 
|
177  | 
by (simp add: fact_prod_Suc)  | 
|
178  | 
qed  | 
|
179  | 
||
| 65812 | 180  | 
lemma fact_numeral: "fact (numeral k) = numeral k * fact (pred_numeral k)"  | 
181  | 
\<comment> \<open>Evaluation for specific numerals\<close>  | 
|
182  | 
by (metis fact_Suc numeral_eq_Suc of_nat_numeral)  | 
|
183  | 
||
184  | 
||
185  | 
subsection \<open>Pochhammer's symbol: generalized rising factorial\<close>  | 
|
186  | 
||
| 68224 | 187  | 
text \<open>See \<^url>\<open>https://en.wikipedia.org/wiki/Pochhammer_symbol\<close>.\<close>  | 
| 65812 | 188  | 
|
189  | 
context comm_semiring_1  | 
|
190  | 
begin  | 
|
191  | 
||
192  | 
definition pochhammer :: "'a \<Rightarrow> nat \<Rightarrow> 'a"  | 
|
193  | 
  where pochhammer_prod: "pochhammer a n = prod (\<lambda>i. a + of_nat i) {0..<n}"
 | 
|
194  | 
||
195  | 
lemma pochhammer_prod_rev: "pochhammer a n = prod (\<lambda>i. a + of_nat (n - i)) {1..n}"
 | 
|
| 
67411
 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 
haftmann 
parents: 
67399 
diff
changeset
 | 
196  | 
using prod.atLeastLessThan_rev_at_least_Suc_atMost [of "\<lambda>i. a + of_nat i" 0 n]  | 
| 65812 | 197  | 
by (simp add: pochhammer_prod)  | 
198  | 
||
199  | 
lemma pochhammer_Suc_prod: "pochhammer a (Suc n) = prod (\<lambda>i. a + of_nat i) {0..n}"
 | 
|
200  | 
by (simp add: pochhammer_prod atLeastLessThanSuc_atLeastAtMost)  | 
|
201  | 
||
202  | 
lemma pochhammer_Suc_prod_rev: "pochhammer a (Suc n) = prod (\<lambda>i. a + of_nat (n - i)) {0..n}"
 | 
|
| 
70113
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
203  | 
using prod.atLeast_Suc_atMost_Suc_shift  | 
| 
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
204  | 
by (simp add: pochhammer_prod_rev prod.atLeast_Suc_atMost_Suc_shift del: prod.cl_ivl_Suc)  | 
| 65812 | 205  | 
|
206  | 
lemma pochhammer_0 [simp]: "pochhammer a 0 = 1"  | 
|
207  | 
by (simp add: pochhammer_prod)  | 
|
208  | 
||
209  | 
lemma pochhammer_1 [simp]: "pochhammer a 1 = a"  | 
|
210  | 
by (simp add: pochhammer_prod lessThan_Suc)  | 
|
211  | 
||
212  | 
lemma pochhammer_Suc0 [simp]: "pochhammer a (Suc 0) = a"  | 
|
213  | 
by (simp add: pochhammer_prod lessThan_Suc)  | 
|
214  | 
||
215  | 
lemma pochhammer_Suc: "pochhammer a (Suc n) = pochhammer a n * (a + of_nat n)"  | 
|
216  | 
by (simp add: pochhammer_prod atLeast0_lessThan_Suc ac_simps)  | 
|
217  | 
||
218  | 
end  | 
|
219  | 
||
220  | 
lemma pochhammer_nonneg:  | 
|
221  | 
fixes x :: "'a :: linordered_semidom"  | 
|
222  | 
shows "x > 0 \<Longrightarrow> pochhammer x n \<ge> 0"  | 
|
223  | 
by (induction n) (auto simp: pochhammer_Suc intro!: mult_nonneg_nonneg add_nonneg_nonneg)  | 
