13771
|
1 |
(* Title: HOL/Hoare/Pointers.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 2002 TUM
|
|
5 |
|
|
6 |
This is like Pointers.thy, but instead of a type constructor 'a ref
|
|
7 |
that adjoins Null to a type, Null is simply a distinguished element of
|
|
8 |
the address type. This avoids the Ref constructor and thus simplifies
|
|
9 |
specifications (a bit). However, the proofs don't seem to get simpler
|
|
10 |
- in fact in some case they appear to get (a bit) more complicated.
|
|
11 |
*)
|
|
12 |
|
16417
|
13 |
theory Pointers0 imports Hoare begin
|
13771
|
14 |
|
|
15 |
subsection "References"
|
|
16 |
|
|
17 |
axclass ref < type
|
|
18 |
consts Null :: "'a::ref"
|
|
19 |
|
|
20 |
subsection "Field access and update"
|
|
21 |
|
|
22 |
syntax
|
|
23 |
"@fassign" :: "'a::ref => id => 'v => 's com"
|
|
24 |
("(2_^._ :=/ _)" [70,1000,65] 61)
|
|
25 |
"@faccess" :: "'a::ref => ('a::ref \<Rightarrow> 'v) => 'v"
|
|
26 |
("_^._" [65,1000] 65)
|
|
27 |
translations
|
|
28 |
"p^.f := e" => "f := fun_upd f p e"
|
|
29 |
"p^.f" => "f p"
|
|
30 |
|
|
31 |
|
|
32 |
text "An example due to Suzuki:"
|
|
33 |
|
|
34 |
lemma "VARS v n
|
|
35 |
{distinct[w,x,y,z]}
|
|
36 |
w^.v := (1::int); w^.n := x;
|
|
37 |
x^.v := 2; x^.n := y;
|
|
38 |
y^.v := 3; y^.n := z;
|
|
39 |
z^.v := 4; x^.n := z
|
|
40 |
{w^.n^.n^.v = 4}"
|
|
41 |
by vcg_simp
|
|
42 |
|
|
43 |
|
|
44 |
section "The heap"
|
|
45 |
|
|
46 |
subsection "Paths in the heap"
|
|
47 |
|
|
48 |
consts
|
|
49 |
Path :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a \<Rightarrow> bool"
|
|
50 |
primrec
|
|
51 |
"Path h x [] y = (x = y)"
|
|
52 |
"Path h x (a#as) y = (x \<noteq> Null \<and> x = a \<and> Path h (h a) as y)"
|
|
53 |
|
|
54 |
lemma [iff]: "Path h Null xs y = (xs = [] \<and> y = Null)"
|
|
55 |
apply(case_tac xs)
|
|
56 |
apply fastsimp
|
|
57 |
apply fastsimp
|
|
58 |
done
|
|
59 |
|
|
60 |
lemma [simp]: "a \<noteq> Null \<Longrightarrow> Path h a as z =
|
|
61 |
(as = [] \<and> z = a \<or> (\<exists>bs. as = a#bs \<and> Path h (h a) bs z))"
|
|
62 |
apply(case_tac as)
|
|
63 |
apply fastsimp
|
|
64 |
apply fastsimp
|
|
65 |
done
|
|
66 |
|
|
67 |
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
|
|
68 |
by(induct as, simp+)
|
|
69 |
|
|
70 |
lemma [simp]: "\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
|
|
71 |
by(induct as, simp, simp add:eq_sym_conv)
|
|
72 |
|
|
73 |
subsection "Lists on the heap"
|
|
74 |
|
|
75 |
subsubsection "Relational abstraction"
|
|
76 |
|
|
77 |
constdefs
|
|
78 |
List :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> bool"
|
|
79 |
"List h x as == Path h x as Null"
|
|
80 |
|
|
81 |
lemma [simp]: "List h x [] = (x = Null)"
|
|
82 |
by(simp add:List_def)
|
|
83 |
|
|
84 |
lemma [simp]: "List h x (a#as) = (x \<noteq> Null \<and> x = a \<and> List h (h a) as)"
|
|
85 |
by(simp add:List_def)
|
|
86 |
|
|
87 |
lemma [simp]: "List h Null as = (as = [])"
|
|
88 |
