| author | blanchet | 
| Sun, 01 May 2011 18:37:24 +0200 | |
| changeset 42557 | ae0deb39a254 | 
| parent 41775 | 6214816d79d3 | 
| child 44890 | 22f665a2e91c | 
| permissions | -rw-r--r-- | 
| 41775 | 1  | 
(* Title: HOL/Auth/Guard/Extensions.thy  | 
2  | 
Author: Frederic Blanqui, University of Cambridge Computer Laboratory  | 
|
3  | 
Copyright 2001 University of Cambridge  | 
|
4  | 
*)  | 
|
| 13508 | 5  | 
|
6  | 
header {*Extensions to Standard Theories*}
 | 
|
7  | 
||
| 32695 | 8  | 
theory Extensions  | 
9  | 
imports "../Event"  | 
|
10  | 
begin  | 
|
| 13508 | 11  | 
|
12  | 
subsection{*Extensions to Theory @{text Set}*}
 | 
|
13  | 
||
14  | 
lemma eq: "[| !!x. x:A ==> x:B; !!x. x:B ==> x:A |] ==> A=B"  | 
|
15  | 
by auto  | 
|
16  | 
||
17  | 
lemma insert_Un: "P ({x} Un A) ==> P (insert x A)"
 | 
|
18  | 
by simp  | 
|
19  | 
||
20  | 
lemma in_sub: "x:A ==> {x}<=A"
 | 
|
21  | 
by auto  | 
|
22  | 
||
23  | 
||
24  | 
subsection{*Extensions to Theory @{text List}*}
 | 
|
25  | 
||
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
18557 
diff
changeset
 | 
26  | 
subsubsection{*"remove l x" erase the first element of "l" equal to "x"*}
 | 
| 13508 | 27  | 
|
| 39246 | 28  | 
primrec remove :: "'a list => 'a => 'a list" where  | 
29  | 
"remove [] y = []" |  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
18557 
diff
changeset
 | 
30  | 
"remove (x#xs) y = (if x=y then xs else x # remove xs y)"  | 
| 13508 | 31  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
18557 
diff
changeset
 | 
32  | 
lemma set_remove: "set (remove l x) <= set l"  | 
| 13508 | 33  | 
by (induct l, auto)  | 
34  | 
||
35  | 
subsection{*Extensions to Theory @{text Message}*}
 | 
|
36  | 
||
37  | 
subsubsection{*declarations for tactics*}
 | 
|
38  | 
||
39  | 
declare analz_subset_parts [THEN subsetD, dest]  | 
|
40  | 
declare image_eq_UN [simp]  | 
|
41  | 
declare parts_insert2 [simp]  | 
|
42  | 
declare analz_cut [dest]  | 
|
43  | 
declare split_if_asm [split]  | 
|
44  | 
declare analz_insertI [intro]  | 
|
45  | 
declare Un_Diff [simp]  | 
|
46  | 
||
47  | 
subsubsection{*extract the agent number of an Agent message*}
 | 
|
48  | 
||
| 35418 | 49  | 
primrec agt_nb :: "msg => agent" where  | 
| 13508 | 50  | 
"agt_nb (Agent A) = A"  | 
51  | 
||
52  | 
subsubsection{*messages that are pairs*}
 | 
|
53  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
54  | 
definition is_MPair :: "msg => bool" where  | 
| 13508 | 55  | 
"is_MPair X == EX Y Z. X = {|Y,Z|}"
 | 
56  | 
||
57  | 
declare is_MPair_def [simp]  | 
|
58  | 
||
59  | 
lemma MPair_is_MPair [iff]: "is_MPair {|X,Y|}"
 | 
|
60  | 
by simp  | 
|
61  | 
||
62  | 
lemma Agent_isnt_MPair [iff]: "~ is_MPair (Agent A)"  | 
|
63  | 
by simp  | 
|
64  | 
||
65  | 
lemma Number_isnt_MPair [iff]: "~ is_MPair (Number n)"  | 
|
66  | 
by simp  | 
|
67  | 
||
68  | 
lemma Key_isnt_MPair [iff]: "~ is_MPair (Key K)"  | 
|
69  | 
by simp  | 
|
70  | 
||
71  | 
lemma Nonce_isnt_MPair [iff]: "~ is_MPair (Nonce n)"  | 
|
72  | 
by simp  | 
|
73  | 
||
74  | 
lemma Hash_isnt_MPair [iff]: "~ is_MPair (Hash X)"  | 
|
75  | 
by simp  | 
|
76  | 
||
77  | 
lemma Crypt_isnt_MPair [iff]: "~ is_MPair (Crypt K X)"  | 
|
78  | 
by simp  | 
|
79  | 
||
| 20768 | 80  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20768 
diff
changeset
 | 
81  | 
not_MPair :: "msg => bool" where  | 
| 20768 | 82  | 
"not_MPair X == ~ is_MPair X"  | 
| 13508 | 83  | 
|
84  | 
lemma is_MPairE: "[| is_MPair X ==> P; not_MPair X ==> P |] ==> P"  | 
|
85  | 
by auto  | 
|
86  | 
||
87  | 
declare is_MPair_def [simp del]  | 
|
88  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
89  | 
definition has_no_pair :: "msg set => bool" where  | 
| 13508 | 90  | 
"has_no_pair H == ALL X Y. {|X,Y|} ~:H"
 | 
91  | 
||
92  | 
declare has_no_pair_def [simp]  | 
|
93  | 
||
94  | 
subsubsection{*well-foundedness of messages*}
 | 
|
95  | 
||
96  | 
lemma wf_Crypt1 [iff]: "Crypt K X ~= X"  | 
|
97  | 
by (induct X, auto)  | 
|
98  | 
||
99  | 
lemma wf_Crypt2 [iff]: "X ~= Crypt K X"  | 
|
100  | 
by (induct X, auto)  | 
|
101  | 
||
102  | 
lemma parts_size: "X:parts {Y} ==> X=Y | size X < size Y"
 | 
|
103  | 
by (erule parts.induct, auto)  | 
|
104  | 
||
105  | 
lemma wf_Crypt_parts [iff]: "Crypt K X ~:parts {X}"
 | 
|
106  | 
by (auto dest: parts_size)  | 
|
107  | 
||
108  | 
subsubsection{*lemmas on keysFor*}
 | 
|
109  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
110  | 
definition usekeys :: "msg set => key set" where  | 
| 13508 | 111  | 
"usekeys G == {K. EX Y. Crypt K Y:G}"
 | 
112  | 
||
113  | 
lemma finite_keysFor [intro]: "finite G ==> finite (keysFor G)"  | 
|
114  | 
apply (simp add: keysFor_def)  | 
|
115  | 
apply (rule finite_UN_I, auto)  | 
|
116  | 
apply (erule finite_induct, auto)  | 
|
117  | 
apply (case_tac "EX K X. x = Crypt K X", clarsimp)  | 
|
118  | 
apply (subgoal_tac "{Ka. EX Xa. (Ka=K & Xa=X) | Crypt Ka Xa:F}
 | 
|
119  | 
= insert K (usekeys F)", auto simp: usekeys_def)  | 
|
120  | 
by (subgoal_tac "{K. EX X. Crypt K X = x | Crypt K X:F} = usekeys F",
 | 
|
121  | 
auto simp: usekeys_def)  | 
|
122  | 
||
123  | 
subsubsection{*lemmas on parts*}
 | 
|
124  | 
||
125  | 
lemma parts_sub: "[| X:parts G; G<=H |] ==> X:parts H"  | 
|
126  | 
by (auto dest: parts_mono)  | 
|
127  | 
||
128  | 
lemma parts_Diff [dest]: "X:parts (G - H) ==> X:parts G"  | 
|
129  | 
by (erule parts_sub, auto)  | 
|
130  | 
||
131  | 
lemma parts_Diff_notin: "[| Y ~:H; Nonce n ~:parts (H - {Y}) |]
 | 
|
132  | 
==> Nonce n ~:parts H"  | 
|
133  | 
by simp  | 
|
134  | 
||
135  | 
lemmas parts_insert_substI = parts_insert [THEN ssubst]  | 
|
136  | 
lemmas parts_insert_substD = parts_insert [THEN sym, THEN ssubst]  | 
|
137  | 
||
138  | 
lemma finite_parts_msg [iff]: "finite (parts {X})"
 | 
|
139  | 
by (induct X, auto)  | 
|
140  | 
||
141  | 
lemma finite_parts [intro]: "finite H ==> finite (parts H)"  | 
|
142  | 
apply (erule finite_induct, simp)  | 
|
143  | 
by (rule parts_insert_substI, simp)  | 
|
144  | 
||
145  | 
lemma parts_parts: "[| X:parts {Y}; Y:parts G |] ==> X:parts G"
 | 
|
| 
17689
 
