| author | huffman |
| Sat, 30 Sep 2006 17:10:55 +0200 | |
| changeset 20792 | add17d26151b |
| parent 20503 | 503ac4c5ef91 |
| child 21113 | 5b76e541cc0a |
| permissions | -rw-r--r-- |
| 20400 | 1 |
(* ID: $Id$ |
2 |
Author: Florian Haftmann, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header {* A simple random engine *}
|
|
6 |
||
7 |
theory CodeRandom |
|
8 |
imports CodeRevappl |
|
9 |
begin |
|
10 |
||
11 |
section {* A simple random engine *}
|
|
12 |
||
13 |
consts |
|
14 |
pick :: "(nat \<times> 'a) list \<Rightarrow> nat \<Rightarrow> 'a" |
|
15 |
||
16 |
primrec |
|
17 |
"pick (x#xs) n = (let (k, v) = x in |
|
18 |
if n < k then v else pick xs (n - k))" |
|
19 |
||
20 |
lemma pick_def [code, simp]: |
|
21 |
"pick ((k, v)#xs) n = (if n < k then v else pick xs (n - k))" by simp |
|
22 |
declare pick.simps [simp del, code del] |
|
23 |
||
24 |
typedecl randseed |
|
25 |
||
26 |
consts |
|
27 |
random_shift :: "randseed \<Rightarrow> randseed" |
|
28 |
random_seed :: "randseed \<Rightarrow> nat" |
|
29 |
||
30 |
definition |
|
31 |
random :: "nat \<Rightarrow> randseed \<Rightarrow> nat \<times> randseed" |
|
32 |
"random n s = (random_seed s mod n, random_shift s)" |
|
33 |
||
34 |
lemma random_bound: |
|
35 |
assumes "0 < n" |
|
36 |
shows "fst (random n s) < n" |
|
37 |
proof - |
|
38 |
from prems mod_less_divisor have "!!m .m mod n < n" by auto |
|
39 |
then show ?thesis unfolding random_def by simp |
|
40 |
qed |
|
41 |
||
42 |
lemma random_random_seed [simp]: |
|
43 |
"snd (random n s) = random_shift s" unfolding random_def by simp |
|
44 |
||
45 |
definition |
|
46 |
select :: "'a list \<Rightarrow> randseed \<Rightarrow> 'a \<times> randseed" |
|
47 |
[simp]: "select xs s = |
|
48 |
s |
|
49 |
\<triangleright> random (length xs) |
|
50 |
\<turnstile>\<triangleright> (\<lambda>n. Pair (nth xs n))" |
|
51 |
select_weight :: "(nat \<times> 'a) list \<Rightarrow> randseed \<Rightarrow> 'a \<times> randseed" |
|
52 |
[simp]: "select_weight xs s = |
|
53 |
s |
|
54 |
\<triangleright> random (foldl (op +) 0 (map fst xs)) |
|
55 |
\<turnstile>\<triangleright> (\<lambda>n. Pair (pick xs n))" |
|
56 |
||
57 |
lemma |
|
58 |
"select (x#xs) s = select_weight (map (Pair 1) (x#xs)) s" |
|
59 |
proof (induct xs) |
|
60 |
case Nil show ?case by (simp add: revappl random_def) |
|
61 |
next |
|
62 |
have map_fst_Pair: "!!xs y. map fst (map (Pair y) xs) = replicate (length xs) y" |
|
63 |
proof - |
|
64 |
fix xs |
|
65 |
fix y |
|
66 |
show "map fst (map (Pair y) xs) = replicate (length xs) y" |
|
67 |
by (induct xs) simp_all |
|
68 |
qed |
|
69 |
have pick_nth: "!!xs n. n < length xs \<Longrightarrow> pick (map (Pair 1) xs) n = nth xs n" |
|
70 |
proof - |
|
71 |
fix xs |
|
72 |
fix n |
|
73 |
assume "n < length xs" |
|
74 |
then show "pick (map (Pair 1) xs) n = nth xs n" |
|
| 20503 | 75 |
proof (induct xs arbitrary: n) |
| 20400 | 76 |
case Nil then show ?case by simp |
77 |
next |
|
78 |
case (Cons x xs) show ?case |
|
79 |
proof (cases n) |
|
80 |
case 0 then show ?thesis by simp |
|
81 |
next |
|
82 |
case (Suc _) |
|
83 |
from Cons have "n < length (x # xs)" by auto |
|
84 |
then have "n < Suc (length xs)" by simp |
|
85 |
with Suc have "n - 1 < Suc (length xs) - 1" by auto |
|
86 |
with Cons have "pick (map (Pair (1\<Colon>nat)) xs) (n - 1) = xs ! (n - 1)" by auto |
|
87 |
with Suc show ?thesis by auto |
|
88 |
qed |
|
89 |
qed |
|
90 |
qed |