by(case_tac as, simp_all)
|
|
89 |
|
|
90 |
lemma List_Ref[simp]:
|
|
91 |
"a \<noteq> Null \<Longrightarrow> List h a as = (\<exists>bs. as = a#bs \<and> List h (h a) bs)"
|
|
92 |
by(case_tac as, simp_all, fast)
|
|
93 |
|
|
94 |
theorem notin_List_update[simp]:
|
|
95 |
"\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
|
|
96 |
apply(induct as)
|
|
97 |
apply simp
|
|
98 |
apply(clarsimp simp add:fun_upd_apply)
|
|
99 |
done
|
|
100 |
|
|
101 |
|
|
102 |
declare fun_upd_apply[simp del]fun_upd_same[simp] fun_upd_other[simp]
|
|
103 |
|
|
104 |
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
|
|
105 |
by(induct as, simp, clarsimp)
|
|
106 |
|
|
107 |
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
|
|
108 |
by(blast intro:List_unique)
|
|
109 |
|
|
110 |
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
|
|
111 |
by(induct as, simp, clarsimp)
|
|
112 |
|
|
113 |
lemma List_hd_not_in_tl[simp]: "List h (h a) as \<Longrightarrow> a \<notin> set as"
|
|
114 |
apply (clarsimp simp add:in_set_conv_decomp)
|
|
115 |
apply(frule List_app[THEN iffD1])
|
|
116 |
apply(fastsimp dest: List_unique)
|
|
117 |
done
|
|
118 |
|
|
119 |
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
|
|
120 |
apply(induct as, simp)
|
|
121 |
apply(fastsimp dest:List_hd_not_in_tl)
|
|
122 |
done
|
|
123 |
|
|
124 |
subsection "Functional abstraction"
|
|
125 |
|
|
126 |
constdefs
|
|
127 |
islist :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool"
|
|
128 |
"islist h p == \<exists>as. List h p as"
|
|
129 |
list :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list"
|
|
130 |
"list h p == SOME as. List h p as"
|
|
131 |
|
|
132 |
lemma List_conv_islist_list: "List h p as = (islist h p \<and> as = list h p)"
|
|
133 |
apply(simp add:islist_def list_def)
|
|
134 |
apply(rule iffI)
|
|
135 |
apply(rule conjI)
|
|
136 |
apply blast
|
|
137 |
apply(subst some1_equality)
|
|
138 |
apply(erule List_unique1)
|
|
139 |
apply assumption
|
|
140 |
apply(rule refl)
|
|
141 |
apply simp
|
|
142 |
apply(rule someI_ex)
|
|
143 |
apply fast
|
|
144 |
done
|
|
145 |
|
|
146 |
lemma [simp]: "islist h Null"
|
|
147 |
by(simp add:islist_def)
|
|
148 |
|
|
149 |
lemma [simp]: "a \<noteq> Null \<Longrightarrow> islist h a = islist h (h a)"
|
|
150 |
by(simp add:islist_def)
|
|
151 |
|
|
152 |
lemma [simp]: "list h Null = []"
|
|
153 |
by(simp add:list_def)
|
|
154 |
|
|
155 |
lemma list_Ref_conv[simp]:
|
|
156 |
"\<lbrakk> a \<noteq> Null; islist h (h a) \<rbrakk> \<Longrightarrow> list h a = a # list h (h a)"
|
|
157 |
apply(insert List_Ref[of _ h])
|
|
158 |
apply(fastsimp simp:List_conv_islist_list)
|
|
159 |
done
|
|
160 |
|
|
161 |
lemma [simp]: "islist h (h a) \<Longrightarrow> a \<notin> set(list h (h a))"
|
|
162 |
apply(insert List_hd_not_in_tl[of h])
|
|
163 |
apply(simp add:List_conv_islist_list)
|
|
164 |
done
|
|
165 |
|
|
166 |
lemma list_upd_conv[simp]:
|
|
167 |
