| author | nipkow | 
| Mon, 28 Jan 2019 10:27:47 +0100 | |
| changeset 69745 | aec42cee2521 | 
| parent 69605 | a96320074298 | 
| child 69913 | ca515cf61651 | 
| permissions | -rw-r--r-- | 
| 40107 | 1  | 
(* Title: HOL/Partial_Function.thy  | 
2  | 
Author: Alexander Krauss, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
| 60758 | 5  | 
section \<open>Partial Function Definitions\<close>  | 
| 40107 | 6  | 
|
7  | 
theory Partial_Function  | 
|
| 66364 | 8  | 
imports Complete_Partial_Order Option  | 
9  | 
keywords "partial_function" :: thy_decl  | 
|
| 40107 | 10  | 
begin  | 
11  | 
||
| 57959 | 12  | 
named_theorems partial_function_mono "monotonicity rules for partial function definitions"  | 
| 69605 | 13  | 
ML_file \<open>Tools/Function/partial_function.ML\<close>  | 
| 57959 | 14  | 
|
| 60062 | 15  | 
lemma (in ccpo) in_chain_finite:  | 
| 67399 | 16  | 
  assumes "Complete_Partial_Order.chain (\<le>) A" "finite A" "A \<noteq> {}"
 | 
| 60062 | 17  | 
shows "\<Squnion>A \<in> A"  | 
18  | 
using assms(2,1,3)  | 
|
19  | 
proof induction  | 
|
20  | 
case empty thus ?case by simp  | 
|
21  | 
next  | 
|
22  | 
case (insert x A)  | 
|
| 67399 | 23  | 
note chain = \<open>Complete_Partial_Order.chain (\<le>) (insert x A)\<close>  | 
| 60062 | 24  | 
show ?case  | 
25  | 
  proof(cases "A = {}")
 | 
|
26  | 
case True thus ?thesis by simp  | 
|
27  | 
next  | 
|
28  | 
case False  | 
|
| 67399 | 29  | 
from chain have chain': "Complete_Partial_Order.chain (\<le>) A"  | 
| 60062 | 30  | 
by(rule chain_subset) blast  | 
31  | 
hence "\<Squnion>A \<in> A" using False by(rule insert.IH)  | 
|
32  | 
show ?thesis  | 
|
33  | 
proof(cases "x \<le> \<Squnion>A")  | 
|
34  | 
case True  | 
|
| 69745 | 35  | 
have "\<Squnion>(insert x A) \<le> \<Squnion>A" using chain  | 
| 60062 | 36  | 
by(rule ccpo_Sup_least)(auto simp add: True intro: ccpo_Sup_upper[OF chain'])  | 
| 69745 | 37  | 
hence "\<Squnion>(insert x A) = \<Squnion>A"  | 
| 60062 | 38  | 
by(rule antisym)(blast intro: ccpo_Sup_upper[OF chain] ccpo_Sup_least[OF chain'])  | 
| 60758 | 39  | 
with \<open>\<Squnion>A \<in> A\<close> show ?thesis by simp  | 
| 60062 | 40  | 
next  | 
41  | 
case False  | 
|
| 60758 | 42  | 
with chainD[OF chain, of x "\<Squnion>A"] \<open>\<Squnion>A \<in> A\<close>  | 
| 69745 | 43  | 
have "\<Squnion>(insert x A) = x"  | 
| 60062 | 44  | 
by(auto intro: antisym ccpo_Sup_least[OF chain] order_trans[OF ccpo_Sup_upper[OF chain']] ccpo_Sup_upper[OF chain])  | 
45  | 
thus ?thesis by simp  | 
|
46  | 
qed  | 
|
47  | 
qed  | 
|
48  | 
qed  | 
|
| 40107 | 49  | 
|
| 
63561
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
62390 
diff
changeset
 | 
50  | 
lemma (in ccpo) admissible_chfin:  | 
| 67399 | 51  | 
"(\<forall>S. Complete_Partial_Order.chain (\<le>) S \<longrightarrow> finite S)  | 
52  | 
\<Longrightarrow> ccpo.admissible Sup (\<le>) P"  | 
|
| 
63561
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
62390 
diff
changeset
 | 
53  | 
using in_chain_finite by (blast intro: ccpo.admissibleI)  | 
| 
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
62390 
diff
changeset
 | 
54  | 
|
| 60758 | 55  | 
subsection \<open>Axiomatic setup\<close>  | 
| 40107 | 56  | 
|
| 60758 | 57  | 
text \<open>This techical locale constains the requirements for function  | 
58  | 
definitions with ccpo fixed points.\<close>  | 
|
| 40107 | 59  | 
|
60  | 
definition "fun_ord ord f g \<longleftrightarrow> (\<forall>x. ord (f x) (g x))"  | 
|
61  | 
definition "fun_lub L A = (\<lambda>x. L {y. \<exists>f\<in>A. y = f x})"
 | 
|
62  | 
definition "img_ord f ord = (\<lambda>x y. ord (f x) (f y))"  | 
