| 0 |      1 | (*  Title: 	ZF/ex/parcontract.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson
 | 
|  |      4 |     Copyright   1993  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Parallel contraction
 | 
|  |      7 | 
 | 
|  |      8 | HOL system proofs may be found in
 | 
|  |      9 | /usr/groups/theory/hvg-aftp/contrib/rule-induction/cl.ml
 | 
|  |     10 | *)
 | 
|  |     11 | 
 | 
|  |     12 | structure ParContract = Inductive_Fun
 | 
|  |     13 |  (val thy = Contract.thy;
 | 
|  |     14 |   val rec_doms = [("parcontract","comb*comb")];
 | 
|  |     15 |   val sintrs = 
 | 
|  |     16 |       ["[| p:comb |] ==> p =1=> p",
 | 
|  |     17 |        "[| p:comb;  q:comb |] ==> K#p#q =1=> p",
 | 
|  |     18 |        "[| p:comb;  q:comb;  r:comb |] ==> S#p#q#r =1=> (p#r)#(q#r)",
 | 
|  |     19 |        "[| p=1=>q;  r=1=>s |] ==> p#r =1=> q#s"];
 | 
|  |     20 |   val monos = [];
 | 
|  |     21 |   val con_defs = [];
 | 
|  |     22 |   val type_intrs = Comb.intrs@[SigmaI];
 | 
|  |     23 |   val type_elims = [SigmaE2]);
 | 
|  |     24 | 
 | 
|  |     25 | val [parcontract_refl,K_parcontract,S_parcontract,Ap_parcontract] = ParContract.intrs;
 | 
|  |     26 | 
 | 
|  |     27 | val parcontract_induct = standard
 | 
|  |     28 |     (ParContract.mutual_induct RS spec RS spec RSN (2,rev_mp));
 | 
|  |     29 | 
 | 
|  |     30 | (*For type checking: replaces a=1=>b by a,b:comb *)
 | 
|  |     31 | val parcontract_combE2 = ParContract.dom_subset RS subsetD RS SigmaE2;
 | 
|  |     32 | val parcontract_combD1 = ParContract.dom_subset RS subsetD RS SigmaD1;
 | 
|  |     33 | val parcontract_combD2 = ParContract.dom_subset RS subsetD RS SigmaD2;
 | 
|  |     34 | 
 | 
|  |     35 | goal ParContract.thy "field(parcontract) = comb";
 | 
|  |     36 | by (fast_tac (ZF_cs addIs [equalityI,K_parcontract] 
 | 
|  |     37 | 	            addSEs [parcontract_combE2]) 1);
 | 
|  |     38 | val field_parcontract_eq = result();
 | 
|  |     39 | 
 | 
|  |     40 | val parcontract_caseE = standard
 | 
|  |     41 |      (ParContract.unfold RS equalityD1 RS subsetD RS CollectE);
 | 
|  |     42 | 
 | 
|  |     43 | (*Derive a case for each combinator constructor*)
 | 
|  |     44 | val K_parcontract_case = ParContract.mk_cases Comb.con_defs "K =1=> r";
 | 
|  |     45 | val S_parcontract_case = ParContract.mk_cases Comb.con_defs "S =1=> r";
 | 
|  |     46 | val Ap_parcontract_case = ParContract.mk_cases Comb.con_defs "p#q =1=> r";
 | 
|  |     47 | 
 | 
|  |     48 | val parcontract_cs =
 | 
|  |     49 |     ZF_cs addSIs Comb.intrs
 | 
|  |     50 | 	  addIs  ParContract.intrs
 | 
|  |     51 | 	  addSEs [Ap_E, K_parcontract_case, S_parcontract_case, 
 | 
|  |     52 | 		  Ap_parcontract_case]
 | 
|  |     53 | 	  addSEs [parcontract_combD1, parcontract_combD2]     (*type checking*)
 | 
|  |     54 |           addSEs Comb.free_SEs;
 | 
|  |     55 | 
 | 
|  |     56 | (*** Basic properties of parallel contraction ***)
 | 
|  |     57 | 
 | 
|  |     58 | goal ParContract.thy "!!p r. K#p =1=> r ==> (EX p'. r = K#p' & p =1=> p')";
 | 
|  |     59 | by (fast_tac parcontract_cs 1);
 | 
|  |     60 | val K1_parcontractD = result();
 | 
|  |     61 | 
 | 
|  |     62 | goal ParContract.thy "!!p r. S#p =1=> r ==> (EX p'. r = S#p' & p =1=> p')";
 | 
|  |     63 | by (fast_tac parcontract_cs 1);
 | 
|  |     64 | val S1_parcontractD = result();
 | 
|  |     65 | 
 | 
|  |     66 | goal ParContract.thy
 | 
|  |     67 |  "!!p q r. S#p#q =1=> r ==> (EX p' q'. r = S#p'#q' & p =1=> p' & q =1=> q')";
 | 
|  |     68 | by (fast_tac (parcontract_cs addSDs [S1_parcontractD]) 1);
 | 
|  |     69 | val S2_parcontractD = result();
 | 
|  |     70 | 
 | 
|  |     71 | (*Church-Rosser property for parallel contraction*)
 | 
|  |     72 | goalw ParContract.thy [diamond_def] "diamond(parcontract)";
 | 
|  |     73 | by (rtac (impI RS allI RS allI) 1);