"islist h p \<Longrightarrow> y \<notin> set(list h p) \<Longrightarrow> list (h(y := q)) p = list h p"
|
|
168 |
apply(drule notin_List_update[of _ _ h q p])
|
|
169 |
apply(simp add:List_conv_islist_list)
|
|
170 |
done
|
|
171 |
|
|
172 |
lemma islist_upd[simp]:
|
|
173 |
"islist h p \<Longrightarrow> y \<notin> set(list h p) \<Longrightarrow> islist (h(y := q)) p"
|
|
174 |
apply(frule notin_List_update[of _ _ h q p])
|
|
175 |
apply(simp add:List_conv_islist_list)
|
|
176 |
done
|
|
177 |
|
|
178 |
|
|
179 |
section "Verifications"
|
|
180 |
|
|
181 |
subsection "List reversal"
|
|
182 |
|
|
183 |
text "A short but unreadable proof:"
|
|
184 |
|
|
185 |
lemma "VARS tl p q r
|
|
186 |
{List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {}}
|
|
187 |
WHILE p \<noteq> Null
|
|
188 |
INV {\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
|
|
189 |
rev ps @ qs = rev Ps @ Qs}
|
|
190 |
DO r := p; p := p^.tl; r^.tl := q; q := r OD
|
|
191 |
{List tl q (rev Ps @ Qs)}"
|
|
192 |
apply vcg_simp
|
|
193 |
apply fastsimp
|
|
194 |
apply(fastsimp intro:notin_List_update[THEN iffD2])
|
|
195 |
(* explicily:
|
|
196 |
apply clarify
|
|
197 |
apply(rename_tac ps qs)
|
|
198 |
apply clarsimp
|
|
199 |
apply(rename_tac ps')
|
|
200 |
apply(rule_tac x = ps' in exI)
|
|
201 |
apply simp
|
|
202 |
apply(rule_tac x = "p#qs" in exI)
|
|
203 |
apply simp
|
|
204 |
*)
|
|
205 |
apply fastsimp
|
|
206 |
done
|
|
207 |
|
|
208 |
|
|
209 |
text "A longer readable version:"
|
|
210 |
|
|
211 |
lemma "VARS tl p q r
|
|
212 |
{List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {}}
|
|
213 |
WHILE p \<noteq> Null
|
|
214 |
INV {\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
|
|
215 |
rev ps @ qs = rev Ps @ Qs}
|
|
216 |
DO r := p; p := p^.tl; r^.tl := q; q := r OD
|
|
217 |
{List tl q (rev Ps @ Qs)}"
|
|
218 |
proof vcg
|
|
219 |
fix tl p q r
|
|
220 |
assume "List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {}"
|
|
221 |
thus "\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
|
|
222 |
rev ps @ qs = rev Ps @ Qs" by fastsimp
|
|
223 |
next
|
|
224 |
fix tl p q r
|
|
225 |
assume "(\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
|
|
226 |
rev ps @ qs = rev Ps @ Qs) \<and> p \<noteq> Null"
|
|
227 |
(is "(\<exists>ps qs. ?I ps qs) \<and> _")
|
|
228 |
then obtain ps qs where I: "?I ps qs \<and> p \<noteq> Null" by fast
|
|
229 |
then obtain ps' where "ps = p # ps'" by fastsimp
|
|
230 |
hence "List (tl(p := q)) (p^.tl) ps' \<and>
|
|
231 |
List (tl(p := q)) p (p#qs) \<and>
|
|
232 |
set ps' \<inter> set (p#qs) = {} \<and>
|
|
233 |
rev ps' @ (p#qs) = rev Ps @ Qs"
|
|
234 |
using I by fastsimp
|
|
235 |
thus "\<exists>ps' qs'. List (tl(p := q)) (p^.tl) ps' \<and>
|
|
236 |
List (tl(p := q)) p qs' \<and>
|
|
237 |
set ps' \<inter> set qs' = {} \<and>
|
|
238 |
rev ps' @ qs' = rev Ps @ Qs" by fast
|
|
239 |
next
|
|
240 |
fix tl p q r
|
|
241 |
assume "(\<exists>ps qs. List tl p ps \<and> List tl q qs \<and> set ps \<inter> set qs = {} \<and>