|
91 |
have sum_length: "!!xs. foldl (op +) 0 (map fst (map (Pair 1) xs)) = length xs" |
|
92 |
proof - |
|
93 |
have replicate_append: |
|
94 |
"!!x xs y. replicate (length (x # xs)) y = replicate (length xs) y @ [y]" |
|
95 |
by (simp add: replicate_app_Cons_same) |
|
96 |
fix xs |
|
97 |
show "foldl (op +) 0 (map fst (map (Pair 1) xs)) = length xs" |
|
98 |
unfolding map_fst_Pair proof (induct xs) |
|
99 |
case Nil show ?case by simp |
|
100 |
next |
|
101 |
case (Cons x xs) then show ?case unfolding replicate_append by simp |
|
102 |
qed |
|
103 |
qed |
|
104 |
have pick_nth_random: |
|
105 |
"!!x xs s. pick (map (Pair 1) (x#xs)) (fst (random (length (x#xs)) s)) = nth (x#xs) (fst (random (length (x#xs)) s))" |
|
106 |
proof - |
|
107 |
fix s |
|
108 |
fix x |
|
109 |
fix xs |
|
110 |
have bound: "fst (random (length (x#xs)) s) < length (x#xs)" by (rule random_bound) simp |
|
111 |
from pick_nth [OF bound] show |
|
112 |
"pick (map (Pair 1) (x#xs)) (fst (random (length (x#xs)) s)) = nth (x#xs) (fst (random (length (x#xs)) s))" . |
|
113 |
qed |
|
114 |
case (Cons x xs) then show ?case |
|
115 |
unfolding select_weight_def sum_length revappl_split pick_nth_random |
|
116 |
by (simp add: revappl_split) |
|
117 |
qed |
|
118 |
||
119 |
definition |
|
120 |
random_int :: "int \<Rightarrow> randseed \<Rightarrow> int * randseed" |
|
121 |
"random_int k s = (let (l, s') = random (nat k) s in (int l, s'))" |
|
122 |
||
123 |
lemma random_nat [code]: |
|
124 |
"random n s = (let (m, s') = random_int (int n) s in (nat m, s'))" |
|
125 |
unfolding random_int_def Let_def split_def random_def by simp |
|
126 |
||
127 |
ML {*
|
|
128 |
signature RANDOM = |
|
129 |
sig |
|
130 |
type seed = IntInf.int; |
|
131 |
val seed: unit -> seed; |
|
132 |
val value: IntInf.int -> seed -> IntInf.int * seed; |
|
133 |
end; |
|
134 |
||
135 |
structure Random : RANDOM = |
|
136 |
struct |
|
137 |
||
| 20406 | 138 |
open IntInf; |
139 |
||
| 20400 | 140 |
exception RANDOM; |
141 |
||
| 20406 | 142 |
type seed = int; |
| 20400 | 143 |
|
144 |
local |
|
| 20406 | 145 |
val a = fromInt 16807; |
146 |
(*greetings to SML/NJ*) |
|
147 |
val m = (the o fromString) "2147483647"; |
|
| 20400 | 148 |
in |
| 20406 | 149 |
fun next s = (a * s) mod m; |
| 20400 | 150 |
end; |
151 |
||
152 |
local |
|
| 20406 | 153 |
val seed_ref = ref (fromInt 1); |
| 20400 | 154 |
in |
155 |
fun seed () = |
|
156 |
let |
|
157 |
val r = next (!seed_ref) |
|
158 |
in |
|
159 |
(seed_ref := r; r) |
|
160 |
end; |
|
161 |
end; |
|
162 |
||
163 |
fun value h s = |
|
164 |
if h < 1 then raise RANDOM |
|
| 20406 | 165 |
else (s mod (h - 1), seed ()); |
| 20400 | 166 |
|
167 |
end; |
|
168 |
*} |
|
169 |
||
|
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20406
diff
changeset
|
170 |
code_type randseed |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20406
diff
changeset
|
171 |
(SML target_atom "Random.seed") |
| 20400 | 172 |
|
|
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20406
diff
changeset
|
173 |
code_const random_int |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20406
diff
changeset
|
174 |
(SML target_atom "Random.value") |
| 20400 | 175 |
|
|
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20406
diff
changeset
|
176 |
code_gen select select_weight |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20406
diff
changeset
|
177 |
(SML -) |
| 20400 | 178 |
|
179 |
end |