| 
27468
 | 
     1  | 
(*  Title       : CLim.thy
  | 
| 
 | 
     2  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     3  | 
    Copyright   : 2001 University of Edinburgh
  | 
| 
 | 
     4  | 
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
header{*Limits, Continuity and Differentiation for Complex Functions*}
 | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory CLim
  | 
| 
 | 
    10  | 
imports CStar
  | 
| 
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
(*not in simpset?*)
  | 
| 
 | 
    14  | 
declare hypreal_epsilon_not_zero [simp]
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
(*??generalize*)
  | 
| 
 | 
    17  | 
lemma lemma_complex_mult_inverse_squared [simp]:
  | 
| 
 | 
    18  | 
     "x \<noteq> (0::complex) \<Longrightarrow> (x * inverse(x) ^ 2) = inverse x"
  | 
| 
 | 
    19  | 
by (simp add: numeral_2_eq_2)
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
text{*Changing the quantified variable. Install earlier?*}
 | 
| 
 | 
    22  | 
lemma all_shift: "(\<forall>x::'a::comm_ring_1. P x) = (\<forall>x. P (x-a))";
  | 
| 
 | 
    23  | 
apply auto 
  | 
| 
 | 
    24  | 
apply (drule_tac x="x+a" in spec) 
  | 
| 
 | 
    25  | 
apply (simp add: diff_minus add_assoc) 
  | 
| 
 | 
    26  | 
done
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma complex_add_minus_iff [simp]: "(x + - a = (0::complex)) = (x=a)"
  | 
| 
 | 
    29  | 
by (simp add: diff_eq_eq diff_minus [symmetric])
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma complex_add_eq_0_iff [iff]: "(x+y = (0::complex)) = (y = -x)"
  | 
| 
 | 
    32  | 
apply auto
  | 
| 
 | 
    33  | 
apply (drule sym [THEN diff_eq_eq [THEN iffD2]], auto)
  | 
| 
 | 
    34  | 
done
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
subsection{*Limit of Complex to Complex Function*}
 | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma NSLIM_Re: "f -- a --NS> L ==> (%x. Re(f x)) -- a --NS> Re(L)"
  | 
| 
 | 
    40  | 
by (simp add: NSLIM_def starfunC_approx_Re_Im_iff 
  | 
| 
 | 
    41  | 
              hRe_hcomplex_of_complex)
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma NSLIM_Im: "f -- a --NS> L ==> (%x. Im(f x)) -- a --NS> Im(L)"
  | 
| 
 | 
    44  | 
by (simp add: NSLIM_def starfunC_approx_Re_Im_iff 
  | 
| 
 | 
    45  | 
              hIm_hcomplex_of_complex)
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
(** get this result easily now **)
  | 
| 
 | 
    48  | 
lemma LIM_Re: "f -- a --> L ==> (%x. Re(f x)) -- a --> Re(L)"
  | 
| 
 | 
    49  | 
by (simp add: LIM_NSLIM_iff NSLIM_Re)
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma LIM_Im: "f -- a --> L ==> (%x. Im(f x)) -- a --> Im(L)"
  | 
| 
 | 
    52  | 
by (simp add: LIM_NSLIM_iff NSLIM_Im)
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma LIM_cnj: "f -- a --> L ==> (%x. cnj (f x)) -- a --> cnj L"
  | 
| 
 | 
    55  | 
by (simp add: LIM_def complex_cnj_diff [symmetric])
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma LIM_cnj_iff: "((%x. cnj (f x)) -- a --> cnj L) = (f -- a --> L)"
  | 
| 
 | 
    58  | 
by (simp add: LIM_def complex_cnj_diff [symmetric])
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma starfun_norm: "( *f* (\<lambda>x. norm (f x))) = (\<lambda>x. hnorm (( *f* f) x))"
  | 
| 
 | 
    61  | 
by transfer (rule refl)
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma star_of_Re [simp]: "star_of (Re x) = hRe (star_of x)"