|
|
242 |
rev ps @ qs = rev Ps @ Qs) \<and> \<not> p \<noteq> Null"
|
|
243 |
thus "List tl q (rev Ps @ Qs)" by fastsimp
|
|
244 |
qed
|
|
245 |
|
|
246 |
|
|
247 |
text{* Finaly, the functional version. A bit more verbose, but automatic! *}
|
|
248 |
|
|
249 |
lemma "VARS tl p q r
|
|
250 |
{islist tl p \<and> islist tl q \<and>
|
|
251 |
Ps = list tl p \<and> Qs = list tl q \<and> set Ps \<inter> set Qs = {}}
|
|
252 |
WHILE p \<noteq> Null
|
|
253 |
INV {islist tl p \<and> islist tl q \<and>
|
|
254 |
set(list tl p) \<inter> set(list tl q) = {} \<and>
|
|
255 |
rev(list tl p) @ (list tl q) = rev Ps @ Qs}
|
|
256 |
DO r := p; p := p^.tl; r^.tl := q; q := r OD
|
|
257 |
{islist tl q \<and> list tl q = rev Ps @ Qs}"
|
|
258 |
apply vcg_simp
|
|
259 |
apply clarsimp
|
|
260 |
apply clarsimp
|
|
261 |
apply clarsimp
|
|
262 |
done
|
|
263 |
|
|
264 |
|
|
265 |
subsection "Searching in a list"
|
|
266 |
|
|
267 |
text{*What follows is a sequence of successively more intelligent proofs that
|
|
268 |
a simple loop finds an element in a linked list.
|
|
269 |
|
|
270 |
We start with a proof based on the @{term List} predicate. This means it only
|
|
271 |
works for acyclic lists. *}
|
|
272 |
|
|
273 |
lemma "VARS tl p
|
|
274 |
{List tl p Ps \<and> X \<in> set Ps}
|
|
275 |
WHILE p \<noteq> Null \<and> p \<noteq> X
|
|
276 |
INV {p \<noteq> Null \<and> (\<exists>ps. List tl p ps \<and> X \<in> set ps)}
|
|
277 |
DO p := p^.tl OD
|
|
278 |
{p = X}"
|
|
279 |
apply vcg_simp
|
|
280 |
apply(case_tac "p = Null")
|
|
281 |
apply clarsimp
|
|
282 |
apply fastsimp
|
|
283 |
apply clarsimp
|
|
284 |
apply fastsimp
|
|
285 |
apply clarsimp
|
|
286 |
done
|
|
287 |
|
|
288 |
text{*Using @{term Path} instead of @{term List} generalizes the correctness
|
|
289 |
statement to cyclic lists as well: *}
|
|
290 |
|
|
291 |
lemma "VARS tl p
|
|
292 |
{Path tl p Ps X}
|
|
293 |
WHILE p \<noteq> Null \<and> p \<noteq> X
|
|
294 |
INV {\<exists>ps. Path tl p ps X}
|
|
295 |
DO p := p^.tl OD
|
|
296 |
{p = X}"
|
|
297 |
apply vcg_simp
|
|
298 |
apply blast
|
|
299 |
apply fastsimp
|
|
300 |
apply clarsimp
|
|
301 |
done
|
|
302 |
|
|
303 |
text{*Now it dawns on us that we do not need the list witness at all --- it
|
|
304 |
suffices to talk about reachability, i.e.\ we can use relations directly. *}
|
|
305 |
|
|
306 |
lemma "VARS tl p
|
|
307 |
{(p,X) \<in> {(x,y). y = tl x & x \<noteq> Null}^*}
|
|
308 |
WHILE p \<noteq> Null \<and> p \<noteq> X
|
|
309 |
INV {(p,X) \<in> {(x,y). y = tl x & x \<noteq> Null}^*}
|
|
310 |
DO p := p^.tl OD
|
|
311 |
{p = X}"
|
|
312 |
apply vcg_simp
|
|
313 |
apply clarsimp
|
|
314 |
apply(erule converse_rtranclE)
|
|
315 |
apply simp
|
|
316 |
apply(simp)
|
|
317 |
apply(fastsimp elim:converse_rtranclE)
|
|
318 |
done
|
|
319 |
|
|
320 |
|
|
321 |
subsection "Merging two lists"
|
|
322 |
|
|
323 |
text"This is still a bit rough, especially the proof."