|
63  | 
definition "img_lub f g Lub = (\<lambda>A. g (Lub (f ` A)))"  | 
|
64  | 
||
| 43081 | 65  | 
lemma chain_fun:  | 
66  | 
assumes A: "chain (fun_ord ord) A"  | 
|
67  | 
  shows "chain ord {y. \<exists>f\<in>A. y = f a}" (is "chain ord ?C")
 | 
|
68  | 
proof (rule chainI)  | 
|
69  | 
fix x y assume "x \<in> ?C" "y \<in> ?C"  | 
|
70  | 
then obtain f g where fg: "f \<in> A" "g \<in> A"  | 
|
71  | 
and [simp]: "x = f a" "y = g a" by blast  | 
|
72  | 
from chainD[OF A fg]  | 
|
73  | 
show "ord x y \<or> ord y x" unfolding fun_ord_def by auto  | 
|
74  | 
qed  | 
|
75  | 
||
| 40107 | 76  | 
lemma call_mono[partial_function_mono]: "monotone (fun_ord ord) ord (\<lambda>f. f t)"  | 
77  | 
by (rule monotoneI) (auto simp: fun_ord_def)  | 
|
78  | 
||
| 40288 | 79  | 
lemma let_mono[partial_function_mono]:  | 
80  | 
"(\<And>x. monotone orda ordb (\<lambda>f. b f x))  | 
|
81  | 
\<Longrightarrow> monotone orda ordb (\<lambda>f. Let t (b f))"  | 
|
82  | 
by (simp add: Let_def)  | 
|
83  | 
||
| 40107 | 84  | 
lemma if_mono[partial_function_mono]: "monotone orda ordb F  | 
85  | 
\<Longrightarrow> monotone orda ordb G  | 
|
86  | 
\<Longrightarrow> monotone orda ordb (\<lambda>f. if c then F f else G f)"  | 
|
87  | 
unfolding monotone_def by simp  | 
|
88  | 
||
89  | 
definition "mk_less R = (\<lambda>x y. R x y \<and> \<not> R y x)"  | 
|
90  | 
||
91  | 
locale partial_function_definitions =  | 
|
92  | 
fixes leq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
|
93  | 
fixes lub :: "'a set \<Rightarrow> 'a"  | 
|
94  | 
assumes leq_refl: "leq x x"  | 
|
95  | 
assumes leq_trans: "leq x y \<Longrightarrow> leq y z \<Longrightarrow> leq x z"  | 
|
96  | 
assumes leq_antisym: "leq x y \<Longrightarrow> leq y x \<Longrightarrow> x = y"  | 
|
97  | 
assumes lub_upper: "chain leq A \<Longrightarrow> x \<in> A \<Longrightarrow> leq x (lub A)"  | 
|
98  | 
assumes lub_least: "chain leq A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> leq x z) \<Longrightarrow> leq (lub A) z"  | 
|
99  | 
||
100  | 
lemma partial_function_lift:  | 
|
101  | 
assumes "partial_function_definitions ord lb"  | 
|
102  | 
shows "partial_function_definitions (fun_ord ord) (fun_lub lb)" (is "partial_function_definitions ?ordf ?lubf")  | 
|
103  | 
proof -  | 
|
104  | 
interpret partial_function_definitions ord lb by fact  | 
|
105  | 
||
106  | 
show ?thesis  | 
|
107  | 
proof  | 
|
108  | 
fix x show "?ordf x x"  | 
|
109  | 
unfolding fun_ord_def by (auto simp: leq_refl)  | 
|
110  | 
next  | 
|
111  | 
fix x y z assume "?ordf x y" "?ordf y z"  | 
|
112  | 
thus "?ordf x z" unfolding fun_ord_def  | 
|
113  | 
by (force dest: leq_trans)  | 
|
114  | 
next  | 
|
115  | 
fix x y assume "?ordf x y" "?ordf y x"  | 
|
116  | 
thus "x = y" unfolding fun_ord_def  | 
|
| 43081 | 117  | 
by (force intro!: dest: leq_antisym)  | 
| 40107 | 118  | 
next  | 
119  | 
fix A f assume f: "f \<in> A" and A: "chain ?ordf A"  | 
|
120  | 
thus "?ordf f (?lubf A)"  | 
|
121  | 
unfolding fun_lub_def fun_ord_def  | 
|
122  | 
by (blast intro: lub_upper chain_fun[OF A] f)  | 
|
123  | 
next  | 
|
124  | 
    fix A :: "('b \<Rightarrow> 'a) set" and g :: "'b \<Rightarrow> 'a"
 | 
|
125  | 
assume A: "chain ?ordf A" and g: "\<And>f. f \<in> A \<Longrightarrow> ?ordf f g"  | 
|
126  | 
show "?ordf (?lubf A) g" unfolding fun_lub_def fun_ord_def  | 
|
127  | 
by (blast intro: lub_least chain_fun[OF A] dest: g[unfolded fun_ord_def])  | 
|
128  | 
qed  | 
|
129  | 
qed  | 
|
130  | 
||
131  | 
lemma ccpo: assumes "partial_function_definitions ord lb"  | 
|
| 
46041
 