 | 
|  |     74 | by (etac parcontract_induct 1);
 | 
|  |     75 | by (ALLGOALS 
 | 
|  |     76 |     (fast_tac (parcontract_cs addSDs [K1_parcontractD,S2_parcontractD])));
 | 
|  |     77 | val diamond_parcontract = result();
 | 
|  |     78 | 
 | 
|  |     79 | (*** Transitive closure preserves the Church-Rosser property ***)
 | 
|  |     80 | 
 | 
|  |     81 | goalw ParContract.thy [diamond_def]
 | 
|  |     82 |     "!!x y r. [| diamond(r);  <x,y>:r^+ |] ==> \
 | 
|  |     83 | \    ALL y'. <x,y'>:r --> (EX z. <y',z>: r^+ & <y,z>: r)";
 | 
|  |     84 | by (etac trancl_induct 1);
 | 
|  |     85 | by (fast_tac (ZF_cs addIs [r_into_trancl]) 1);
 | 
|  |     86 | by (slow_best_tac (ZF_cs addSDs [spec RS mp]
 | 
|  |     87 | 		         addIs  [r_into_trancl, trans_trancl RS transD]) 1);
 | 
|  |     88 | val diamond_trancl_lemma = result();
 | 
|  |     89 | 
 | 
|  |     90 | val diamond_lemmaE = diamond_trancl_lemma RS spec RS mp RS exE;
 | 
|  |     91 | 
 | 
|  |     92 | val [major] = goal ParContract.thy "diamond(r) ==> diamond(r^+)";
 | 
|  |     93 | bw diamond_def;  (*unfold only in goal, not in premise!*)
 | 
|  |     94 | by (rtac (impI RS allI RS allI) 1);
 | 
|  |     95 | by (etac trancl_induct 1);
 | 
|  |     96 | by (ALLGOALS
 | 
|  |     97 |     (slow_best_tac (ZF_cs addIs [r_into_trancl, trans_trancl RS transD]
 | 
|  |     98 | 		          addEs [major RS diamond_lemmaE])));
 | 
|  |     99 | val diamond_trancl = result();
 | 
|  |    100 | 
 | 
|  |    101 | 
 | 
|  |    102 | (*** Equivalence of p--->q and p===>q ***)
 | 
|  |    103 | 
 | 
|  |    104 | goal ParContract.thy "!!p q. p-1->q ==> p=1=>q";
 | 
|  |    105 | by (etac contract_induct 1);
 | 
|  |    106 | by (ALLGOALS (fast_tac (parcontract_cs)));
 | 
|  |    107 | val contract_imp_parcontract = result();
 | 
|  |    108 | 
 | 
|  |    109 | goal ParContract.thy "!!p q. p--->q ==> p===>q";
 | 
|  |    110 | by (forward_tac [rtrancl_type RS subsetD RS SigmaD1] 1);
 | 
|  |    111 | by (dtac (field_contract_eq RS equalityD1 RS subsetD) 1);
 | 
|  |    112 | by (etac rtrancl_induct 1);
 | 
|  |    113 | by (fast_tac (parcontract_cs addIs [r_into_trancl]) 1);
 | 
|  |    114 | by (fast_tac (ZF_cs addIs [contract_imp_parcontract, 
 | 
|  |    115 | 			   r_into_trancl, trans_trancl RS transD]) 1);
 | 
|  |    116 | val reduce_imp_parreduce = result();
 | 
|  |    117 | 
 | 
|  |    118 | 
 | 
|  |    119 | goal ParContract.thy "!!p q. p=1=>q ==> p--->q";
 | 
|  |    120 | by (etac parcontract_induct 1);
 | 
|  |    121 | by (fast_tac (contract_cs addIs reduction_rls) 1);
 | 
|  |    122 | by (fast_tac (contract_cs addIs reduction_rls) 1);
 | 
|  |    123 | by (fast_tac (contract_cs addIs reduction_rls) 1);
 | 
|  |    124 | by (rtac (trans_rtrancl RS transD) 1);
 | 
|  |    125 | by (ALLGOALS 
 | 
|  |    126 |     (fast_tac 
 | 
|  |    127 |      (contract_cs addIs [Ap_reduce1, Ap_reduce2]
 | 
|  |    128 |                   addSEs [parcontract_combD1,parcontract_combD2])));
 | 
|  |    129 | val parcontract_imp_reduce = result();
 | 
|  |    130 | 
 | 
|  |    131 | goal ParContract.thy "!!p q. p===>q ==> p--->q";
 | 
|  |    132 | by (forward_tac [trancl_type RS subsetD RS SigmaD1] 1);
 | 
|  |    133 | by (dtac (field_parcontract_eq RS equalityD1 RS subsetD) 1);
 | 
|  |    134 | by (etac trancl_induct 1);
 | 
|  |    135 | by (etac parcontract_imp_reduce 1);
 | 
|  |    136 | by (etac (trans_rtrancl RS transD) 1);
 | 
|  |    137 | by (etac parcontract_imp_reduce 1);
 | 
|  |    138 | val parreduce_imp_reduce = result();
 | 
|  |    139 | 
 | 
|  |    140 | goal ParContract.thy "p===>q <-> p--->q";
 | 
|  |    141 | by (REPEAT (ares_tac [iffI, parreduce_imp_reduce, reduce_imp_parreduce] 1));
 | 
|  |    142 | val parreduce_iff_reduce = result();
 | 
|  |    143 | 
 | 
|  |    144 | writeln"Reached end of file.";
 |