|
224  | 
||
225  | 
lemma pochhammer_pos:  | 
|
226  | 
fixes x :: "'a :: linordered_semidom"  | 
|
227  | 
shows "x > 0 \<Longrightarrow> pochhammer x n > 0"  | 
|
228  | 
by (induction n) (auto simp: pochhammer_Suc intro!: mult_pos_pos add_pos_nonneg)  | 
|
229  | 
||
| 69182 | 230  | 
context comm_semiring_1  | 
231  | 
begin  | 
|
232  | 
||
| 65812 | 233  | 
lemma pochhammer_of_nat: "pochhammer (of_nat x) n = of_nat (pochhammer x n)"  | 
| 69182 | 234  | 
by (simp add: pochhammer_prod Factorial.pochhammer_prod)  | 
235  | 
||
236  | 
end  | 
|
237  | 
||
238  | 
context comm_ring_1  | 
|
239  | 
begin  | 
|
| 65812 | 240  | 
|
241  | 
lemma pochhammer_of_int: "pochhammer (of_int x) n = of_int (pochhammer x n)"  | 
|
| 69182 | 242  | 
by (simp add: pochhammer_prod Factorial.pochhammer_prod)  | 
243  | 
||
244  | 
end  | 
|
| 65812 | 245  | 
|
246  | 
lemma pochhammer_rec: "pochhammer a (Suc n) = a * pochhammer (a + 1) n"  | 
|
| 
70113
 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 
paulson <lp15@cam.ac.uk> 
parents: 
69182 
diff
changeset
 | 
247  | 
by (simp add: pochhammer_prod prod.atLeast0_lessThan_Suc_shift ac_simps del: prod.op_ivl_Suc)  | 
| 65812 | 248  | 
|
249  | 
lemma pochhammer_rec': "pochhammer z (Suc n) = (z + of_nat n) * pochhammer z n"  | 
|
250  | 
by (simp add: pochhammer_prod prod.atLeast0_lessThan_Suc ac_simps)  | 
|
251  | 
||
252  | 
lemma pochhammer_fact: "fact n = pochhammer 1 n"  | 
|
253  | 
by (simp add: pochhammer_prod fact_prod_Suc)  | 
|
254  | 
||
255  | 
lemma pochhammer_of_nat_eq_0_lemma: "k > n \<Longrightarrow> pochhammer (- (of_nat n :: 'a:: idom)) k = 0"  | 
|
256  | 
by (auto simp add: pochhammer_prod)  | 
|
257  | 
||
258  | 
lemma pochhammer_of_nat_eq_0_lemma':  | 
|
259  | 
assumes kn: "k \<le> n"  | 
|
260  | 
  shows "pochhammer (- (of_nat n :: 'a::{idom,ring_char_0})) k \<noteq> 0"
 | 
|
261  | 
proof (cases k)  | 
|
262  | 
case 0  | 
|
263  | 
then show ?thesis by simp  | 
|
264  | 
next  | 
|
265  | 
case (Suc h)  | 
|
266  | 
then show ?thesis  | 
|
267  | 
apply (simp add: pochhammer_Suc_prod)  | 
|
268  | 
using Suc kn  | 
|
269  | 
apply (auto simp add: algebra_simps)  | 
|
270  | 
done  | 
|
271  | 
qed  | 
|
272  | 
||
273  | 
lemma pochhammer_of_nat_eq_0_iff:  | 
|
274  | 
  "pochhammer (- (of_nat n :: 'a::{idom,ring_char_0})) k = 0 \<longleftrightarrow> k > n"
 | 
|
275  | 
(is "?l = ?r")  | 
|
276  | 
using pochhammer_of_nat_eq_0_lemma[of n k, where ?'a='a]  | 
|
277  | 
pochhammer_of_nat_eq_0_lemma'[of k n, where ?'a = 'a]  | 
|
278  | 
by (auto simp add: not_le[symmetric])  | 
|
279  | 
||
| 
66394
 
