author | wenzelm |
Tue, 02 May 2006 20:42:34 +0200 | |
changeset 19538 | ae6d01fa2d8a |
parent 16417 | 9bc16273c2d4 |
child 24893 | b8ef7afe3a6b |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/AC/AC18_AC19.thy |
1123 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Krzysztof Grabczewski |
1123 | 4 |
|
12776 | 5 |
The proof of AC1 ==> AC18 ==> AC19 ==> AC1 |
1123 | 6 |
*) |
7 |
||
16417 | 8 |
theory AC18_AC19 imports AC_Equiv begin |
12776 | 9 |
|
10 |
constdefs |
|
11 |
uu :: "i => i" |
|
12 |
"uu(a) == {c Un {0}. c \<in> a}" |
|
13 |
||
14 |
||
15 |
(* ********************************************************************** *) |
|
16 |
(* AC1 ==> AC18 *) |
|
17 |
(* ********************************************************************** *) |
|
18 |
||
19 |
lemma PROD_subsets: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13421
diff
changeset
|
20 |
"[| f \<in> (\<Pi> b \<in> {P(a). a \<in> A}. b); \<forall>a \<in> A. P(a)<=Q(a) |] |
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13421
diff
changeset
|
21 |
==> (\<lambda>a \<in> A. f`P(a)) \<in> (\<Pi> a \<in> A. Q(a))" |
12776 | 22 |
by (rule lam_type, drule apply_type, auto) |
23 |
||
24 |
lemma lemma_AC18: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13421
diff
changeset
|
25 |
"[| \<forall>A. 0 \<notin> A --> (\<exists>f. f \<in> (\<Pi> X \<in> A. X)); A \<noteq> 0 |] |
12776 | 26 |
==> (\<Inter>a \<in> A. \<Union>b \<in> B(a). X(a, b)) \<subseteq> |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13421
diff
changeset
|
27 |
(\<Union>f \<in> \<Pi> a \<in> A. B(a). \<Inter>a \<in> A. X(a, f`a))" |
12776 | 28 |
apply (rule subsetI) |
29 |
apply (erule_tac x = "{{b \<in> B (a) . x \<in> X (a,b) }. a \<in> A}" in allE) |
|
30 |
apply (erule impE, fast) |
|
31 |
apply (erule exE) |
|
32 |
apply (rule UN_I) |
|
33 |
apply (fast elim!: PROD_subsets) |
|
34 |
apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI]) |
|
35 |
done |
|
36 |
||
13416 | 37 |
lemma AC1_AC18: "AC1 ==> PROP AC18" |
38 |
apply (unfold AC1_def) |
|
13421 | 39 |
apply (rule AC18.intro) |
12776 | 40 |
apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT_I UN_I) |
41 |
done |
|
42 |
||
43 |
(* ********************************************************************** *) |
|
44 |
(* AC18 ==> AC19 *) |
|
45 |
(* ********************************************************************** *) |
|
46 |
||
13416 | 47 |
theorem (in AC18) AC19 |
48 |
apply (unfold AC19_def) |
|
49 |
apply (intro allI impI) |
|
50 |
apply (rule AC18 [of _ "%x. x", THEN mp], blast) |
|
51 |
done |
|
1123 | 52 |
|
12776 | 53 |
(* ********************************************************************** *) |
54 |
(* AC19 ==> AC1 *) |
|
55 |
(* ********************************************************************** *) |
|
56 |
||
57 |
lemma RepRep_conj: |
|
58 |
"[| A \<noteq> 0; 0 \<notin> A |] ==> {uu(a). a \<in> A} \<noteq> 0 & 0 \<notin> {uu(a). a \<in> A}" |
|
59 |
apply (unfold uu_def, auto) |
|
60 |
apply (blast dest!: sym [THEN RepFun_eq_0_iff [THEN iffD1]]) |
|
61 |
done |
|
62 |
||
63 |
lemma lemma1_1: "[|c \<in> a; x = c Un {0}; x \<notin> a |] ==> x - {0} \<in> a" |
|
64 |
apply clarify |
|
12820 | 65 |
apply (rule subst_elem, assumption) |
12776 | 66 |
apply (fast elim: notE subst_elem) |
67 |
done |
|
68 |
||
69 |
lemma lemma1_2: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13421
diff
changeset
|
70 |
"[| f`(uu(a)) \<notin> a; f \<in> (\<Pi> B \<in> {uu(a). a \<in> A}. B); a \<in> A |] |
12776 | 71 |
==> f`(uu(a))-{0} \<in> a" |
72 |
apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type) |
|
73 |
done |
|
1123 | 74 |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13421
diff
changeset
|
75 |
lemma lemma1: "\<exists>f. f \<in> (\<Pi> B \<in> {uu(a). a \<in> A}. B) ==> \<exists>f. f \<in> (\<Pi> B \<in> A. B)" |
12776 | 76 |
apply (erule exE) |
77 |
apply (rule_tac x = "\<lambda>a\<in>A. if (f` (uu(a)) \<in> a, f` (uu(a)), f` (uu(a))-{0})" |
|
78 |
in exI) |
|
79 |
apply (rule lam_type) |
|
80 |
apply (simp add: lemma1_2) |
|
81 |
done |
|
82 |
||
83 |
lemma lemma2_1: "a\<noteq>0 ==> 0 \<in> (\<Union>b \<in> uu(a). b)" |
|
84 |
by (unfold uu_def, auto) |
|
85 |
||
86 |
lemma lemma2: "[| A\<noteq>0; 0\<notin>A |] ==> (\<Inter>x \<in> {uu(a). a \<in> A}. \<Union>b \<in> x. b) \<noteq> 0" |
|
87 |
apply (erule not_emptyE) |
|
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12820
diff
changeset
|
88 |
apply (rule_tac a = 0 in not_emptyI) |
12776 | 89 |
apply (fast intro!: lemma2_1) |
90 |
done |
|
91 |
||
92 |
lemma AC19_AC1: "AC19 ==> AC1" |
|
93 |
apply (unfold AC19_def AC1_def, clarify) |
|
94 |
apply (case_tac "A=0", force) |
|
95 |
apply (erule_tac x = "{uu (a) . a \<in> A}" in allE) |
|
96 |
apply (erule impE) |
|
12820 | 97 |
apply (erule RepRep_conj, assumption) |
12776 | 98 |
apply (rule lemma1) |
12820 | 99 |
apply (drule lemma2, assumption, auto) |
12776 | 100 |
done |
1123 | 101 |
|
1203 | 102 |
end |