a04b5b43625e
streamlined theory; conformance to recent publication
 
paulson 
parents: 
16417 
diff
changeset
 | 
146  | 
by (frule parts_cut, auto)  | 
| 
 
a04b5b43625e
streamlined theory; conformance to recent publication
 
paulson 
parents: 
16417 
diff
changeset
 | 
147  | 
|
| 13508 | 148  | 
|
149  | 
lemma parts_parts_parts: "[| X:parts {Y}; Y:parts {Z}; Z:parts G |] ==> X:parts G"
 | 
|
150  | 
by (auto dest: parts_parts)  | 
|
151  | 
||
152  | 
lemma parts_parts_Crypt: "[| Crypt K X:parts G; Nonce n:parts {X} |]
 | 
|
153  | 
==> Nonce n:parts G"  | 
|
154  | 
by (blast intro: parts.Body dest: parts_parts)  | 
|
155  | 
||
156  | 
subsubsection{*lemmas on synth*}
 | 
|
157  | 
||
158  | 
lemma synth_sub: "[| X:synth G; G<=H |] ==> X:synth H"  | 
|
159  | 
by (auto dest: synth_mono)  | 
|
160  | 
||
161  | 
lemma Crypt_synth [rule_format]: "[| X:synth G; Key K ~:G |] ==>  | 
|
162  | 
Crypt K Y:parts {X} --> Crypt K Y:parts G"
 | 
|
163  | 
by (erule synth.induct, auto dest: parts_sub)  | 
|
164  | 
||
165  | 
subsubsection{*lemmas on analz*}
 | 
|
166  | 
||
167  | 
lemma analz_UnI1 [intro]: "X:analz G ==> X:analz (G Un H)"  | 
|
| 32695 | 168  | 
by (subgoal_tac "G <= G Un H") (blast dest: analz_mono)+  | 
| 13508 | 169  | 
|
170  | 
lemma analz_sub: "[| X:analz G; G <= H |] ==> X:analz H"  | 
|
171  | 
by (auto dest: analz_mono)  | 
|
172  | 
||
173  | 
lemma analz_Diff [dest]: "X:analz (G - H) ==> X:analz G"  | 
|
174  | 
by (erule analz.induct, auto)  | 
|
175  | 
||
176  | 
lemmas in_analz_subset_cong = analz_subset_cong [THEN subsetD]  | 
|
177  | 
||
178  | 
lemma analz_eq: "A=A' ==> analz A = analz A'"  | 
|
179  | 
by auto  | 
|
180  | 
||
181  | 
lemmas insert_commute_substI = insert_commute [THEN ssubst]  | 
|
182  | 
||
| 14307 | 183  | 
lemma analz_insertD:  | 
184  | 
"[| Crypt K Y:H; Key (invKey K):H |] ==> analz (insert Y H) = analz H"  | 
|
185  | 
by (blast intro: analz.Decrypt analz_insert_eq)  | 
|
| 13508 | 186  | 
|
187  | 
lemma must_decrypt [rule_format,dest]: "[| X:analz H; has_no_pair H |] ==>  | 
|
188  | 
X ~:H --> (EX K Y. Crypt K Y:H & Key (invKey K):H)"  | 
|
189  | 
by (erule analz.induct, auto)  | 
|
190  | 
||
191  | 
lemma analz_needs_only_finite: "X:analz H ==> EX G. G <= H & finite G"  | 
|
192  | 
by (erule analz.induct, auto)  | 
|
193  | 
||
194  | 
lemma notin_analz_insert: "X ~:analz (insert Y G) ==> X ~:analz G"  | 
|
195  | 
by auto  | 
|
196  | 
||
197  | 
subsubsection{*lemmas on parts, synth and analz*}
 | 
|
198  | 
||
199  | 
lemma parts_invKey [rule_format,dest]:"X:parts {Y} ==>
 | 
|
200  | 
X:analz (insert (Crypt K Y) H) --> X ~:analz H --> Key (invKey K):analz H"  | 
|
| 
26809
 
da662ff93503
- Instantiated parts_insert_substD to avoid problems with HO unification
 
berghofe 
parents: 
21404 
diff
changeset
 | 
201  | 
by (erule parts.induct, (fastsimp dest: parts.Fst parts.Snd parts.Body)+)  | 
| 13508 | 202  | 
|
203  | 
lemma in_analz: "Y:analz H ==> EX X. X:H & Y:parts {X}"
 | 
|
204  | 
by (erule analz.induct, auto intro: parts.Fst parts.Snd parts.Body)  | 
|
205  | 
||
206  | 
lemmas in_analz_subset_parts = analz_subset_parts [THEN subsetD]  | 
|
207  | 
||
208  | 
lemma Crypt_synth_insert: "[| Crypt K X:parts (insert Y H);  | 
|
209  | 
Y:synth (analz H); Key K ~:analz H |] ==> Crypt K X:parts H"  | 
|
| 
26809
 
da662ff93503
- Instantiated parts_insert_substD to avoid problems with HO unification
 
