author | wenzelm |
Tue, 02 May 2006 20:42:34 +0200 | |
changeset 19538 | ae6d01fa2d8a |
parent 16417 | 9bc16273c2d4 |
child 27678 | 85ea2be46c71 |
permissions | -rw-r--r-- |
12776 | 1 |
(* Title: ZF/AC/AC1_AC17.thy |
2 |
ID: $Id$ |
|
3 |
Author: Krzysztof Grabczewski |
|
4 |
||
5 |
The equivalence of AC0, AC1 and AC17 |
|
6 |
||
7 |
Also, the proofs needed to show that each of AC2, AC3, ..., AC6 is equivalent |
|
8 |
to AC0 and AC1. |
|
9 |
*) |
|
10 |
||
16417 | 11 |
theory AC17_AC1 imports HH begin |
12776 | 12 |
|
13 |
||
14 |
(** AC0 is equivalent to AC1. |
|
15 |
AC0 comes from Suppes, AC1 from Rubin & Rubin **) |
|
16 |
||
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13535
diff
changeset
|
17 |
lemma AC0_AC1_lemma: "[| f:(\<Pi> X \<in> A. X); D \<subseteq> A |] ==> \<exists>g. g:(\<Pi> X \<in> D. X)" |
12891 | 18 |
by (fast intro!: lam_type apply_type) |
12776 | 19 |
|
20 |
lemma AC0_AC1: "AC0 ==> AC1" |
|
21 |
apply (unfold AC0_def AC1_def) |
|
22 |
apply (blast intro: AC0_AC1_lemma) |
|
23 |
done |
|
24 |
||
25 |
lemma AC1_AC0: "AC1 ==> AC0" |
|
26 |
by (unfold AC0_def AC1_def, blast) |
|
27 |
||
28 |
||
29 |
(**** The proof of AC1 ==> AC17 ****) |
|
30 |
||
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13535
diff
changeset
|
31 |
lemma AC1_AC17_lemma: "f \<in> (\<Pi> X \<in> Pow(A) - {0}. X) ==> f \<in> (Pow(A) - {0} -> A)" |
12776 | 32 |
apply (rule Pi_type, assumption) |
33 |
apply (drule apply_type, assumption, fast) |
|
34 |
done |
|
35 |
||
36 |
lemma AC1_AC17: "AC1 ==> AC17" |
|
37 |
apply (unfold AC1_def AC17_def) |
|
38 |
apply (rule allI) |
|
39 |
apply (rule ballI) |
|
40 |
apply (erule_tac x = "Pow (A) -{0}" in allE) |
|
41 |
apply (erule impE, fast) |
|
42 |
apply (erule exE) |
|
43 |
apply (rule bexI) |
|
44 |
apply (erule_tac [2] AC1_AC17_lemma) |
|
45 |
apply (rule apply_type, assumption) |
|
46 |
apply (fast dest!: AC1_AC17_lemma elim!: apply_type) |
|
47 |
done |
|
48 |
||
49 |
||
50 |
(**** The proof of AC17 ==> AC1 ****) |
|
51 |
||
52 |
(* *********************************************************************** *) |
|
53 |
(* more properties of HH *) |
|
54 |
(* *********************************************************************** *) |
|
55 |
||
56 |
lemma UN_eq_imp_well_ord: |
|
57 |
"[| x - (\<Union>j \<in> LEAST i. HH(\<lambda>X \<in> Pow(x)-{0}. {f`X}, x, i) = {x}. |
|
58 |
HH(\<lambda>X \<in> Pow(x)-{0}. {f`X}, x, j)) = 0; |
|
59 |
f \<in> Pow(x)-{0} -> x |] |
|
60 |
==> \<exists>r. well_ord(x,r)" |
|
61 |
apply (rule exI) |
|
62 |
apply (erule well_ord_rvimage |
|
63 |
[OF bij_Least_HH_x [THEN bij_converse_bij, THEN bij_is_inj] |
|
64 |
Ord_Least [THEN well_ord_Memrel]], assumption) |
|
65 |
done |
|
66 |
||
67 |
(* *********************************************************************** *) |
|
68 |
(* theorems closer to the proof *) |
|
69 |
(* *********************************************************************** *) |
|
70 |
||
71 |
lemma not_AC1_imp_ex: |
|
72 |
"~AC1 ==> \<exists>A. \<forall>f \<in> Pow(A)-{0} -> A. \<exists>u \<in> Pow(A)-{0}. f`u \<notin> u" |
|
73 |
apply (unfold AC1_def) |
|
74 |
apply (erule swap) |
|
75 |
apply (rule allI) |
|
76 |
apply (erule swap) |
|
77 |
apply (rule_tac x = "Union (A)" in exI) |
|
12891 | 78 |
apply (blast intro: lam_type) |
12776 | 79 |
done |
80 |
||
13535 | 81 |