1e3ff542e83e
remove constant 'ccpo.lub', re-use constant 'Sup' instead
 
huffman 
parents: 
45297 
diff
changeset
 | 
132  | 
shows "class.ccpo lb ord (mk_less ord)"  | 
| 40107 | 133  | 
using assms unfolding partial_function_definitions_def mk_less_def  | 
134  | 
by unfold_locales blast+  | 
|
135  | 
||
136  | 
lemma partial_function_image:  | 
|
137  | 
assumes "partial_function_definitions ord Lub"  | 
|
138  | 
assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"  | 
|
139  | 
assumes inv: "\<And>x. f (g x) = x"  | 
|
140  | 
shows "partial_function_definitions (img_ord f ord) (img_lub f g Lub)"  | 
|
141  | 
proof -  | 
|
142  | 
let ?iord = "img_ord f ord"  | 
|
143  | 
let ?ilub = "img_lub f g Lub"  | 
|
144  | 
||
145  | 
interpret partial_function_definitions ord Lub by fact  | 
|
146  | 
show ?thesis  | 
|
147  | 
proof  | 
|
148  | 
fix A x assume "chain ?iord A" "x \<in> A"  | 
|
149  | 
then have "chain ord (f ` A)" "f x \<in> f ` A"  | 
|
150  | 
by (auto simp: img_ord_def intro: chainI dest: chainD)  | 
|
151  | 
thus "?iord x (?ilub A)"  | 
|
152  | 
unfolding inv img_lub_def img_ord_def by (rule lub_upper)  | 
|
153  | 
next  | 
|
154  | 
fix A x assume "chain ?iord A"  | 
|
155  | 
and 1: "\<And>z. z \<in> A \<Longrightarrow> ?iord z x"  | 
|
156  | 
then have "chain ord (f ` A)"  | 
|
157  | 
by (auto simp: img_ord_def intro: chainI dest: chainD)  | 
|
158  | 
thus "?iord (?ilub A) x"  | 
|
159  | 
unfolding inv img_lub_def img_ord_def  | 
|
160  | 
by (rule lub_least) (auto dest: 1[unfolded img_ord_def])  | 
|
161  | 
qed (auto simp: img_ord_def intro: leq_refl dest: leq_trans leq_antisym inj)  | 
|
162  | 
qed  | 
|
163  | 
||
164  | 
context partial_function_definitions  | 
|
165  | 
begin  | 
|
166  | 
||
167  | 
abbreviation "le_fun \<equiv> fun_ord leq"  | 
|
168  | 
abbreviation "lub_fun \<equiv> fun_lub lub"  | 
|
| 
46041
 
1e3ff542e83e
remove constant 'ccpo.lub', re-use constant 'Sup' instead
 
huffman 
parents: 
45297 
diff
changeset
 | 
169  | 
abbreviation "fixp_fun \<equiv> ccpo.fixp lub_fun le_fun"  | 
| 40107 | 170  | 
abbreviation "mono_body \<equiv> monotone le_fun leq"  | 
| 
46041
 
1e3ff542e83e
remove constant 'ccpo.lub', re-use constant 'Sup' instead
 
huffman 
parents: 
45297 
diff
changeset
 | 
171  | 
abbreviation "admissible \<equiv> ccpo.admissible lub_fun le_fun"  | 
| 40107 | 172  | 
|
| 60758 | 173  | 
text \<open>Interpret manually, to avoid flooding everything with facts about  | 
174  | 
orders\<close>  | 
|
| 40107 | 175  | 
|
| 
46041
 