berghofe 
parents: 
21404 
diff
changeset
 | 
210  | 
apply (drule parts_insert_substD [where P="%S. Crypt K X : S"], clarify)  | 
| 13508 | 211  | 
apply (frule in_sub)  | 
212  | 
apply (frule parts_mono)  | 
|
213  | 
by auto  | 
|
214  | 
||
215  | 
subsubsection{*greatest nonce used in a message*}
 | 
|
216  | 
||
| 35418 | 217  | 
fun greatest_msg :: "msg => nat"  | 
218  | 
where  | 
|
219  | 
"greatest_msg (Nonce n) = n"  | 
|
220  | 
| "greatest_msg {|X,Y|} = max (greatest_msg X) (greatest_msg Y)"
 | 
|
221  | 
| "greatest_msg (Crypt K X) = greatest_msg X"  | 
|
222  | 
| "greatest_msg other = 0"  | 
|
| 13508 | 223  | 
|
224  | 
lemma greatest_msg_is_greatest: "Nonce n:parts {X} ==> n <= greatest_msg X"
 | 
|
| 
20217
 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 
webertj 
parents: 
19233 
diff
changeset
 | 
225  | 
by (induct X, auto)  | 
| 13508 | 226  | 
|
227  | 
subsubsection{*sets of keys*}
 | 
|
228  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
229  | 
definition keyset :: "msg set => bool" where  | 
| 13508 | 230  | 
"keyset G == ALL X. X:G --> (EX K. X = Key K)"  | 
231  | 
||
232  | 
lemma keyset_in [dest]: "[| keyset G; X:G |] ==> EX K. X = Key K"  | 
|
233  | 
by (auto simp: keyset_def)  | 
|
234  | 
||
235  | 
lemma MPair_notin_keyset [simp]: "keyset G ==> {|X,Y|} ~:G"
 | 
|
236  | 
by auto  | 
|
237  | 
||
238  | 
lemma Crypt_notin_keyset [simp]: "keyset G ==> Crypt K X ~:G"  | 
|
239  | 
by auto  | 
|
240  | 
||
241  | 
lemma Nonce_notin_keyset [simp]: "keyset G ==> Nonce n ~:G"  | 
|
242  | 
by auto  | 
|
243  | 
||
244  | 
lemma parts_keyset [simp]: "keyset G ==> parts G = G"  | 
|
245  | 
by (auto, erule parts.induct, auto)  | 
|
246  | 
||
247  | 
subsubsection{*keys a priori necessary for decrypting the messages of G*}
 | 
|
248  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
249  | 
definition keysfor :: "msg set => msg set" where  | 
| 13508 | 250  | 
"keysfor G == Key ` keysFor (parts G)"  | 
251  | 
||
252  | 
lemma keyset_keysfor [iff]: "keyset (keysfor G)"  | 
|
253  | 
by (simp add: keyset_def keysfor_def, blast)  | 
|
254  | 
||
255  | 
lemma keyset_Diff_keysfor [simp]: "keyset H ==> keyset (H - keysfor G)"  | 
|
256  | 
by (auto simp: keyset_def)  | 
|
257  | 
||
258  | 
lemma keysfor_Crypt: "Crypt K X:parts G ==> Key (invKey K):keysfor G"  | 
|
259  | 
by (auto simp: keysfor_def Crypt_imp_invKey_keysFor)  | 
|
260  | 
||
261  | 
lemma no_key_no_Crypt: "Key K ~:keysfor G ==> Crypt (invKey K) X ~:parts G"  | 
|
262  | 
by (auto dest: keysfor_Crypt)  | 
|
263  | 
||
264  | 
lemma finite_keysfor [intro]: "finite G ==> finite (keysfor G)"  | 
|
265  | 
by (auto simp: keysfor_def intro: finite_UN_I)  | 
|
266  | 
||
267  | 
subsubsection{*only the keys necessary for G are useful in analz*}
 | 
|
268  | 
||
269  | 
lemma analz_keyset: "keyset H ==>  | 
|
270  | 
analz (G Un H) = H - keysfor G Un (analz (G Un (H Int keysfor G)))"  | 
|
271  | 
apply (rule eq)  | 
|
272  | 
apply (erule analz.induct, blast)  | 
|
| 
18557
 
60a0f9caa0a2
Provers/classical: stricter checks to ensure that supplied intro, dest and
 
paulson 
parents: 
17689 
diff
changeset
 | 
273  | 
apply (simp, blast)  | 
| 
 
60a0f9caa0a2
Provers/classical: stricter checks to ensure that supplied intro, dest and
 