lemma AC17_AC1_aux1: |
12776 | 82 |
"[| \<forall>f \<in> Pow(x) - {0} -> x. \<exists>u \<in> Pow(x) - {0}. f`u\<notin>u; |
83 |
\<exists>f \<in> Pow(x)-{0}->x. |
|
84 |
x - (\<Union>a \<in> (LEAST i. HH(\<lambda>X \<in> Pow(x)-{0}. {f`X},x,i)={x}). |
|
85 |
HH(\<lambda>X \<in> Pow(x)-{0}. {f`X},x,a)) = 0 |] |
|
86 |
==> P" |
|
87 |
apply (erule bexE) |
|
88 |
apply (erule UN_eq_imp_well_ord [THEN exE], assumption) |
|
89 |
apply (erule ex_choice_fun_Pow [THEN exE]) |
|
90 |
apply (erule ballE) |
|
91 |
apply (fast intro: apply_type del: DiffE) |
|
92 |
apply (erule notE) |
|
93 |
apply (rule Pi_type, assumption) |
|
94 |
apply (blast dest: apply_type) |
|
95 |
done |
|
96 |
||
13535 | 97 |
lemma AC17_AC1_aux2: |
12776 | 98 |
"~ (\<exists>f \<in> Pow(x)-{0}->x. x - F(f) = 0) |
99 |
==> (\<lambda>f \<in> Pow(x)-{0}->x . x - F(f)) |
|
100 |
\<in> (Pow(x) -{0} -> x) -> Pow(x) - {0}" |
|
101 |
by (fast intro!: lam_type dest!: Diff_eq_0_iff [THEN iffD1]) |
|
102 |
||
13535 | 103 |
lemma AC17_AC1_aux3: |
12776 | 104 |
"[| f`Z \<in> Z; Z \<in> Pow(x)-{0} |] |
105 |
==> (\<lambda>X \<in> Pow(x)-{0}. {f`X})`Z \<in> Pow(Z)-{0}" |
|
106 |
by auto |
|
107 |
||
13535 | 108 |
lemma AC17_AC1_aux4: |
12776 | 109 |
"\<exists>f \<in> F. f`((\<lambda>f \<in> F. Q(f))`f) \<in> (\<lambda>f \<in> F. Q(f))`f |
110 |
==> \<exists>f \<in> F. f`Q(f) \<in> Q(f)" |
|
111 |
by simp |
|
112 |
||
113 |
lemma AC17_AC1: "AC17 ==> AC1" |
|
114 |
apply (unfold AC17_def) |
|
115 |
apply (rule classical) |
|
116 |
apply (erule not_AC1_imp_ex [THEN exE]) |
|
117 |
apply (case_tac |
|
118 |
"\<exists>f \<in> Pow(x)-{0} -> x. |
|
119 |
x - (\<Union>a \<in> (LEAST i. HH (\<lambda>X \<in> Pow (x) -{0}. {f`X},x,i) ={x}) . HH (\<lambda>X \<in> Pow (x) -{0}. {f`X},x,a)) = 0") |
|
13535 | 120 |
apply (erule AC17_AC1_aux1, assumption) |
121 |
apply (drule AC17_AC1_aux2) |
|
12776 | 122 |
apply (erule allE) |
123 |
apply (drule bspec, assumption) |
|
13535 | 124 |
apply (drule AC17_AC1_aux4) |
12776 | 125 |
apply (erule bexE) |
126 |
apply (drule apply_type, assumption) |
|
127 |
apply (simp add: HH_Least_eq_x del: Diff_iff ) |
|
13535 | 128 |
apply (drule AC17_AC1_aux3, assumption) |
12776 | 129 |
apply (fast dest!: subst_elem [OF _ HH_Least_eq_x [symmetric]] |
130 |
f_subset_imp_HH_subset elim!: mem_irrefl) |
|
131 |
done |
|
132 |
||
133 |
||
134 |
(* ********************************************************************** |
|
135 |
AC1 ==> AC2 ==> AC1 |
|
136 |
AC1 ==> AC4 ==> AC3 ==> AC1 |
|
137 |
AC4 ==> AC5 ==> AC4 |
|
138 |
AC1 <-> AC6 |
|
139 |
************************************************************************* *) |
|
140 |
||
141 |
(* ********************************************************************** *) |
|
142 |
(* AC1 ==> AC2 *) |
|
143 |
(* ********************************************************************** *) |
|
144 |
||
13535 | 145 |
lemma AC1_AC2_aux1: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13535
diff
changeset
|
146 |
"[| f:(\<Pi> X \<in> A. X); B \<in> A; 0\<notin>A |] ==> {f`B} \<subseteq> B Int {f`C. C \<in> A}" |
12776 | 147 |
by (fast elim!: apply_type) |
1123 | 148 |
|
13535 | 149 |
lemma AC1_AC2_aux2: |
12776 | 150 |
"[| pairwise_disjoint(A); B \<in> A; C \<in> A; D \<in> B; D \<in> C |] ==> f`B = f`C" |
151 |
by (unfold pairwise_disjoint_def, fast) |
|