1e3ff542e83e
remove constant 'ccpo.lub', re-use constant 'Sup' instead
 
huffman 
parents: 
45297 
diff
changeset
 | 
176  | 
lemma ccpo: "class.ccpo lub_fun le_fun (mk_less le_fun)"  | 
| 40107 | 177  | 
apply (rule ccpo)  | 
178  | 
apply (rule partial_function_lift)  | 
|
179  | 
apply (rule partial_function_definitions_axioms)  | 
|
180  | 
done  | 
|
181  | 
||
| 60758 | 182  | 
text \<open>The crucial fixed-point theorem\<close>  | 
| 40107 | 183  | 
|
184  | 
lemma mono_body_fixp:  | 
|
185  | 
"(\<And>x. mono_body (\<lambda>f. F f x)) \<Longrightarrow> fixp_fun F = F (fixp_fun F)"  | 
|
186  | 
by (rule ccpo.fixp_unfold[OF ccpo]) (auto simp: monotone_def fun_ord_def)  | 
|
187  | 
||
| 60758 | 188  | 
text \<open>Version with curry/uncurry combinators, to be used by package\<close>  | 
| 40107 | 189  | 
|
190  | 
lemma fixp_rule_uc:  | 
|
191  | 
fixes F :: "'c \<Rightarrow> 'c" and  | 
|
192  | 
U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and  | 
|
193  | 
    C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
 | 
|
194  | 
assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"  | 
|
195  | 
assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"  | 
|
196  | 
assumes inverse: "\<And>f. C (U f) = f"  | 
|
197  | 
shows "f = F f"  | 
|
198  | 
proof -  | 
|
199  | 
have "f = C (fixp_fun (\<lambda>f. U (F (C f))))" by (simp add: eq)  | 
|
200  | 
also have "... = C (U (F (C (fixp_fun (\<lambda>f. U (F (C f)))))))"  | 
|
201  | 
by (subst mono_body_fixp[of "%f. U (F (C f))", OF mono]) (rule refl)  | 
|
202  | 
also have "... = F (C (fixp_fun (\<lambda>f. U (F (C f)))))" by (rule inverse)  | 
|
203  | 
also have "... = F f" by (simp add: eq)  | 
|
204  | 
finally show "f = F f" .  | 
|
205  | 
qed  | 
|
206  | 
||
| 60758 | 207  | 
text \<open>Fixpoint induction rule\<close>  | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
208  | 
|
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
209  | 
lemma fixp_induct_uc:  | 
| 
59647
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
210  | 
fixes F :: "'c \<Rightarrow> 'c"  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
211  | 
and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a"  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
212  | 
    and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
 | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
213  | 
    and P :: "('b \<Rightarrow> 'a) \<Rightarrow> bool"
 | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
214  | 
assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"  | 
| 
59647
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
215  | 
and eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
216  | 
and inverse: "\<And>f. U (C f) = f"  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
217  | 
and adm: "ccpo.admissible lub_fun le_fun P"  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
218  | 
    and bot: "P (\<lambda>_. lub {})"
 | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
219  | 
and step: "\<And>f. P (U f) \<Longrightarrow> P (U (F f))"  | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
220  | 
shows "P (U f)"  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
221  | 
unfolding eq inverse  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
222  | 
apply (rule ccpo.fixp_induct[OF ccpo adm])  | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
223  | 
apply (insert mono, auto simp: monotone_def fun_ord_def bot fun_lub_def)[2]  | 
| 
59647
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
224  | 
apply (rule_tac f5="C x" in step)  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
225  | 
apply (simp add: inverse)  | 
| 
 