paulson 
parents: 
17689 
diff
changeset
 | 
274  | 
apply (simp, blast)  | 
| 13508 | 275  | 
apply (case_tac "Key (invKey K):H - keysfor G", clarsimp)  | 
276  | 
apply (drule_tac X=X in no_key_no_Crypt)  | 
|
277  | 
by (auto intro: analz_sub)  | 
|
278  | 
||
279  | 
lemmas analz_keyset_substD = analz_keyset [THEN sym, THEN ssubst]  | 
|
280  | 
||
281  | 
||
282  | 
subsection{*Extensions to Theory @{text Event}*}
 | 
|
283  | 
||
284  | 
||
285  | 
subsubsection{*general protocol properties*}
 | 
|
286  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
287  | 
definition is_Says :: "event => bool" where  | 
| 13508 | 288  | 
"is_Says ev == (EX A B X. ev = Says A B X)"  | 
289  | 
||
290  | 
lemma is_Says_Says [iff]: "is_Says (Says A B X)"  | 
|
291  | 
by (simp add: is_Says_def)  | 
|
292  | 
||
293  | 
(* one could also require that Gets occurs after Says  | 
|
294  | 
but this is sufficient for our purpose *)  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
295  | 
definition Gets_correct :: "event list set => bool" where  | 
| 13508 | 296  | 
"Gets_correct p == ALL evs B X. evs:p --> Gets B X:set evs  | 
297  | 
--> (EX A. Says A B X:set evs)"  | 
|
298  | 
||
299  | 
lemma Gets_correct_Says: "[| Gets_correct p; Gets B X # evs:p |]  | 
|
300  | 
==> EX A. Says A B X:set evs"  | 
|
301  | 
apply (simp add: Gets_correct_def)  | 
|
302  | 
by (drule_tac x="Gets B X # evs" in spec, auto)  | 
|
303  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
304  | 
definition one_step :: "event list set => bool" where  | 
| 13508 | 305  | 
"one_step p == ALL evs ev. ev#evs:p --> evs:p"  | 
306  | 
||
307  | 
lemma one_step_Cons [dest]: "[| one_step p; ev#evs:p |] ==> evs:p"  | 
|
308  | 
by (unfold one_step_def, blast)  | 
|
309  | 
||
310  | 
lemma one_step_app: "[| evs@evs':p; one_step p; []:p |] ==> evs':p"  | 
|
311  | 
by (induct evs, auto)  | 
|
312  | 
||
313  | 
lemma trunc: "[| evs @ evs':p; one_step p |] ==> evs':p"  | 
|
314  | 
by (induct evs, auto)  | 
|
315  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
316  | 
definition has_only_Says :: "event list set => bool" where  | 
| 13508 | 317  | 
"has_only_Says p == ALL evs ev. evs:p --> ev:set evs  | 
318  | 
--> (EX A B X. ev = Says A B X)"  | 
|
319  | 
||
320  | 
lemma has_only_SaysD: "[| ev:set evs; evs:p; has_only_Says p |]  | 
|
321  | 
==> EX A B X. ev = Says A B X"  | 
|
322  | 
by (unfold has_only_Says_def, blast)  | 
|
323  | 
||
324  | 
lemma in_has_only_Says [dest]: "[| has_only_Says p; evs:p; ev:set evs |]  | 
|
325  | 
==> EX A B X. ev = Says A B X"  | 
|
326  | 
by (auto simp: has_only_Says_def)  | 
|
327  | 
||
328  | 
lemma has_only_Says_imp_Gets_correct [simp]: "has_only_Says p  | 
|
329  | 
==> Gets_correct p"  | 
|
330  | 
by (auto simp: has_only_Says_def Gets_correct_def)  | 
|
331  | 
||
332  | 
subsubsection{*lemma on knows*}
 | 
|
333  | 
||
334  | 
lemma Says_imp_spies2: "Says A B {|X,Y|}:set evs ==> Y:parts (spies evs)"
 | 
|
335  | 
by (drule Says_imp_spies, drule parts.Inj, drule parts.Snd, simp)  | 
|
336  | 
||
337  | 
lemma Says_not_parts: "[| Says A B X:set evs; Y ~:parts (spies evs) |]  | 
|
338  | 
==> Y ~:parts {X}"
 | 
|
339  | 
by (auto dest: Says_imp_spies parts_parts)  | 
|
340  | 
||
341  | 
subsubsection{*knows without initState*}
 | 
|
342  | 
||
| 39246 | 343  | 
primrec knows' :: "agent => event list => msg set" where  | 
344  | 
  knows'_Nil: "knows' A [] = {}" |
 | 
|
345  | 
knows'_Cons0:  | 
|
| 14307 | 346  | 
"knows' A (ev # evs) = (  | 
347  | 
if A = Spy then (  | 
|
348  | 