|
|
324 |
|
|
325 |
consts merge :: "'a list * 'a list * ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list"
|
|
326 |
|
|
327 |
recdef merge "measure(%(xs,ys,f). size xs + size ys)"
|
|
328 |
"merge(x#xs,y#ys,f) = (if f x y then x # merge(xs,y#ys,f)
|
|
329 |
else y # merge(x#xs,ys,f))"
|
|
330 |
"merge(x#xs,[],f) = x # merge(xs,[],f)"
|
|
331 |
"merge([],y#ys,f) = y # merge([],ys,f)"
|
|
332 |
"merge([],[],f) = []"
|
|
333 |
|
|
334 |
lemma imp_disjCL: "(P|Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (~P \<longrightarrow> Q \<longrightarrow> R))"
|
|
335 |
by blast
|
|
336 |
|
|
337 |
declare disj_not1[simp del] imp_disjL[simp del] imp_disjCL[simp]
|
|
338 |
|
|
339 |
lemma "VARS hd tl p q r s
|
|
340 |
{List tl p Ps \<and> List tl q Qs \<and> set Ps \<inter> set Qs = {} \<and>
|
|
341 |
(p \<noteq> Null \<or> q \<noteq> Null)}
|
|
342 |
IF if q = Null then True else p ~= Null & p^.hd \<le> q^.hd
|
|
343 |
THEN r := p; p := p^.tl ELSE r := q; q := q^.tl FI;
|
|
344 |
s := r;
|
|
345 |
WHILE p \<noteq> Null \<or> q \<noteq> Null
|
|
346 |
INV {EX rs ps qs. Path tl r rs s \<and> List tl p ps \<and> List tl q qs \<and>
|
|
347 |
distinct(s # ps @ qs @ rs) \<and> s \<noteq> Null \<and>
|
|
348 |
merge(Ps,Qs,\<lambda>x y. hd x \<le> hd y) =
|
|
349 |
rs @ s # merge(ps,qs,\<lambda>x y. hd x \<le> hd y) \<and>
|
|
350 |
(tl s = p \<or> tl s = q)}
|
|
351 |
DO IF if q = Null then True else p \<noteq> Null \<and> p^.hd \<le> q^.hd
|
|
352 |
THEN s^.tl := p; p := p^.tl ELSE s^.tl := q; q := q^.tl FI;
|
|
353 |
s := s^.tl
|
|
354 |
OD
|
|
355 |
{List tl r (merge(Ps,Qs,\<lambda>x y. hd x \<le> hd y))}"
|
|
356 |
apply vcg_simp
|
|
357 |
|
|
358 |
apply (fastsimp)
|
|
359 |
|
|
360 |
apply clarsimp
|
|
361 |
apply(rule conjI)
|
|
362 |
apply clarsimp
|
|
363 |
apply(simp add:eq_sym_conv)
|
|
364 |
apply(rule_tac x = "rs @ [s]" in exI)
|
|
365 |
apply simp
|
|
366 |
apply(rule_tac x = "bs" in exI)
|
|
367 |
apply (fastsimp simp:eq_sym_conv)
|
|
368 |
|
|
369 |
apply clarsimp
|
|
370 |
apply(rule conjI)
|
|
371 |
apply clarsimp
|
|
372 |
apply(rule_tac x = "rs @ [s]" in exI)
|
|
373 |
apply simp
|
|
374 |
apply(rule_tac x = "bsa" in exI)
|
|
375 |
apply(rule conjI)
|
|
376 |
apply (simp add:eq_sym_conv)
|
|
377 |
apply(rule exI)