152 |
||
153 |
lemma AC1_AC2: "AC1 ==> AC2" |
|
154 |
apply (unfold AC1_def AC2_def) |
|
155 |
apply (rule allI) |
|
156 |
apply (rule impI) |
|
157 |
apply (elim asm_rl conjE allE exE impE, assumption) |
|
158 |
apply (intro exI ballI equalityI) |
|
13535 | 159 |
prefer 2 apply (rule AC1_AC2_aux1, assumption+) |
160 |
apply (fast elim!: AC1_AC2_aux2 elim: apply_type) |
|
12776 | 161 |
done |
162 |
||
163 |
||
164 |
(* ********************************************************************** *) |
|
165 |
(* AC2 ==> AC1 *) |
|
166 |
(* ********************************************************************** *) |
|
167 |
||
13535 | 168 |
lemma AC2_AC1_aux1: "0\<notin>A ==> 0 \<notin> {B*{B}. B \<in> A}" |
12776 | 169 |
by (fast dest!: sym [THEN Sigma_empty_iff [THEN iffD1]]) |
170 |
||
13535 | 171 |
lemma AC2_AC1_aux2: "[| X*{X} Int C = {y}; X \<in> A |] |
12776 | 172 |
==> (THE y. X*{X} Int C = {y}): X*A" |
173 |
apply (rule subst_elem [of y]) |
|
174 |
apply (blast elim!: equalityE) |
|
175 |
apply (auto simp add: singleton_eq_iff) |
|
176 |
done |
|
177 |
||
13535 | 178 |
lemma AC2_AC1_aux3: |
12776 | 179 |
"\<forall>D \<in> {E*{E}. E \<in> A}. \<exists>y. D Int C = {y} |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13535
diff
changeset
|
180 |
==> (\<lambda>x \<in> A. fst(THE z. (x*{x} Int C = {z}))) \<in> (\<Pi> X \<in> A. X)" |
12776 | 181 |
apply (rule lam_type) |
182 |
apply (drule bspec, blast) |
|
13535 | 183 |
apply (blast intro: AC2_AC1_aux2 fst_type) |
12776 | 184 |
done |
185 |
||
186 |
lemma AC2_AC1: "AC2 ==> AC1" |
|
187 |
apply (unfold AC1_def AC2_def pairwise_disjoint_def) |
|
188 |
apply (intro allI impI) |
|
189 |
apply (elim allE impE) |
|
13535 | 190 |
prefer 2 apply (fast elim!: AC2_AC1_aux3) |
191 |
apply (blast intro!: AC2_AC1_aux1) |
|
12776 | 192 |
done |
193 |
||
194 |
||
195 |
(* ********************************************************************** *) |
|
196 |
(* AC1 ==> AC4 *) |
|
197 |
(* ********************************************************************** *) |
|
198 |
||
199 |
lemma empty_notin_images: "0 \<notin> {R``{x}. x \<in> domain(R)}" |
|
200 |
by blast |
|
201 |
||
202 |
lemma AC1_AC4: "AC1 ==> AC4" |
|
203 |
apply (unfold AC1_def AC4_def) |
|
204 |
apply (intro allI impI) |
|
205 |
apply (drule spec, drule mp [OF _ empty_notin_images]) |
|
206 |
apply (best intro!: lam_type elim!: apply_type) |
|
207 |
done |
|
208 |
||
209 |
||
210 |
(* ********************************************************************** *) |
|
211 |
(* AC4 ==> AC3 *) |
|
212 |
(* ********************************************************************** *) |
|
213 |
||
13535 | 214 |
lemma AC4_AC3_aux1: "f \<in> A->B ==> (\<Union>z \<in> A. {z}*f`z) \<subseteq> A*Union(B)" |
12776 | 215 |
by (fast dest!: apply_type) |
216 |
||
13535 | 217 |
lemma AC4_AC3_aux2: "domain(\<Union>z \<in> A. {z}*f(z)) = {a \<in> A. f(a)\<noteq>0}" |
12776 | 218 |
by blast |
219 |
||
13535 | 220 |
lemma AC4_AC3_aux3: "x \<in> A ==> (\<Union>z \<in> A. {z}*f(z))``{x} = f(x)" |
12776 | 221 |
by fast |
222 |
||
223 |
lemma AC4_AC3: "AC4 ==> AC3" |
|
224 |
apply (unfold AC3_def AC4_def) |
|
225 |
apply (intro allI ballI) |
|
226 |
apply (elim allE impE) |
|
13535 | 227 |
apply (erule AC4_AC3_aux1) |
228 |
apply (simp add: AC4_AC3_aux2 AC4_AC3_aux3 cong add: Pi_cong) |
|