  | 
| 
 | 
    64  | 
by transfer (rule refl)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma star_of_Im [simp]: "star_of (Im x) = hIm (star_of x)"
  | 
| 
 | 
    67  | 
by transfer (rule refl)
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
text""
  | 
| 
 | 
    70  | 
(** another equivalence result **)
  | 
| 
 | 
    71  | 
lemma NSCLIM_NSCRLIM_iff:
  | 
| 
 | 
    72  | 
   "(f -- x --NS> L) = ((%y. cmod(f y - L)) -- x --NS> 0)"
  | 
| 
 | 
    73  | 
by (simp add: NSLIM_def starfun_norm
  | 
| 
 | 
    74  | 
    approx_approx_zero_iff [symmetric] approx_minus_iff [symmetric])
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
(** much, much easier standard proof **)
  | 
| 
 | 
    77  | 
lemma CLIM_CRLIM_iff: "(f -- x --> L) = ((%y. cmod(f y - L)) -- x --> 0)"
  | 
| 
 | 
    78  | 
by (simp add: LIM_def)
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
(* so this is nicer nonstandard proof *)
  | 
| 
 | 
    81  | 
lemma NSCLIM_NSCRLIM_iff2:
  | 
| 
 | 
    82  | 
     "(f -- x --NS> L) = ((%y. cmod(f y - L)) -- x --NS> 0)"
  | 
| 
 | 
    83  | 
by (simp add: LIM_NSLIM_iff [symmetric] CLIM_CRLIM_iff)
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma NSLIM_NSCRLIM_Re_Im_iff:
  | 
| 
 | 
    86  | 
     "(f -- a --NS> L) = ((%x. Re(f x)) -- a --NS> Re(L) &
  | 
| 
 | 
    87  | 
                            (%x. Im(f x)) -- a --NS> Im(L))"
  | 
| 
 | 
    88  | 
apply (auto intro: NSLIM_Re NSLIM_Im)
  | 
| 
 | 
    89  | 
apply (auto simp add: NSLIM_def starfun_Re starfun_Im)
  | 
| 
 | 
    90  | 
apply (auto dest!: spec)
  | 
| 
 | 
    91  | 
apply (simp add: hcomplex_approx_iff)
  | 
| 
 | 
    92  | 
done
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma LIM_CRLIM_Re_Im_iff:
  | 
| 
 | 
    95  | 
     "(f -- a --> L) = ((%x. Re(f x)) -- a --> Re(L) &
  | 
| 
 | 
    96  | 
                         (%x. Im(f x)) -- a --> Im(L))"
  | 
| 
 | 
    97  | 
by (simp add: LIM_NSLIM_iff NSLIM_NSCRLIM_Re_Im_iff)
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
subsection{*Continuity*}
 | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
lemma NSLIM_isContc_iff:
  | 
| 
 | 
   103  | 
     "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
  | 
| 
 | 
   104  | 
by (rule NSLIM_h_iff)
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
subsection{*Functions from Complex to Reals*}
 | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
lemma isNSContCR_cmod [simp]: "isNSCont cmod (a)"
  | 
| 
 | 
   109  | 
by (auto intro: approx_hnorm
  | 
| 
 | 
   110  | 
         simp add: starfunCR_cmod hcmod_hcomplex_of_complex [symmetric] 
  | 
| 
 | 
   111  | 
                    isNSCont_def)
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma isContCR_cmod [simp]: "isCont cmod (a)"
  | 
| 
 | 
   114  | 
by (simp add: isNSCont_isCont_iff [symmetric])
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma isCont_Re: "isCont f a ==> isCont (%x. Re (f x)) a"
  | 
| 
 | 
   117  | 
by (simp add: isCont_def LIM_Re)
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
lemma isCont_Im: "isCont f a ==> isCont (%x. Im (f x)) a"
  | 
| 
 | 
   120  | 
by (simp add: isCont_def LIM_Im)
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
subsection{* Differentiation of Natural Number Powers*}
 | 
| 
 | 
   123  | 
  | 
| 
 | 
   124  | 
lemma CDERIV_pow [simp]:
  | 
| 
 | 
   125  | 
     "DERIV (%x. x ^ n) x :> (complex_of_real (real n)) * (x ^ (n - Suc 0))"