|
|
378 |
apply(rule conjI)
|
|
379 |
apply(rule_tac x = bs in exI)
|
|
380 |
apply(rule conjI)
|
|
381 |
apply(rule refl)
|
|
382 |
apply (simp add:eq_sym_conv)
|
|
383 |
apply (simp add:eq_sym_conv)
|
|
384 |
|
|
385 |
apply(rule conjI)
|
|
386 |
apply clarsimp
|
|
387 |
apply(rule_tac x = "rs @ [s]" in exI)
|
|
388 |
apply simp
|
|
389 |
apply(rule_tac x = bs in exI)
|
|
390 |
apply (simp add:eq_sym_conv)
|
|
391 |
apply clarsimp
|
|
392 |
apply(rule_tac x = "rs @ [s]" in exI)
|
|
393 |
apply (simp add:eq_sym_conv)
|
|
394 |
apply(rule exI)
|
|
395 |
apply(rule conjI)
|
|
396 |
apply(rule_tac x = bsa in exI)
|
|
397 |
apply(rule conjI)
|
|
398 |
apply(rule refl)
|
|
399 |
apply (simp add:eq_sym_conv)
|
|
400 |
apply(rule_tac x = bs in exI)
|
|
401 |
apply (simp add:eq_sym_conv)
|
|
402 |
|
|
403 |
apply(clarsimp simp add:List_app)
|
|
404 |
done
|
|
405 |
|
|
406 |
(* TODO: merging with islist/list instead of List: an improvement?
|
|
407 |
needs (is)path, which is not so easy to prove either. *)
|
|
408 |
|
|
409 |
subsection "Storage allocation"
|
|
410 |
|
|
411 |
constdefs new :: "'a set \<Rightarrow> 'a::ref"
|
|
412 |
"new A == SOME a. a \<notin> A & a \<noteq> Null"
|
|
413 |
|
|
414 |
|
|
415 |
lemma new_notin:
|
|
416 |
"\<lbrakk> ~finite(UNIV::('a::ref)set); finite(A::'a set); B \<subseteq> A \<rbrakk> \<Longrightarrow>
|
|
417 |
new (A) \<notin> B & new A \<noteq> Null"
|
|
418 |
apply(unfold new_def)
|
|
419 |
apply(rule someI2_ex)
|
|
420 |
apply (fast dest:ex_new_if_finite[of "insert Null A"])
|
|
421 |
apply (fast)
|
|
422 |
done
|
|
423 |
|
|
424 |
lemma "~finite(UNIV::('a::ref)set) \<Longrightarrow>
|
|
425 |
VARS xs elem next alloc p q
|
|
426 |
{Xs = xs \<and> p = (Null::'a)}
|
|
427 |
WHILE xs \<noteq> []
|
|
428 |
INV {islist next p \<and> set(list next p) \<subseteq> set alloc \<and>
|
|
429 |
map elem (rev(list next p)) @ xs = Xs}
|
|
430 |
DO q := new(set alloc); alloc := q#alloc;
|
|
431 |
q^.next := p; q^.elem := hd xs; xs := tl xs; p := q
|
|
432 |
OD
|
|
433 |
{islist next p \<and> map elem (rev(list next p)) = Xs}"
|
|
434 |
apply vcg_simp
|
|
435 |
apply (clarsimp simp: subset_insert_iff neq_Nil_conv fun_upd_apply new_notin)
|
|
436 |
apply fastsimp
|
|
437 |
done
|
|
438 |
|
|
439 |
|
|
440 |
end
|