32084d7e6b59
Some facts about orders of zeros
 
eberlm <eberlm@in.tum.de> 
parents: 
65813 
diff
changeset
 | 
280  | 
lemma pochhammer_0_left:  | 
| 
 
32084d7e6b59
Some facts about orders of zeros
 
eberlm <eberlm@in.tum.de> 
parents: 
65813 
diff
changeset
 | 
281  | 
"pochhammer 0 n = (if n = 0 then 1 else 0)"  | 
| 
 
32084d7e6b59
Some facts about orders of zeros
 
eberlm <eberlm@in.tum.de> 
parents: 
65813 
diff
changeset
 | 
282  | 
by (induction n) (simp_all add: pochhammer_rec)  | 
| 
 
32084d7e6b59
Some facts about orders of zeros
 
eberlm <eberlm@in.tum.de> 
parents: 
65813 
diff
changeset
 | 
283  | 
|
| 65812 | 284  | 
lemma pochhammer_eq_0_iff: "pochhammer a n = (0::'a::field_char_0) \<longleftrightarrow> (\<exists>k < n. a = - of_nat k)"  | 
285  | 
by (auto simp add: pochhammer_prod eq_neg_iff_add_eq_0)  | 
|
286  | 
||
287  | 
lemma pochhammer_eq_0_mono:  | 
|
288  | 
"pochhammer a n = (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a m = 0"  | 
|
289  | 
unfolding pochhammer_eq_0_iff by auto  | 
|
290  | 
||
291  | 
lemma pochhammer_neq_0_mono:  | 
|
292  | 
"pochhammer a m \<noteq> (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a n \<noteq> 0"  | 
|
293  | 
unfolding pochhammer_eq_0_iff by auto  | 
|
294  | 
||
295  | 
lemma pochhammer_minus:  | 
|
296  | 
"pochhammer (- b) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (b - of_nat k + 1) k"  | 
|
297  | 
proof (cases k)  | 
|
298  | 
case 0  | 
|
299  | 
then show ?thesis by simp  | 
|
300  | 
next  | 
|
301  | 
case (Suc h)  | 
|
302  | 
have eq: "((- 1) ^ Suc h :: 'a) = (\<Prod>i = 0..h. - 1)"  | 
|
303  | 
    using prod_constant [where A="{0.. h}" and y="- 1 :: 'a"]
 | 
|
304  | 
by auto  | 
|
305  | 
with Suc show ?thesis  | 
|
| 
67969
 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 
paulson <lp15@cam.ac.uk> 
parents: 
67411 
diff
changeset
 | 
306  | 
using pochhammer_Suc_prod_rev [of "b - of_nat k + 1"]  | 
| 
 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 
paulson <lp15@cam.ac.uk> 
parents: 
67411 
diff
changeset
 | 
307  | 
by (auto simp add: pochhammer_Suc_prod prod.distrib [symmetric] eq of_nat_diff simp del: prod_constant)  | 
| 65812 | 308  | 
qed  | 
309  | 
||
310  | 
lemma pochhammer_minus':  | 
|
311  | 
"pochhammer (b - of_nat k + 1) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (- b) k"  | 
|
| 
67969
 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 
paulson <lp15@cam.ac.uk> 
parents: 
67411 
diff
changeset
 | 
312  | 
by (simp add: pochhammer_minus)  | 
| 65812 | 313  | 
|
314  | 
lemma pochhammer_same: "pochhammer (- of_nat n) n =  | 
|
315  | 
    ((- 1) ^ n :: 'a::{semiring_char_0,comm_ring_1,semiring_no_zero_divisors}) * fact n"
 | 
|
316  | 
unfolding pochhammer_minus  | 
|
317  | 
by (simp add: of_nat_diff pochhammer_fact)  | 
|
318  | 
||
319  | 
lemma pochhammer_product': "pochhammer z (n + m) = pochhammer z n * pochhammer (z + of_nat n) m"  | 
|
320  | 
proof (induct n arbitrary: z)  | 
|
321  | 
case 0  | 
|
322  | 
then show ?case by simp  | 
|
323  | 
next  | 
|
324  | 