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
 
wenzelm 
parents: 
59517 
diff
changeset
 | 
226  | 
done  | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
227  | 
|
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
228  | 
|
| 69593 | 229  | 
text \<open>Rules for \<^term>\<open>mono_body\<close>:\<close>  | 
| 40107 | 230  | 
|
231  | 
lemma const_mono[partial_function_mono]: "monotone ord leq (\<lambda>f. c)"  | 
|
232  | 
by (rule monotoneI) (rule leq_refl)  | 
|
233  | 
||
234  | 
end  | 
|
235  | 
||
236  | 
||
| 60758 | 237  | 
subsection \<open>Flat interpretation: tailrec and option\<close>  | 
| 40107 | 238  | 
|
239  | 
definition  | 
|
240  | 
"flat_ord b x y \<longleftrightarrow> x = b \<or> x = y"  | 
|
241  | 
||
242  | 
definition  | 
|
243  | 
  "flat_lub b A = (if A \<subseteq> {b} then b else (THE x. x \<in> A - {b}))"
 | 
|
244  | 
||
245  | 
lemma flat_interpretation:  | 
|
246  | 
"partial_function_definitions (flat_ord b) (flat_lub b)"  | 
|
247  | 
proof  | 
|
248  | 
fix A x assume 1: "chain (flat_ord b) A" "x \<in> A"  | 
|
249  | 
show "flat_ord b x (flat_lub b A)"  | 
|
250  | 
proof cases  | 
|
251  | 
assume "x = b"  | 
|
252  | 
thus ?thesis by (simp add: flat_ord_def)  | 
|
253  | 
next  | 
|
254  | 
assume "x \<noteq> b"  | 
|
255  | 
    with 1 have "A - {b} = {x}"
 | 
|
256  | 
by (auto elim: chainE simp: flat_ord_def)  | 
|
257  | 
then have "flat_lub b A = x"  | 
|
258  | 
by (auto simp: flat_lub_def)  | 
|
259  | 
thus ?thesis by (auto simp: flat_ord_def)  | 
|
260  | 
qed  | 
|
261  | 
next  | 
|
262  | 
fix A z assume A: "chain (flat_ord b) A"  | 
|
263  | 
and z: "\<And>x. x \<in> A \<Longrightarrow> flat_ord b x z"  | 
|
264  | 
show "flat_ord b (flat_lub b A) z"  | 
|
265  | 
proof cases  | 
|
266  | 
    assume "A \<subseteq> {b}"
 | 
|
267  | 
thus ?thesis  | 
|
268  | 
by (auto simp: flat_lub_def flat_ord_def)  | 
|
269  | 
next  | 
|
270  | 
    assume nb: "\<not> A \<subseteq> {b}"
 | 
|
271  | 
then obtain y where y: "y \<in> A" "y \<noteq> b" by auto  | 
|
272  | 
    with A have "A - {b} = {y}"
 | 
|
273  | 
by (auto elim: chainE simp: flat_ord_def)  | 
|
274  | 
with nb have "flat_lub b A = y"  | 
|
275  | 
by (auto simp: flat_lub_def)  | 
|
276  | 
with z y show ?thesis by auto  | 
|
277  | 
qed  | 
|
278  | 
qed (auto simp: flat_ord_def)  | 
|
279  | 
||
| 59517 | 280  | 
lemma flat_ordI: "(x \<noteq> a \<Longrightarrow> x = y) \<Longrightarrow> flat_ord a x y"  | 
281  | 
by(auto simp add: flat_ord_def)  | 
|
282  | 
||
283  | 
lemma flat_ord_antisym: "\<lbrakk> flat_ord a x y; flat_ord a y x \<rbrakk> \<Longrightarrow> x = y"  | 
|
284  | 
by(auto simp add: flat_ord_def)  | 
|
285  | 
||
| 64634 | 286  | 
lemma antisymp_flat_ord: "antisymp (flat_ord a)"  | 
287  | 
by(rule antisympI)(auto dest: flat_ord_antisym)  | 
|
| 59517 | 288  | 
|
| 61605 | 289  | 
interpretation tailrec:  | 
| 40107 | 290  | 
partial_function_definitions "flat_ord undefined" "flat_lub undefined"  | 
| 
61566
 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 
ballarin 
parents: 
60758 
diff
changeset
 | 
291  | 
  rewrites "flat_lub undefined {} \<equiv> undefined"
 | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
292  | 
by (rule flat_interpretation)(simp add: flat_lub_def)  | 
| 40107 | 293  | 
|
| 61605 | 294  | 
interpretation option:  | 
| 40107 | 295  | 
partial_function_definitions "flat_ord None" "flat_lub None"  | 
| 
61566
 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 
ballarin 
parents: 
60758 
diff
changeset
 | 
296  | 
  rewrites "flat_lub None {} \<equiv> None"
 | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
297  | 
by (rule flat_interpretation)(simp add: flat_lub_def)  | 
| 40107 | 298  | 
|
| 
42949
 
618adb3584e5
separate initializations for different modes of partial_function -- generation of induction rules will be non-uniform
 
krauss 
parents: 
40288 
diff
changeset
 | 
299  | 
|
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
300  | 
abbreviation "tailrec_ord \<equiv> flat_ord undefined"  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
301  | 
abbreviation "mono_tailrec \<equiv> monotone (fun_ord tailrec_ord) tailrec_ord"  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
302  | 
|
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
303  | 
lemma tailrec_admissible:  | 
| 53949 | 304  | 
"ccpo.admissible (fun_lub (flat_lub c)) (fun_ord (flat_ord c))  | 
305  | 
(\<lambda>a. \<forall>x. a x \<noteq> c \<longrightarrow> P x (a x))"  | 
|
| 
53361
 
1cb7d3c0cf31
move admissible out of class ccpo to avoid unnecessary class predicate in foundational theorems
 