  | 
| 
 | 
   126  | 
apply (induct n)
  | 
| 
 | 
   127  | 
apply (drule_tac [2] DERIV_ident [THEN DERIV_mult])
  | 
| 
 | 
   128  | 
apply (auto simp add: left_distrib real_of_nat_Suc)
  | 
| 
 | 
   129  | 
apply (case_tac "n")
  | 
| 
 | 
   130  | 
apply (auto simp add: mult_ac add_commute)
  | 
| 
 | 
   131  | 
done
  | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
text{*Nonstandard version*}
 | 
| 
 | 
   134  | 
lemma NSCDERIV_pow:
  | 
| 
 | 
   135  | 
     "NSDERIV (%x. x ^ n) x :> complex_of_real (real n) * (x ^ (n - 1))"
  | 
| 
 | 
   136  | 
by (simp add: NSDERIV_DERIV_iff)
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
text{*Can't relax the premise @{term "x \<noteq> 0"}: it isn't continuous at zero*}
 | 
| 
 | 
   139  | 
lemma NSCDERIV_inverse:
  | 
| 
 | 
   140  | 
     "(x::complex) \<noteq> 0 ==> NSDERIV (%x. inverse(x)) x :> (- (inverse x ^ 2))"
  | 
| 
 | 
   141  | 
unfolding numeral_2_eq_2
  | 
| 
 | 
   142  | 
by (rule NSDERIV_inverse)
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
lemma CDERIV_inverse:
  | 
| 
 | 
   145  | 
     "(x::complex) \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ 2))"
  | 
| 
 | 
   146  | 
unfolding numeral_2_eq_2
  | 
| 
 | 
   147  | 
by (rule DERIV_inverse)
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
subsection{*Derivative of Reciprocals (Function @{term inverse})*}
 | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
lemma CDERIV_inverse_fun:
  | 
| 
 | 
   153  | 
     "[| DERIV f x :> d; f(x) \<noteq> (0::complex) |]
  | 
| 
 | 
   154  | 
      ==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ 2)))"
  | 
| 
 | 
   155  | 
unfolding numeral_2_eq_2
  | 
| 
 | 
   156  | 
by (rule DERIV_inverse_fun)
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
lemma NSCDERIV_inverse_fun:
  | 
| 
 | 
   159  | 
     "[| NSDERIV f x :> d; f(x) \<noteq> (0::complex) |]
  | 
| 
 | 
   160  | 
      ==> NSDERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ 2)))"
  | 
| 
 | 
   161  | 
unfolding numeral_2_eq_2
  | 
| 
 | 
   162  | 
by (rule NSDERIV_inverse_fun)
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
subsection{* Derivative of Quotient*}
 | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
lemma CDERIV_quotient:
  | 
| 
 | 
   168  | 
     "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> (0::complex) |]
  | 
| 
 | 
   169  | 
       ==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ 2)"
  | 
| 
 | 
   170  | 
unfolding numeral_2_eq_2
  | 
| 
 | 
   171  | 
by (rule DERIV_quotient)
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
lemma NSCDERIV_quotient:
  | 
| 
 | 
   174  | 
     "[| NSDERIV f x :> d; NSDERIV g x :> e; g(x) \<noteq> (0::complex) |]
  | 
| 
 | 
   175  | 
       ==> NSDERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ 2)"
  | 
| 
 | 
   176  | 
unfolding numeral_2_eq_2
  | 
| 
 | 
   177  | 
by (rule NSDERIV_quotient)
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
subsection{*Caratheodory Formulation of Derivative at a Point: Standard Proof*}
 | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
lemma CARAT_CDERIVD:
  | 
| 
 | 
   183  | 
     "(\<forall>z. f z - f x = g z * (z - x)) & isNSCont g x & g x = l
  | 
| 
 | 
   184  | 
      ==> NSDERIV f x :> l"
  | 
| 
 | 
   185  | 
by clarify (rule CARAT_DERIVD)
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
end
  |