case ev of  | 
|
349  | 
Says A' B X => insert X (knows' A evs)  | 
|
350  | 
| Gets A' X => knows' A evs  | 
|
351  | 
| Notes A' X => if A':bad then insert X (knows' A evs) else knows' A evs  | 
|
352  | 
) else (  | 
|
353  | 
case ev of  | 
|
354  | 
Says A' B X => if A=A' then insert X (knows' A evs) else knows' A evs  | 
|
355  | 
| Gets A' X => if A=A' then insert X (knows' A evs) else knows' A evs  | 
|
356  | 
| Notes A' X => if A=A' then insert X (knows' A evs) else knows' A evs  | 
|
357  | 
))"  | 
|
| 13508 | 358  | 
|
| 20768 | 359  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20768 
diff
changeset
 | 
360  | 
spies' :: "event list => msg set" where  | 
| 20768 | 361  | 
"spies' == knows' Spy"  | 
| 13508 | 362  | 
|
363  | 
subsubsection{*decomposition of knows into knows' and initState*}
 | 
|
364  | 
||
365  | 
lemma knows_decomp: "knows A evs = knows' A evs Un (initState A)"  | 
|
366  | 
by (induct evs, auto split: event.split simp: knows.simps)  | 
|
367  | 
||
368  | 
lemmas knows_decomp_substI = knows_decomp [THEN ssubst]  | 
|
369  | 
lemmas knows_decomp_substD = knows_decomp [THEN sym, THEN ssubst]  | 
|
370  | 
||
371  | 
lemma knows'_sub_knows: "knows' A evs <= knows A evs"  | 
|
372  | 
by (auto simp: knows_decomp)  | 
|
373  | 
||
374  | 
lemma knows'_Cons: "knows' A (ev#evs) = knows' A [ev] Un knows' A evs"  | 
|
375  | 
by (induct ev, auto)  | 
|
376  | 
||
377  | 
lemmas knows'_Cons_substI = knows'_Cons [THEN ssubst]  | 
|
378  | 
lemmas knows'_Cons_substD = knows'_Cons [THEN sym, THEN ssubst]  | 
|
379  | 
||
380  | 
lemma knows_Cons: "knows A (ev#evs) = initState A Un knows' A [ev]  | 
|
381  | 
Un knows A evs"  | 
|
382  | 
apply (simp only: knows_decomp)  | 
|
383  | 
apply (rule_tac s="(knows' A [ev] Un knows' A evs) Un initState A" in trans)  | 
|
| 14307 | 384  | 
apply (simp only: knows'_Cons [of A ev evs] Un_ac)  | 
385  | 
apply blast  | 
|
386  | 
done  | 
|
387  | 
||
| 13508 | 388  | 
|
389  | 
lemmas knows_Cons_substI = knows_Cons [THEN ssubst]  | 
|
390  | 
lemmas knows_Cons_substD = knows_Cons [THEN sym, THEN ssubst]  | 
|
391  | 
||
392  | 
lemma knows'_sub_spies': "[| evs:p; has_only_Says p; one_step p |]  | 
|
393  | 
==> knows' A evs <= spies' evs"  | 
|
394  | 
by (induct evs, auto split: event.splits)  | 
|
395  | 
||
396  | 
subsubsection{*knows' is finite*}
 | 
|
397  | 
||
398  | 
lemma finite_knows' [iff]: "finite (knows' A evs)"  | 
|
399  | 
by (induct evs, auto split: event.split simp: knows.simps)  | 
|
400  | 
||
401  | 
subsubsection{*monotonicity of knows*}
 | 
|
402  | 
||
403  | 
lemma knows_sub_Cons: "knows A evs <= knows A (ev#evs)"  | 
|
| 13596 | 404  | 
by(cases A, induct evs, auto simp: knows.simps split:event.split)  | 
| 13508 | 405  | 
|
406  | 
lemma knows_ConsI: "X:knows A evs ==> X:knows A (ev#evs)"  | 
|
407  | 
by (auto dest: knows_sub_Cons [THEN subsetD])  | 
|
408  | 
||
409  | 
lemma knows_sub_app: "knows A evs <= knows A (evs @ evs')"  | 
|
410  | 
apply (induct evs, auto)  | 
|
411  | 
apply (simp add: knows_decomp)  | 
|
412  | 
by (case_tac a, auto simp: knows.simps)  | 
|
413  | 
||
414  | 
subsubsection{*maximum knowledge an agent can have
 | 
|
415  | 
includes messages sent to the agent*}  | 
|
416  | 
||
| 39246 | 417  | 
primrec knows_max' :: "agent => event list => msg set" where  | 
418  | 
knows_max'_def_Nil: "knows_max' A [] = {}" |
 | 
|
| 13508 | 419  | 
knows_max'_def_Cons: "knows_max' A (ev # evs) = (  | 
420  | 
if A=Spy then (  | 
|
421  | 
case ev of  | 
|
422  | 
Says A' B X => insert X (knows_max' A evs)  | 