case (Suc n z)  | 
|
325  | 
have "pochhammer z (Suc n) * pochhammer (z + of_nat (Suc n)) m =  | 
|
326  | 
z * (pochhammer (z + 1) n * pochhammer (z + 1 + of_nat n) m)"  | 
|
327  | 
by (simp add: pochhammer_rec ac_simps)  | 
|
328  | 
also note Suc[symmetric]  | 
|
329  | 
also have "z * pochhammer (z + 1) (n + m) = pochhammer z (Suc (n + m))"  | 
|
330  | 
by (subst pochhammer_rec) simp  | 
|
331  | 
finally show ?case  | 
|
332  | 
by simp  | 
|
333  | 
qed  | 
|
334  | 
||
335  | 
lemma pochhammer_product:  | 
|
336  | 
"m \<le> n \<Longrightarrow> pochhammer z n = pochhammer z m * pochhammer (z + of_nat m) (n - m)"  | 
|
337  | 
using pochhammer_product'[of z m "n - m"] by simp  | 
|
338  | 
||
339  | 
lemma pochhammer_times_pochhammer_half:  | 
|
340  | 
fixes z :: "'a::field_char_0"  | 
|
341  | 
shows "pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n) = (\<Prod>k=0..2*n+1. z + of_nat k / 2)"  | 
|
342  | 
proof (induct n)  | 
|
343  | 
case 0  | 
|
344  | 
then show ?case  | 
|
345  | 
by (simp add: atLeast0_atMost_Suc)  | 
|
346  | 
next  | 
|
347  | 
case (Suc n)  | 
|
348  | 
define n' where "n' = Suc n"  | 
|
349  | 
have "pochhammer z (Suc n') * pochhammer (z + 1 / 2) (Suc n') =  | 
|
350  | 
(pochhammer z n' * pochhammer (z + 1 / 2) n') * ((z + of_nat n') * (z + 1/2 + of_nat n'))"  | 
|
351  | 
(is "_ = _ * ?A")  | 
|
352  | 
by (simp_all add: pochhammer_rec' mult_ac)  | 
|
353  | 
also have "?A = (z + of_nat (Suc (2 * n + 1)) / 2) * (z + of_nat (Suc (Suc (2 * n + 1))) / 2)"  | 
|
354  | 
(is "_ = ?B")  | 
|
355  | 
by (simp add: field_simps n'_def)  | 
|
356  | 
also note Suc[folded n'_def]  | 
|
357  | 
also have "(\<Prod>k=0..2 * n + 1. z + of_nat k / 2) * ?B = (\<Prod>k=0..2 * Suc n + 1. z + of_nat k / 2)"  | 
|
358  | 
by (simp add: atLeast0_atMost_Suc)  | 
|
359  | 
finally show ?case  | 
|
360  | 
by (simp add: n'_def)  | 
|
361  | 
qed  | 
|
362  | 
||
363  | 
lemma pochhammer_double:  | 
|
364  | 
fixes z :: "'a::field_char_0"  | 
|
365  | 
shows "pochhammer (2 * z) (2 * n) = of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n"  | 
|
366  | 
proof (induct n)  | 
|
367  | 
case 0  | 
|
368  | 
then show ?case by simp  | 
|
369  | 
next  | 
|
370  | 
case (Suc n)  | 
|
371  | 
have "pochhammer (2 * z) (2 * (Suc n)) = pochhammer (2 * z) (2 * n) *  | 
|
372  | 
(2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1)"  | 
|
373  | 
by (simp add: pochhammer_rec' ac_simps)  | 
|
374  | 
also note Suc  | 
|
375  | 
also have "of_nat (2 ^ (2 * n)) * pochhammer z n * pochhammer (z + 1/2) n *  | 
|
376  | 
(2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1) =  | 
|
377  | 
of_nat (2 ^ (2 * (Suc n))) * pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n)"  | 
|
378  | 
by (simp add: field_simps pochhammer_rec')  | 
|
379  | 
finally show ?case .  | 
|
380  | 
qed  | 
|
381  | 
||
382  | 
lemma fact_double:  | 
|
383  | 
"fact (2 * n) = (2 ^ (2 * n) * pochhammer (1 / 2) n * fact n :: 'a::field_char_0)"  | 
|
384  | 
using pochhammer_double[of "1/2::'a" n] by (simp add: pochhammer_fact)  | 
