| author | huffman | 
| Sun, 28 Nov 2010 08:21:52 -0800 | |
| changeset 40796 | aeeb3e61e3af | 
| parent 39159 | 0dec18004e75 | 
| child 42768 | 4db4a8b164c1 | 
| permissions | -rw-r--r-- | 
| 35849 | 1 | (* Author: Clemens Ballarin, started 23 June 1999 | 
| 2 | ||
| 3 | Experimental theory: long division of polynomials. | |
| 7998 | 4 | *) | 
| 5 | ||
| 35849 | 6 | theory LongDiv | 
| 7 | imports PolyHomo | |
| 8 | begin | |
| 7998 | 9 | |
| 21423 | 10 | definition | 
| 11 | lcoeff :: "'a::ring up => 'a" where | |
| 12 | "lcoeff p = coeff p (deg p)" | |
| 7998 | 13 | |
| 21423 | 14 | definition | 
| 15 | eucl_size :: "'a::zero up => nat" where | |
| 16 | "eucl_size p = (if p = 0 then 0 else deg p + 1)" | |
| 14723 | 17 | |
| 18 | lemma SUM_shrink_below_lemma: | |
| 19 | "!! f::(nat=>'a::ring). (ALL i. i < m --> f i = 0) --> | |
| 20 |   setsum (%i. f (i+m)) {..d} = setsum f {..m+d}"
 | |
| 21 | apply (induct_tac d) | |
| 15481 | 22 | apply (induct_tac m) | 
| 21423 | 23 | apply simp | 
| 24 | apply force | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
21423diff
changeset | 25 | apply (simp add: add_commute [of m]) | 
| 21423 | 26 | done | 
| 27 | ||
| 28 | lemma SUM_extend_below: | |
| 29 | "!! f::(nat=>'a::ring). | |
| 30 |      [| m <= n; !!i. i < m ==> f i = 0; P (setsum (%i. f (i+m)) {..n-m}) |]  
 | |
| 31 |      ==> P (setsum f {..n})"
 | |
| 32 | by (simp add: SUM_shrink_below_lemma add_diff_inverse leD) | |
| 33 | ||
| 34 | lemma up_repr2D: | |
| 35 | "!! p::'a::ring up. | |
| 36 |    [| deg p <= n; P (setsum (%i. monom (coeff p i) i) {..n}) |]  
 | |
| 37 | ==> P p" | |
| 38 | by (simp add: up_repr_le) | |
| 39 | ||
| 40 | ||
| 41 | (* Start of LongDiv *) | |
| 42 | ||
| 43 | lemma deg_lcoeff_cancel: | |
| 44 |   "!!p::('a::ring up).  
 | |
| 45 | [| deg p <= deg r; deg q <= deg r; | |
| 46 | coeff p (deg r) = - (coeff q (deg r)); deg r ~= 0 |] ==> | |
| 47 | deg (p + q) < deg r" | |
| 24742 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 paulson parents: 
22384diff
changeset | 48 | apply (rule le_less_trans [of _ "deg r - 1"]) | 
| 21423 | 49 | prefer 2 | 
| 50 | apply arith | |
| 51 | apply (rule deg_aboveI) | |
| 52 | apply (case_tac "deg r = m") | |
| 53 | apply clarify | |
| 54 | apply simp | |
| 55 | (* case "deg q ~= m" *) | |
| 56 | apply (subgoal_tac "deg p < m & deg q < m") | |
| 57 | apply (simp (no_asm_simp) add: deg_aboveD) | |
| 58 | apply arith | |
| 59 | done | |
| 60 | ||
| 61 | lemma deg_lcoeff_cancel2: | |
| 62 |   "!!p::('a::ring up).  