|
423  | 
| Gets A' X => knows_max' A evs  | 
|
424  | 
| Notes A' X =>  | 
|
425  | 
if A':bad then insert X (knows_max' A evs) else knows_max' A evs  | 
|
426  | 
) else (  | 
|
427  | 
case ev of  | 
|
428  | 
Says A' B X =>  | 
|
429  | 
if A=A' | A=B then insert X (knows_max' A evs) else knows_max' A evs  | 
|
430  | 
| Gets A' X =>  | 
|
431  | 
if A=A' then insert X (knows_max' A evs) else knows_max' A evs  | 
|
432  | 
| Notes A' X =>  | 
|
433  | 
if A=A' then insert X (knows_max' A evs) else knows_max' A evs  | 
|
434  | 
))"  | 
|
435  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
436  | 
definition knows_max :: "agent => event list => msg set" where  | 
| 13508 | 437  | 
"knows_max A evs == knows_max' A evs Un initState A"  | 
438  | 
||
| 20768 | 439  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20768 
diff
changeset
 | 
440  | 
spies_max :: "event list => msg set" where  | 
| 20768 | 441  | 
"spies_max evs == knows_max Spy evs"  | 
| 13508 | 442  | 
|
443  | 
subsubsection{*basic facts about @{term knows_max}*}
 | 
|
444  | 
||
445  | 
lemma spies_max_spies [iff]: "spies_max evs = spies evs"  | 
|
446  | 
by (induct evs, auto simp: knows_max_def split: event.splits)  | 
|
447  | 
||
448  | 
lemma knows_max'_Cons: "knows_max' A (ev#evs)  | 
|
449  | 
= knows_max' A [ev] Un knows_max' A evs"  | 
|
450  | 
by (auto split: event.splits)  | 
|
451  | 
||
452  | 
lemmas knows_max'_Cons_substI = knows_max'_Cons [THEN ssubst]  | 
|
453  | 
lemmas knows_max'_Cons_substD = knows_max'_Cons [THEN sym, THEN ssubst]  | 
|
454  | 
||
455  | 
lemma knows_max_Cons: "knows_max A (ev#evs)  | 
|
456  | 
= knows_max' A [ev] Un knows_max A evs"  | 
|
457  | 
apply (simp add: knows_max_def del: knows_max'_def_Cons)  | 
|
458  | 
apply (rule_tac evs1=evs in knows_max'_Cons_substI)  | 
|
459  | 
by blast  | 
|
460  | 
||
461  | 
lemmas knows_max_Cons_substI = knows_max_Cons [THEN ssubst]  | 
|
462  | 
lemmas knows_max_Cons_substD = knows_max_Cons [THEN sym, THEN ssubst]  | 
|
463  | 
||
464  | 
lemma finite_knows_max' [iff]: "finite (knows_max' A evs)"  | 
|
465  | 
by (induct evs, auto split: event.split)  | 
|
466  | 
||
467  | 
lemma knows_max'_sub_spies': "[| evs:p; has_only_Says p; one_step p |]  | 
|
468  | 
==> knows_max' A evs <= spies' evs"  | 
|
469  | 
by (induct evs, auto split: event.splits)  | 
|
470  | 
||
471  | 
lemma knows_max'_in_spies' [dest]: "[| evs:p; X:knows_max' A evs;  | 
|
472  | 
has_only_Says p; one_step p |] ==> X:spies' evs"  | 
|
473  | 
by (rule knows_max'_sub_spies' [THEN subsetD], auto)  | 
|
474  | 
||
475  | 
lemma knows_max'_app: "knows_max' A (evs @ evs')  | 
|
476  | 
= knows_max' A evs Un knows_max' A evs'"  | 
|
477  | 
by (induct evs, auto split: event.splits)  | 
|
478  | 
||
479  | 
lemma Says_to_knows_max': "Says A B X:set evs ==> X:knows_max' B evs"  | 
|
480  | 
by (simp add: in_set_conv_decomp, clarify, simp add: knows_max'_app)  | 
|
481  | 
||
482  | 
lemma Says_from_knows_max': "Says A B X:set evs ==> X:knows_max' A evs"  | 
|
483  | 
by (simp add: in_set_conv_decomp, clarify, simp add: knows_max'_app)  | 
|
484  | 
||
485  | 
subsubsection{*used without initState*}
 | 
|
486  | 
||
| 39246 | 487  | 
primrec used' :: "event list => msg set" where  | 
488  | 
"used' [] = {}" |
 | 
|
| 13508 | 489  | 
"used' (ev # evs) = (  | 
490  | 
case ev of  | 
|
491  | 
    Says A B X => parts {X} Un used' evs
 | 
|
492  | 
| Gets A X => used' evs  | 
|
493  | 
    | Notes A X => parts {X} Un used' evs
 | 
|
494  | 
)"  | 
|
