| author | paulson | 
| Wed, 26 Jun 2002 10:26:46 +0200 | |
| changeset 13248 | ae66c22ed52e | 
| parent 12018 | ec054019c910 | 
| child 14416 | 1f256287d4f0 | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title : Series.thy | 
| 2 | Author : Jacques D. Fleuriot | |
| 3 | Copyright : 1998 University of Cambridge | |
| 4 | Description : Finite summation and infinite series | |
| 5 | *) | |
| 6 | ||
| 7 | ||
| 8 | Series = SEQ + Lim + | |
| 9 | ||
| 10 | consts sumr :: "[nat,nat,(nat=>real)] => real" | |
| 11 | primrec | |
| 12018 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11701diff
changeset | 12 | sumr_0 "sumr m 0 f = 0" | 
| 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 paulson parents: 
11701diff
changeset | 13 | sumr_Suc "sumr m (Suc n) f = (if n < m then 0 | 
| 10751 | 14 | else sumr m n f + f(n))" | 
| 15 | ||
| 16 | constdefs | |
| 17 | sums :: [nat=>real,real] => bool (infixr 80) | |
| 18 | "f sums s == (%n. sumr 0 n f) ----> s" | |
| 19 | ||
| 20 | summable :: (nat=>real) => bool | |
| 21 | "summable f == (EX s. f sums s)" | |
| 22 | ||
| 23 | suminf :: (nat=>real) => real | |
| 24 | "suminf f == (@s. f sums s)" | |
| 25 | end | |
| 26 | ||
| 27 |