 | |
| 63 | [| deg p <= deg r; deg q <= deg r; | |
| 64 | p ~= -q; coeff p (deg r) = - (coeff q (deg r)) |] ==> | |
| 65 | deg (p + q) < deg r" | |
| 66 | apply (rule deg_lcoeff_cancel) | |
| 67 | apply assumption+ | |
| 68 | apply (rule classical) | |
| 69 | apply clarify | |
| 70 | apply (erule notE) | |
| 71 | apply (rule_tac p = p in up_repr2D, assumption) | |
| 72 | apply (rule_tac p = q in up_repr2D, assumption) | |
| 73 | apply (rotate_tac -1) | |
| 74 | apply (simp add: smult_l_minus) | |
| 75 | done | |
| 76 | ||
| 77 | lemma long_div_eucl_size: | |
| 78 |   "!!g::('a::ring up). g ~= 0 ==>  
 | |
| 79 | Ex (% (q, r, k). | |
| 80 | (lcoeff g)^k *s f = q * g + r & (eucl_size r < eucl_size g))" | |
| 81 | apply (rule_tac P = "%f. Ex (% (q, r, k) . (lcoeff g) ^k *s f = q * g + r & (eucl_size r < eucl_size g))" in wf_induct) | |
| 82 | (* TO DO: replace by measure_induct *) | |
| 83 | apply (rule_tac f = eucl_size in wf_measure) | |
| 84 | apply (case_tac "eucl_size x < eucl_size g") | |
| 85 | apply (rule_tac x = "(0, x, 0)" in exI) | |
| 86 | apply (simp (no_asm_simp)) | |
| 87 | (* case "eucl_size x >= eucl_size g" *) | |
| 88 | apply (drule_tac x = "lcoeff g *s x - (monom (lcoeff x) (deg x - deg g)) * g" in spec) | |
| 89 | apply (erule impE) | |
| 90 | apply (simp (no_asm_use) add: inv_image_def measure_def lcoeff_def) | |
| 91 | apply (case_tac "x = 0") | |
| 92 | apply (rotate_tac -1) | |
| 93 | apply (simp add: eucl_size_def) | |
| 94 | (* case "x ~= 0 *) | |
| 95 | apply (rotate_tac -1) | |
| 96 | apply (simp add: eucl_size_def) | |
| 97 | apply (rule impI) | |
| 98 | apply (rule deg_lcoeff_cancel2) | |
| 99 | (* replace by linear arithmetic??? *) | |
| 100 | apply (rule_tac [2] le_trans) | |
| 101 | apply (rule_tac [2] deg_smult_ring) | |
| 102 | prefer 2 | |
| 103 | apply simp | |
| 104 | apply (simp (no_asm)) | |
| 105 | apply (rule le_trans) | |
| 106 | apply (rule deg_mult_ring) | |
| 107 | apply (rule le_trans) | |
| 108 | (**) | |
| 109 | apply (rule add_le_mono) | |
| 110 | apply (rule le_refl) | |
| 111 | (* term order forces to use this instead of add_le_mono1 *) | |
| 112 | apply (rule deg_monom_ring) | |
| 113 | apply (simp (no_asm_simp)) | |
| 114 | apply force | |
| 115 | apply (simp (no_asm)) | |
| 116 | (**) | |
| 117 | (* This change is probably caused by application of commutativity *) | |
| 118 | apply (rule_tac m = "deg g" and n = "deg x" in SUM_extend) | |
| 119 | apply (simp (no_asm)) | |
| 120 | apply (simp (no_asm_simp)) | |
| 121 | apply arith | |
| 122 | apply (rule_tac m = "deg g" and n = "deg g" in SUM_extend_below) | |
| 123 | apply (rule le_refl) | |
| 124 | apply (simp (no_asm_simp)) | |
| 125 | apply arith | |
| 126 | apply (simp (no_asm)) | |
| 127 | (**) | |
| 128 | (* end of subproof deg f1 < deg f *) | |
| 129 | apply (erule exE) | |
| 130 | apply (rule_tac x = "((% (q,r,k) . (monom (lcoeff g ^ k * lcoeff x) (deg x - deg g) + q)) xa, (% (q,r,k) . r) xa, (% (q,r,k) . Suc k) xa) " in exI) | |
| 131 | apply clarify | |
| 132 | apply (drule sym) | |