495  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32695 
diff
changeset
 | 
496  | 
definition init :: "msg set" where  | 
| 13508 | 497  | 
"init == used []"  | 
498  | 
||
499  | 
lemma used_decomp: "used evs = init Un used' evs"  | 
|
500  | 
by (induct evs, auto simp: init_def split: event.split)  | 
|
501  | 
||
502  | 
lemma used'_sub_app: "used' evs <= used' (evs@evs')"  | 
|
503  | 
by (induct evs, auto split: event.split)  | 
|
504  | 
||
505  | 
lemma used'_parts [rule_format]: "X:used' evs ==> Y:parts {X} --> Y:used' evs"
 | 
|
506  | 
apply (induct evs, simp)  | 
|
507  | 
apply (case_tac a, simp_all)  | 
|
508  | 
apply (blast dest: parts_trans)+;  | 
|
509  | 
done  | 
|
510  | 
||
511  | 
subsubsection{*monotonicity of used*}
 | 
|
512  | 
||
513  | 
lemma used_sub_Cons: "used evs <= used (ev#evs)"  | 
|
514  | 
by (induct evs, (induct ev, auto)+)  | 
|
515  | 
||
516  | 
lemma used_ConsI: "X:used evs ==> X:used (ev#evs)"  | 
|
517  | 
by (auto dest: used_sub_Cons [THEN subsetD])  | 
|
518  | 
||
519  | 
lemma notin_used_ConsD: "X ~:used (ev#evs) ==> X ~:used evs"  | 
|
520  | 
by (auto dest: used_sub_Cons [THEN subsetD])  | 
|
521  | 
||
522  | 
lemma used_appD [dest]: "X:used (evs @ evs') ==> X:used evs | X:used evs'"  | 
|
523  | 
by (induct evs, auto, case_tac a, auto)  | 
|
524  | 
||
525  | 
lemma used_ConsD: "X:used (ev#evs) ==> X:used [ev] | X:used evs"  | 
|
526  | 
by (case_tac ev, auto)  | 
|
527  | 
||
528  | 
lemma used_sub_app: "used evs <= used (evs@evs')"  | 
|
529  | 
by (auto simp: used_decomp dest: used'_sub_app [THEN subsetD])  | 
|
530  | 
||
531  | 
lemma used_appIL: "X:used evs ==> X:used (evs' @ evs)"  | 
|
532  | 
by (induct evs', auto intro: used_ConsI)  | 
|
533  | 
||
534  | 
lemma used_appIR: "X:used evs ==> X:used (evs @ evs')"  | 
|
535  | 
by (erule used_sub_app [THEN subsetD])  | 
|
536  | 
||
537  | 
lemma used_parts: "[| X:parts {Y}; Y:used evs |] ==> X:used evs"
 | 
|
538  | 
apply (auto simp: used_decomp dest: used'_parts)  | 
|
539  | 
by (auto simp: init_def used_Nil dest: parts_trans)  | 
|
540  | 
||
541  | 
lemma parts_Says_used: "[| Says A B X:set evs; Y:parts {X} |] ==> Y:used evs"
 | 
|
542  | 
by (induct evs, simp_all, safe, auto intro: used_ConsI)  | 
|
543  | 
||
544  | 
lemma parts_used_app: "X:parts {Y} ==> X:used (evs @ Says A B Y # evs')"
 | 
|
545  | 
apply (drule_tac evs="[Says A B Y]" in used_parts, simp, blast)  | 
|
546  | 
apply (drule_tac evs'=evs' in used_appIR)  | 
|
547  | 
apply (drule_tac evs'=evs in used_appIL)  | 
|
548  | 
by simp  | 
|
549  | 
||
550  | 
subsubsection{*lemmas on used and knows*}
 | 
|
551  | 
||
552  | 
lemma initState_used: "X:parts (initState A) ==> X:used evs"  | 
|
553  | 
by (induct evs, auto simp: used.simps split: event.split)  | 
|
554  | 
||
555  | 
lemma Says_imp_used: "Says A B X:set evs ==> parts {X} <= used evs"
 | 
|
556  | 
by (induct evs, auto intro: used_ConsI)  | 
|
557  | 
||
558  | 
lemma not_used_not_spied: "X ~:used evs ==> X ~:parts (spies evs)"  | 
|
559  | 
by (induct evs, auto simp: used_Nil)  | 
|
560  | 
||
561  | 
lemma not_used_not_parts: "[| Y ~:used evs; Says A B X:set evs |]  | 
|
562  | 
==> Y ~:parts {X}"
 | 
|
563  | 
by (induct evs, auto intro: used_ConsI)  | 
|
564  | 
||
565  | 
lemma not_used_parts_false: "[| X ~:used evs; Y:parts (spies evs) |]  | 
|
566  | 
==> X ~:parts {Y}"
 | 
|
567  | 
by (auto dest: parts_parts)  | 
|
568  | 
||
569  | 
lemma known_used [rule_format]: "[| evs:p; Gets_correct p; one_step p |]  | 
|
570  | 
==> X:parts (knows A evs) --> X:used evs"  | 
|
| 
18557
 