Andreas Lochbihler 
parents: 
52728 
diff
changeset
 | 
306  | 
proof(intro ccpo.admissibleI strip)  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
307  | 
fix A x  | 
| 53949 | 308  | 
assume chain: "Complete_Partial_Order.chain (fun_ord (flat_ord c)) A"  | 
309  | 
and P [rule_format]: "\<forall>f\<in>A. \<forall>x. f x \<noteq> c \<longrightarrow> P x (f x)"  | 
|
310  | 
and defined: "fun_lub (flat_lub c) A x \<noteq> c"  | 
|
311  | 
from defined obtain f where f: "f \<in> A" "f x \<noteq> c"  | 
|
| 62390 | 312  | 
by(auto simp add: fun_lub_def flat_lub_def split: if_split_asm)  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
313  | 
hence "P x (f x)" by(rule P)  | 
| 53949 | 314  | 
moreover from chain f have "\<forall>f' \<in> A. f' x = c \<or> f' x = f x"  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
315  | 
by(auto 4 4 simp add: Complete_Partial_Order.chain_def flat_ord_def fun_ord_def)  | 
| 53949 | 316  | 
hence "fun_lub (flat_lub c) A x = f x"  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
317  | 
using f by(auto simp add: fun_lub_def flat_lub_def)  | 
| 53949 | 318  | 
ultimately show "P x (fun_lub (flat_lub c) A x)" by simp  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
319  | 
qed  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
320  | 
|
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
321  | 
lemma fixp_induct_tailrec:  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
322  | 
fixes F :: "'c \<Rightarrow> 'c" and  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
323  | 
U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
324  | 
    C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c" and
 | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
325  | 
P :: "'b \<Rightarrow> 'a \<Rightarrow> bool" and  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
326  | 
x :: "'b"  | 
| 53949 | 327  | 
assumes mono: "\<And>x. monotone (fun_ord (flat_ord c)) (flat_ord c) (\<lambda>f. U (F (C f)) x)"  | 
328  | 
assumes eq: "f \<equiv> C (ccpo.fixp (fun_lub (flat_lub c)) (fun_ord (flat_ord c)) (\<lambda>f. U (F (C f))))"  | 
|
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
329  | 
assumes inverse2: "\<And>f. U (C f) = f"  | 
| 53949 | 330  | 
assumes step: "\<And>f x y. (\<And>x y. U f x = y \<Longrightarrow> y \<noteq> c \<Longrightarrow> P x y) \<Longrightarrow> U (F f) x = y \<Longrightarrow> y \<noteq> c \<Longrightarrow> P x y"  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
331  | 
assumes result: "U f x = y"  | 
| 53949 | 332  | 
assumes defined: "y \<noteq> c"  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
333  | 
shows "P x y"  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
334  | 
proof -  | 
| 53949 | 335  | 
have "\<forall>x y. U f x = y \<longrightarrow> y \<noteq> c \<longrightarrow> P x y"  | 
336  | 
by(rule partial_function_definitions.fixp_induct_uc[OF flat_interpretation, of _ U F C, OF mono eq inverse2])  | 
|
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
337  | 
(auto intro: step tailrec_admissible simp add: fun_lub_def flat_lub_def)  | 
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
338  | 
thus ?thesis using result defined by blast  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
339  | 
qed  | 
| 
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
340  | 
|
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
341  | 
lemma admissible_image:  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
342  | 
assumes pfun: "partial_function_definitions le lub"  | 
| 67091 | 343  | 
assumes adm: "ccpo.admissible lub le (P \<circ> g)"  | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
344  | 
assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
345  | 
assumes inv: "\<And>x. f (g x) = x"  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
346  | 
shows "ccpo.admissible (img_lub f g lub) (img_ord f le) P"  | 
| 
53361
 
1cb7d3c0cf31
move admissible out of class ccpo to avoid unnecessary class predicate in foundational theorems
 
Andreas Lochbihler 
parents: 
52728 
diff
changeset
 | 
347  | 
proof (rule ccpo.admissibleI)  | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
348  | 
fix A assume "chain (img_ord f le) A"  | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
349  | 
then have ch': "chain le (f ` A)"  | 
| 
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
350  | 
by (auto simp: img_ord_def intro: chainI dest: chainD)  | 
| 
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
351  | 
  assume "A \<noteq> {}"
 | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
352  | 
assume P_A: "\<forall>x\<in>A. P x"  | 
| 67091 | 353  | 
have "(P \<circ> g) (lub (f ` A))" using adm ch'  | 
| 
53361
 
1cb7d3c0cf31
move admissible out of class ccpo to avoid unnecessary class predicate in foundational theorems
 
Andreas Lochbihler 
parents: 
52728 
diff
changeset
 | 
354  | 
proof (rule ccpo.admissibleD)  | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
355  | 
fix x assume "x \<in> f ` A"  | 
| 67091 | 356  | 
with P_A show "(P \<circ> g) x" by (auto simp: inj[OF inv])  | 
| 60758 | 357  | 
  qed(simp add: \<open>A \<noteq> {}\<close>)
 | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
358  | 
thus "P (img_lub f g lub A)" unfolding img_lub_def by simp  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
359  | 
qed  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
360  | 
|
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
361  | 
lemma admissible_fun:  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
362  | 
assumes pfun: "partial_function_definitions le lub"  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
363  | 
assumes adm: "\<And>x. ccpo.admissible lub le (Q x)"  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
364  | 
shows "ccpo.admissible (fun_lub lub) (fun_ord le) (\<lambda>f. \<forall>x. Q x (f x))"  | 
| 
53361
 