12776 | 229 |
done |
230 |
||
231 |
(* ********************************************************************** *) |
|
232 |
(* AC3 ==> AC1 *) |
|
233 |
(* ********************************************************************** *) |
|
234 |
||
235 |
lemma AC3_AC1_lemma: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13535
diff
changeset
|
236 |
"b\<notin>A ==> (\<Pi> x \<in> {a \<in> A. id(A)`a\<noteq>b}. id(A)`x) = (\<Pi> x \<in> A. x)" |
12776 | 237 |
apply (simp add: id_def cong add: Pi_cong) |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12891
diff
changeset
|
238 |
apply (rule_tac b = A in subst_context, fast) |
12776 | 239 |
done |
240 |
||
241 |
lemma AC3_AC1: "AC3 ==> AC1" |
|
242 |
apply (unfold AC1_def AC3_def) |
|
243 |
apply (fast intro!: id_type elim: AC3_AC1_lemma [THEN subst]) |
|
244 |
done |
|
245 |
||
246 |
(* ********************************************************************** *) |
|
247 |
(* AC4 ==> AC5 *) |
|
248 |
(* ********************************************************************** *) |
|
249 |
||
250 |
lemma AC4_AC5: "AC4 ==> AC5" |
|
251 |
apply (unfold range_def AC4_def AC5_def) |
|
252 |
apply (intro allI ballI) |
|
253 |
apply (elim allE impE) |
|
254 |
apply (erule fun_is_rel [THEN converse_type]) |
|
255 |
apply (erule exE) |
|
256 |
apply (rename_tac g) |
|
257 |
apply (rule_tac x=g in bexI) |
|
258 |
apply (blast dest: apply_equality range_type) |
|
259 |
apply (blast intro: Pi_type dest: apply_type fun_is_rel) |
|
260 |
done |
|
261 |
||
262 |
||
263 |
(* ********************************************************************** *) |
|
264 |
(* AC5 ==> AC4, Rubin & Rubin, p. 11 *) |
|
265 |
(* ********************************************************************** *) |
|
266 |
||
13535 | 267 |
lemma AC5_AC4_aux1: "R \<subseteq> A*B ==> (\<lambda>x \<in> R. fst(x)) \<in> R -> A" |
12776 | 268 |
by (fast intro!: lam_type fst_type) |
269 |
||
13535 | 270 |
lemma AC5_AC4_aux2: "R \<subseteq> A*B ==> range(\<lambda>x \<in> R. fst(x)) = domain(R)" |
12776 | 271 |
by (unfold lam_def, force) |
272 |
||
13535 | 273 |
lemma AC5_AC4_aux3: "[| \<exists>f \<in> A->C. P(f,domain(f)); A=B |] ==> \<exists>f \<in> B->C. P(f,B)" |
12776 | 274 |
apply (erule bexE) |
275 |
apply (frule domain_of_fun, fast) |
|
276 |
done |
|
277 |
||
13535 | 278 |
lemma AC5_AC4_aux4: "[| R \<subseteq> A*B; g \<in> C->R; \<forall>x \<in> C. (\<lambda>z \<in> R. fst(z))` (g`x) = x |] |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13535
diff
changeset
|
279 |
==> (\<lambda>x \<in> C. snd(g`x)): (\<Pi> x \<in> C. R``{x})" |
12776 | 280 |
apply (rule lam_type) |
281 |
apply (force dest: apply_type) |
|
282 |
done |
|
283 |
||
284 |
lemma AC5_AC4: "AC5 ==> AC4" |
|
285 |
apply (unfold AC4_def AC5_def, clarify) |
|
286 |
apply (elim allE ballE) |
|
13535 | 287 |
apply (drule AC5_AC4_aux3 [OF _ AC5_AC4_aux2], assumption) |
288 |
apply (fast elim!: AC5_AC4_aux4) |
|
289 |
apply (blast intro: AC5_AC4_aux1) |
|
12776 | 290 |
done |
291 |
||
292 |
||
293 |
(* ********************************************************************** *) |
|
294 |
(* AC1 <-> AC6 *) |
|
295 |
(* ********************************************************************** *) |
|
296 |
||
297 |
lemma AC1_iff_AC6: "AC1 <-> AC6" |
|
298 |
by (unfold AC1_def AC6_def, blast) |
|
299 |
||
300 |
end |