|
385  | 
||
386  | 
lemma pochhammer_absorb_comp: "(r - of_nat k) * pochhammer (- r) k = r * pochhammer (-r + 1) k"  | 
|
387  | 
(is "?lhs = ?rhs")  | 
|
388  | 
for r :: "'a::comm_ring_1"  | 
|
389  | 
proof -  | 
|
390  | 
have "?lhs = - pochhammer (- r) (Suc k)"  | 
|
391  | 
by (subst pochhammer_rec') (simp add: algebra_simps)  | 
|
392  | 
also have "\<dots> = ?rhs"  | 
|
393  | 
by (subst pochhammer_rec) simp  | 
|
394  | 
finally show ?thesis .  | 
|
395  | 
qed  | 
|
396  | 
||
397  | 
||
398  | 
subsection \<open>Misc\<close>  | 
|
399  | 
||
400  | 
lemma fact_code [code]:  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
68783 
diff
changeset
 | 
401  | 
"fact n = (of_nat (fold_atLeastAtMost_nat ((*)) 2 n 1) :: 'a::semiring_char_0)"  | 
| 65812 | 402  | 
proof -  | 
403  | 
  have "fact n = (of_nat (\<Prod>{1..n}) :: 'a)"
 | 
|
404  | 
by (simp add: fact_prod)  | 
|
405  | 
  also have "\<Prod>{1..n} = \<Prod>{2..n}"
 | 
|
406  | 
by (intro prod.mono_neutral_right) auto  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
68783 
diff
changeset
 | 
407  | 
also have "\<dots> = fold_atLeastAtMost_nat ((*)) 2 n 1"  | 
| 65812 | 408  | 
by (simp add: prod_atLeastAtMost_code)  | 
409  | 
finally show ?thesis .  | 
|
410  | 
qed  | 
|
411  | 
||
412  | 
lemma pochhammer_code [code]:  | 
|
413  | 
"pochhammer a n =  | 
|
414  | 
(if n = 0 then 1  | 
|
415  | 
else fold_atLeastAtMost_nat (\<lambda>n acc. (a + of_nat n) * acc) 0 (n - 1) 1)"  | 
|
416  | 
by (cases n)  | 
|
417  | 
(simp_all add: pochhammer_prod prod_atLeastAtMost_code [symmetric]  | 
|
418  | 
atLeastLessThanSuc_atLeastAtMost)  | 
|
419  | 
||
| 
72569
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
420  | 
|
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
421  | 
lemma mult_less_iff1: "0 < z \<Longrightarrow> x * z < y * z \<longleftrightarrow> x < y"  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
422  | 
for x y z :: "'a::linordered_idom"  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
423  | 
by simp  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
424  | 
|
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
425  | 
lemma mult_le_cancel_iff1: "0 < z \<Longrightarrow> x * z \<le> y * z \<longleftrightarrow> x \<le> y"  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
426  | 
for x y z :: "'a::linordered_idom"  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
427  | 
by simp  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
428  | 
|
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
429  | 
lemma mult_le_cancel_iff2: "0 < z \<Longrightarrow> z * x \<le> z * y \<longleftrightarrow> x \<le> y"  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
430  | 
for x y z :: "'a::linordered_idom"  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
431  | 
by simp  | 
| 
 
d56e4eeae967
mult_le_cancel_iff1, mult_le_cancel_iff2, mult_less_iff1 generalised from the real_ versions
 
paulson <lp15@cam.ac.uk> 
parents: 
70113 
diff
changeset
 | 
432  | 
|
| 65812 | 433  | 
end  |