1cb7d3c0cf31
move admissible out of class ccpo to avoid unnecessary class predicate in foundational theorems
 
Andreas Lochbihler 
parents: 
52728 
diff
changeset
 | 
365  | 
proof (rule ccpo.admissibleI)  | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
366  | 
  fix A :: "('b \<Rightarrow> 'a) set"
 | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
367  | 
assume Q: "\<forall>f\<in>A. \<forall>x. Q x (f x)"  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
368  | 
assume ch: "chain (fun_ord le) A"  | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
369  | 
  assume "A \<noteq> {}"
 | 
| 
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
370  | 
  hence non_empty: "\<And>a. {y. \<exists>f\<in>A. y = f a} \<noteq> {}" by auto
 | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
371  | 
show "\<forall>x. Q x (fun_lub lub A x)"  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
372  | 
unfolding fun_lub_def  | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
373  | 
by (rule allI, rule ccpo.admissibleD[OF adm chain_fun[OF ch] non_empty])  | 
| 
51485
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
374  | 
(auto simp: Q)  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
375  | 
qed  | 
| 
 
637aa1649ac7
added rudimentary induction rule for partial_function (heap)
 
krauss 
parents: 
51459 
diff
changeset
 | 
376  | 
|
| 
51459
 
bc3651180a09
add induction rule for partial_function (tailrec)
 
Andreas Lochbihler 
parents: 
48891 
diff
changeset
 | 
377  | 
|
| 40107 | 378  | 
abbreviation "option_ord \<equiv> flat_ord None"  | 
379  | 
abbreviation "mono_option \<equiv> monotone (fun_ord option_ord) option_ord"  | 
|
380  | 
||
381  | 
lemma bind_mono[partial_function_mono]:  | 
|
382  | 
assumes mf: "mono_option B" and mg: "\<And>y. mono_option (\<lambda>f. C y f)"  | 
|
383  | 
shows "mono_option (\<lambda>f. Option.bind (B f) (\<lambda>y. C y f))"  | 
|
384  | 
proof (rule monotoneI)  | 
|
385  | 
fix f g :: "'a \<Rightarrow> 'b option" assume fg: "fun_ord option_ord f g"  | 
|
386  | 
with mf  | 
|
387  | 
have "option_ord (B f) (B g)" by (rule monotoneD[of _ _ _ f g])  | 
|
388  | 
then have "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y. C y f))"  | 
|
389  | 
unfolding flat_ord_def by auto  | 
|
390  | 
also from mg  | 
|
391  | 
have "\<And>y'. option_ord (C y' f) (C y' g)"  | 
|
392  | 
by (rule monotoneD) (rule fg)  | 
|
393  | 
then have "option_ord (Option.bind (B g) (\<lambda>y'. C y' f)) (Option.bind (B g) (\<lambda>y'. C y' g))"  | 
|
394  | 
unfolding flat_ord_def by (cases "B g") auto  | 
|
395  | 
finally (option.leq_trans)  | 
|
396  | 
show "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y'. C y' g))" .  | 
|
397  | 
qed  | 
|
398  | 
||
| 43081 | 399  | 
lemma flat_lub_in_chain:  | 
400  | 
assumes ch: "chain (flat_ord b) A "  | 
|
401  | 
assumes lub: "flat_lub b A = a"  | 
|
402  | 
shows "a = b \<or> a \<in> A"  | 
|
403  | 
proof (cases "A \<subseteq> {b}")
 | 
|
404  | 
case True  | 
|
405  | 
then have "flat_lub b A = b" unfolding flat_lub_def by simp  | 
|
406  | 
with lub show ?thesis by simp  | 
|
407  | 
next  | 
|
408  | 
case False  | 
|
409  | 
then obtain c where "c \<in> A" and "c \<noteq> b" by auto  | 
|
410  | 
  { fix z assume "z \<in> A"
 | 
|
| 60758 | 411  | 
from chainD[OF ch \<open>c \<in> A\<close> this] have "z = c \<or> z = b"  | 
412  | 
unfolding flat_ord_def using \<open>c \<noteq> b\<close> by auto }  | 
|
| 43081 | 413  | 
  with False have "A - {b} = {c}" by auto
 | 
414  | 
with False have "flat_lub b A = c" by (auto simp: flat_lub_def)  | 
|
| 60758 | 415  | 
with \<open>c \<in> A\<close> lub show ?thesis by simp  | 
| 43081 | 416  | 
qed  | 
417  | 
||
418  | 
lemma option_admissible: "option.admissible (%(f::'a \<Rightarrow> 'b option).  | 
|
419  | 
(\<forall>x y. f x = Some y \<longrightarrow> P x y))"  | 
|
| 
53361
 