| 26342 | 133 |   apply (tactic {* simp_tac (@{simpset} addsimps [@{thm l_distr}, @{thm a_assoc}]
 | 
| 21423 | 134 | delsimprocs [ring_simproc]) 1 *}) | 
| 26342 | 135 |   apply (tactic {* asm_simp_tac (@{simpset} delsimprocs [ring_simproc]) 1 *})
 | 
| 39159 | 136 |   apply (tactic {* simp_tac (@{simpset} addsimps [@{thm minus_def}, @{thm smult_r_distr},
 | 
| 137 |     @{thm smult_r_minus}, @{thm monom_mult_smult}, @{thm smult_assoc2}]
 | |
| 21423 | 138 | delsimprocs [ring_simproc]) 1 *}) | 
| 30968 
10fef94f40fc
adaptions due to rearrangment of power operation
 haftmann parents: 
27214diff
changeset | 139 | apply (simp add: smult_assoc1 [symmetric]) | 
| 21423 | 140 | done | 
| 141 | ||
| 27214 | 142 | ML {*
 | 
| 143 |  bind_thm ("long_div_ring_aux",
 | |
| 144 |     simplify (@{simpset} addsimps [@{thm eucl_size_def}]
 | |
| 145 |     delsimprocs [ring_simproc]) (@{thm long_div_eucl_size}))
 | |
| 146 | *} | |
| 21423 | 147 | |
| 148 | lemma long_div_ring: | |
| 149 |   "!!g::('a::ring up). g ~= 0 ==>  
 | |
| 150 | Ex (% (q, r, k). | |
| 151 | (lcoeff g)^k *s f = q * g + r & (r = 0 | deg r < deg g))" | |
| 27214 | 152 | apply (frule_tac f = f in long_div_ring_aux) | 
| 26342 | 153 |   apply (tactic {* auto_tac (@{claset}, @{simpset} delsimprocs [ring_simproc]) *})
 | 
| 21423 | 154 | apply (case_tac "aa = 0") | 
| 155 | apply blast | |
| 156 | (* case "aa ~= 0 *) | |
| 157 | apply (rotate_tac -1) | |
| 158 | apply auto | |
| 159 | done | |
| 160 | ||
| 161 | (* Next one fails *) | |
| 162 | lemma long_div_unit: | |
| 163 |   "!!g::('a::ring up). [| g ~= 0; (lcoeff g) dvd 1 |] ==>  
 | |
| 164 | Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))" | |
| 165 | apply (frule_tac f = "f" in long_div_ring) | |
| 166 | apply (erule exE) | |
| 167 | apply (rule_tac x = "((% (q,r,k) . (inverse (lcoeff g ^k) *s q)) x, (% (q,r,k) . inverse (lcoeff g ^k) *s r) x) " in exI) | |
| 168 | apply clarify | |
| 169 | apply (rule conjI) | |
| 170 | apply (drule sym) | |
| 171 |    apply (tactic {* asm_simp_tac
 | |
| 39159 | 172 |      (@{simpset} addsimps [@{thm smult_r_distr} RS sym, @{thm smult_assoc2}]
 | 
| 21423 | 173 | delsimprocs [ring_simproc]) 1 *}) | 
| 174 | apply (simp (no_asm_simp) add: l_inverse_ring unit_power smult_assoc1 [symmetric]) | |
| 175 | (* degree property *) | |
| 176 | apply (erule disjE) | |
| 177 | apply (simp (no_asm_simp)) | |
| 178 | apply (rule disjI2) | |
| 179 | apply (rule le_less_trans) | |
| 180 | apply (rule deg_smult_ring) | |
| 181 | apply (simp (no_asm_simp)) | |
| 182 | done | |
| 183 | ||
| 184 | lemma long_div_theorem: | |
| 185 |   "!!g::('a::field up). g ~= 0 ==>  
 | |
| 186 | Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))" | |
| 187 | apply (rule long_div_unit) | |
| 188 | apply assumption | |
| 189 | apply (simp (no_asm_simp) add: lcoeff_def lcoeff_nonzero field_ax) | |
| 190 | done | |
| 191 | ||
| 192 | lemma uminus_zero: "- (0::'a::ring) = 0" | |
| 193 | by simp | |
| 194 | ||
| 195 | lemma diff_zero_imp_eq: "!!a::'a::ring. a - b = 0 ==> a = b" | |
| 196 | apply (rule_tac s = "a - (a - b) " in trans) | |