60a0f9caa0a2
Provers/classical: stricter checks to ensure that supplied intro, dest and
 
paulson 
parents: 
17689 
diff
changeset
 | 
571  | 
apply (case_tac "A=Spy", blast)  | 
| 13508 | 572  | 
apply (induct evs)  | 
573  | 
apply (simp add: used.simps, blast)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
574  | 
apply (frule_tac ev=a and evs=evs in one_step_Cons, simp, clarify)  | 
| 13508 | 575  | 
apply (drule_tac P="%G. X:parts G" in knows_Cons_substD, safe)  | 
576  | 
apply (erule initState_used)  | 
|
577  | 
apply (case_tac a, auto)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
578  | 
apply (drule_tac B=A and X=msg and evs=evs in Gets_correct_Says)  | 
| 13508 | 579  | 
by (auto dest: Says_imp_used intro: used_ConsI)  | 
580  | 
||
581  | 
lemma known_max_used [rule_format]: "[| evs:p; Gets_correct p; one_step p |]  | 
|
582  | 
==> X:parts (knows_max A evs) --> X:used evs"  | 
|
583  | 
apply (case_tac "A=Spy")  | 
|
| 
18557
 
60a0f9caa0a2
Provers/classical: stricter checks to ensure that supplied intro, dest and
 
paulson 
parents: 
17689 
diff
changeset
 | 
584  | 
apply force  | 
| 13508 | 585  | 
apply (induct evs)  | 
586  | 
apply (simp add: knows_max_def used.simps, blast)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
587  | 
apply (frule_tac ev=a and evs=evs in one_step_Cons, simp, clarify)  | 
| 13508 | 588  | 
apply (drule_tac P="%G. X:parts G" in knows_max_Cons_substD, safe)  | 
589  | 
apply (case_tac a, auto)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
590  | 
apply (drule_tac B=A and X=msg and evs=evs in Gets_correct_Says)  | 
| 13508 | 591  | 
by (auto simp: knows_max'_Cons dest: Says_imp_used intro: used_ConsI)  | 
592  | 
||
593  | 
lemma not_used_not_known: "[| evs:p; X ~:used evs;  | 
|
594  | 
Gets_correct p; one_step p |] ==> X ~:parts (knows A evs)"  | 
|
595  | 
by (case_tac "A=Spy", auto dest: not_used_not_spied known_used)  | 
|
596  | 
||
597  | 
lemma not_used_not_known_max: "[| evs:p; X ~:used evs;  | 
|
598  | 
Gets_correct p; one_step p |] ==> X ~:parts (knows_max A evs)"  | 
|
599  | 
by (case_tac "A=Spy", auto dest: not_used_not_spied known_max_used)  | 
|
600  | 
||
601  | 
subsubsection{*a nonce or key in a message cannot equal a fresh nonce or key*}
 | 
|
602  | 
||
603  | 
lemma Nonce_neq [dest]: "[| Nonce n' ~:used evs;  | 
|
604  | 
Says A B X:set evs; Nonce n:parts {X} |] ==> n ~= n'"
 | 
|
605  | 
by (drule not_used_not_spied, auto dest: Says_imp_knows_Spy parts_sub)  | 
|
606  | 
||
607  | 
lemma Key_neq [dest]: "[| Key n' ~:used evs;  | 
|
608  | 
Says A B X:set evs; Key n:parts {X} |] ==> n ~= n'"
 | 
|
609  | 
by (drule not_used_not_spied, auto dest: Says_imp_knows_Spy parts_sub)  | 
|
610  | 
||
611  | 
subsubsection{*message of an event*}
 | 
|
612  | 
||
| 35418 | 613  | 
primrec msg :: "event => msg"  | 
614  | 
where  | 
|
615  | 
"msg (Says A B X) = X"  | 
|
616  | 
| "msg (Gets A X) = X"  | 
|
617  | 
| "msg (Notes A X) = X"  | 
|
| 13508 | 618  | 
|
619  | 
lemma used_sub_parts_used: "X:used (ev # evs) ==> X:parts {msg ev} Un used evs"
 | 
|
620  | 
by (induct ev, auto)  | 
|
621  | 
||
622  | 
||
623  | 
||
624  | 
end  |