1cb7d3c0cf31
move admissible out of class ccpo to avoid unnecessary class predicate in foundational theorems
 
Andreas Lochbihler 
parents: 
52728 
diff
changeset
 | 
420  | 
proof (rule ccpo.admissibleI)  | 
| 43081 | 421  | 
  fix A :: "('a \<Rightarrow> 'b option) set"
 | 
422  | 
assume ch: "chain option.le_fun A"  | 
|
423  | 
and IH: "\<forall>f\<in>A. \<forall>x y. f x = Some y \<longrightarrow> P x y"  | 
|
424  | 
  from ch have ch': "\<And>x. chain option_ord {y. \<exists>f\<in>A. y = f x}" by (rule chain_fun)
 | 
|
425  | 
show "\<forall>x y. option.lub_fun A x = Some y \<longrightarrow> P x y"  | 
|
426  | 
proof (intro allI impI)  | 
|
427  | 
fix x y assume "option.lub_fun A x = Some y"  | 
|
428  | 
from flat_lub_in_chain[OF ch' this[unfolded fun_lub_def]]  | 
|
429  | 
    have "Some y \<in> {y. \<exists>f\<in>A. y = f x}" by simp
 | 
|
430  | 
then have "\<exists>f\<in>A. f x = Some y" by auto  | 
|
431  | 
with IH show "P x y" by auto  | 
|
432  | 
qed  | 
|
433  | 
qed  | 
|
434  | 
||
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
435  | 
lemma fixp_induct_option:  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
436  | 
fixes F :: "'c \<Rightarrow> 'c" and  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
437  | 
U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a option" and  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
438  | 
    C :: "('b \<Rightarrow> 'a option) \<Rightarrow> 'c" and
 | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
439  | 
P :: "'b \<Rightarrow> 'a \<Rightarrow> bool"  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
440  | 
assumes mono: "\<And>x. mono_option (\<lambda>f. U (F (C f)) x)"  | 
| 
46041
 
1e3ff542e83e
remove constant 'ccpo.lub', re-use constant 'Sup' instead
 
huffman 
parents: 
45297 
diff
changeset
 | 
441  | 
assumes eq: "f \<equiv> C (ccpo.fixp (fun_lub (flat_lub None)) (fun_ord option_ord) (\<lambda>f. U (F (C f))))"  | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
442  | 
assumes inverse2: "\<And>f. U (C f) = f"  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
443  | 
assumes step: "\<And>f x y. (\<And>x y. U f x = Some y \<Longrightarrow> P x y) \<Longrightarrow> U (F f) x = Some y \<Longrightarrow> P x y"  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
444  | 
assumes defined: "U f x = Some y"  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
445  | 
shows "P x y"  | 
| 
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
446  | 
using step defined option.fixp_induct_uc[of U F C, OF mono eq inverse2 option_admissible]  | 
| 
54630
 
9061af4d5ebc
restrict admissibility to non-empty chains to allow more syntax-directed proof rules
 
Andreas Lochbihler 
parents: 
53949 
diff
changeset
 | 
447  | 
unfolding fun_lub_def flat_lub_def by(auto 9 2)  | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
448  | 
|
| 69593 | 449  | 
declaration \<open>Partial_Function.init "tailrec" \<^term>\<open>tailrec.fixp_fun\<close>  | 
450  | 
  \<^term>\<open>tailrec.mono_body\<close> @{thm tailrec.fixp_rule_uc} @{thm tailrec.fixp_induct_uc}
 | 
|
| 
61841
 
4d3527b94f2a
more general types Proof.method / context_tactic;
 
wenzelm 
parents: 
61605 
diff
changeset
 | 
451  | 
  (SOME @{thm fixp_induct_tailrec[where c = undefined]})\<close>
 | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
452  | 
|
| 69593 | 453  | 
declaration \<open>Partial_Function.init "option" \<^term>\<open>option.fixp_fun\<close>  | 
454  | 
  \<^term>\<open>option.mono_body\<close> @{thm option.fixp_rule_uc} @{thm option.fixp_induct_uc}
 | 
|
| 60758 | 455  | 
  (SOME @{thm fixp_induct_option})\<close>
 | 
| 
43082
 
8d0c44de9773
generic fixpoint induction (with explicit curry/uncurry predicates) and instance for option type
 
krauss 
parents: 
43081 
diff
changeset
 | 
456  | 
|
| 
40252
 
029400b6c893
hide_const various constants, in particular to avoid ugly qualifiers in HOLCF
 
krauss 
parents: 
40107 
diff
changeset
 | 
457  | 
hide_const (open) chain  | 
| 40107 | 458  | 
|
459  | 
end  |