| 26342 | 197 |    apply (tactic {* asm_simp_tac (@{simpset} delsimprocs [ring_simproc]) 1 *})
 | 
| 21423 | 198 | apply simp | 
| 199 | apply (simp (no_asm)) | |
| 200 | done | |
| 201 | ||
| 202 | lemma eq_imp_diff_zero: "!!a::'a::ring. a = b ==> a + (-b) = 0" | |
| 203 | by simp | |
| 204 | ||
| 205 | lemma long_div_quo_unique: | |
| 206 |   "!!g::('a::field up). [| g ~= 0;  
 | |
| 207 | f = q1 * g + r1; (r1 = 0 | deg r1 < deg g); | |
| 208 | f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> q1 = q2" | |
| 209 | apply (subgoal_tac "(q1 - q2) * g = r2 - r1") (* 1 *) | |
| 210 | apply (erule_tac V = "f = ?x" in thin_rl) | |
| 211 | apply (erule_tac V = "f = ?x" in thin_rl) | |
| 212 | apply (rule diff_zero_imp_eq) | |
| 213 | apply (rule classical) | |
| 214 | apply (erule disjE) | |
| 215 | (* r1 = 0 *) | |
| 216 | apply (erule disjE) | |
| 217 | (* r2 = 0 *) | |
| 26342 | 218 |      apply (tactic {* asm_full_simp_tac (@{simpset}
 | 
| 39159 | 219 |        addsimps [@{thm integral_iff}, @{thm minus_def}, @{thm l_zero}, @{thm uminus_zero}]
 | 
| 21423 | 220 | delsimprocs [ring_simproc]) 1 *}) | 
| 221 | (* r2 ~= 0 *) | |
| 222 | apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong) | |
| 26342 | 223 |     apply (tactic {* asm_full_simp_tac (@{simpset} addsimps
 | 
| 39159 | 224 |       [@{thm minus_def}, @{thm l_zero}, @{thm uminus_zero}] delsimprocs [ring_simproc]) 1 *})
 | 
| 21423 | 225 | (* r1 ~=0 *) | 
| 226 | apply (erule disjE) | |
| 227 | (* r2 = 0 *) | |
| 228 | apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong) | |
| 26342 | 229 |     apply (tactic {* asm_full_simp_tac (@{simpset} addsimps
 | 
| 39159 | 230 |       [@{thm minus_def}, @{thm l_zero}, @{thm uminus_zero}] delsimprocs [ring_simproc]) 1 *})
 | 
| 21423 | 231 | (* r2 ~= 0 *) | 
| 232 | apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong) | |
| 39159 | 233 |    apply (tactic {* asm_full_simp_tac (@{simpset} addsimps [@{thm minus_def}]
 | 
| 21423 | 234 | delsimprocs [ring_simproc]) 1 *}) | 
| 235 | apply (drule order_eq_refl [THEN add_leD2]) | |
| 236 | apply (drule leD) | |
| 237 | apply (erule notE, rule deg_add [THEN le_less_trans]) | |
| 238 | apply (simp (no_asm_simp)) | |
| 239 | (* proof of 1 *) | |
| 240 | apply (rule diff_zero_imp_eq) | |
| 241 | apply hypsubst | |
| 242 | apply (drule_tac a = "?x+?y" in eq_imp_diff_zero) | |
| 243 | apply simp | |
| 244 | done | |
| 245 | ||
| 246 | lemma long_div_rem_unique: | |
| 247 |   "!!g::('a::field up). [| g ~= 0;  
 | |
| 248 | f = q1 * g + r1; (r1 = 0 | deg r1 < deg g); | |
| 249 | f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> r1 = r2" | |
| 250 | apply (subgoal_tac "q1 = q2") | |
| 24742 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 paulson parents: 
22384diff
changeset | 251 | apply (metis a_comm a_lcancel m_comm) | 
| 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 paulson parents: 
22384diff
changeset | 252 | apply (metis a_comm l_zero long_div_quo_unique m_comm conc) | 
| 14723 | 253 | done | 
| 7998 | 254 | |
| 255 | end |