src/ZF/Nat_ZF.thy
author blanchet
Thu, 01 Oct 2015 18:44:48 +0200
changeset 61303 af6b8bd0d076
parent 60770 240563fbf41d
permissions -rw-r--r--
tuned datatype docs
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 26056
diff changeset
     1
(*  Title:      ZF/Nat_ZF.thy
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     3
    Copyright   1994  University of Cambridge
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     4
*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     5
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
     6
section\<open>The Natural numbers As a Least Fixed Point\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     7
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     8
theory Nat_ZF imports OrdQuant Bool begin
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     9
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    10
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    11
  nat :: i  where
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
    12
    "nat == lfp(Inf, %X. {0} \<union> {succ(i). i \<in> X})"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    13
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    14
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    15
  quasinat :: "i => o"  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    16
    "quasinat(n) == n=0 | (\<exists>m. n = succ(m))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    17
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    18
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    19
  (*Has an unconditional succ case, which is used in "recursor" below.*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    20
  nat_case :: "[i, i=>i, i]=>i"  where
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    21
    "nat_case(a,b,k) == THE y. k=0 & y=a | (\<exists>x. k=succ(x) & y=b(x))"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    22
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    23
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    24
  nat_rec :: "[i, i, [i,i]=>i]=>i"  where
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    25
    "nat_rec(k,a,b) ==
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    26
          wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    27
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    28
  (*Internalized relations on the naturals*)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    29
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    30
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    31
  Le :: i  where
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    32
    "Le == {<x,y>:nat*nat. x \<le> y}"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    33
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    34
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    35
  Lt :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    36
    "Lt == {<x, y>:nat*nat. x < y}"
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    37
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    38
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    39
  Ge :: i  where
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    40
    "Ge == {<x,y>:nat*nat. y \<le> x}"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    41
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    42
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    43
  Gt :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    44
    "Gt == {<x,y>:nat*nat. y < x}"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    45
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    46
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    47
  greater_than :: "i=>i"  where
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
    48
    "greater_than(n) == {i \<in> nat. n < i}"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    49
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    50
text\<open>No need for a less-than operator: a natural number is its list of
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    51
predecessors!\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    52
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    53
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
    54
lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} \<union> {succ(i). i \<in> X})"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    55
apply (rule bnd_monoI)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    56
apply (cut_tac infinity, blast, blast)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    57
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    58
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
    59
(* @{term"nat = {0} \<union> {succ(x). x \<in> nat}"} *)
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 32960
diff changeset
    60
lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold]]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    61
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    62
(** Type checking of 0 and successor **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    63
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    64
lemma nat_0I [iff,TC]: "0 \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    65
apply (subst nat_unfold)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    66
apply (rule singletonI [THEN UnI1])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    67
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    68
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    69
lemma nat_succI [intro!,TC]: "n \<in> nat ==> succ(n) \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    70
apply (subst nat_unfold)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    71
apply (erule RepFunI [THEN UnI2])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    72
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    73
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    74
lemma nat_1I [iff,TC]: "1 \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    75
by (rule nat_0I [THEN nat_succI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    76
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    77
lemma nat_2I [iff,TC]: "2 \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    78
by (rule nat_1I [THEN nat_succI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    79
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
    80
lemma bool_subset_nat: "bool \<subseteq> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    81
by (blast elim!: boolE)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    82
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 32960
diff changeset
    83
lemmas bool_into_nat = bool_subset_nat [THEN subsetD]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    84
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    85
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    86
subsection\<open>Injectivity Properties and Induction\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    87
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    88
(*Mathematical induction*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    89
lemma nat_induct [case_names 0 succ, induct set: nat]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
    90
    "[| n \<in> nat;  P(0);  !!x. [| x \<in> nat;  P(x) |] ==> P(succ(x)) |] ==> P(n)"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    91
by (erule def_induct [OF nat_def nat_bnd_mono], blast)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    92
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    93
lemma natE:
46935
38ecb2dc3636 structured case and induct rules
paulson
parents: 46821
diff changeset
    94
 assumes "n \<in> nat"
46954
d8b3412cdb99 beautification and structured proofs
paulson
parents: 46953
diff changeset
    95
 obtains ("0") "n=0" | (succ) x where "x \<in> nat" "n=succ(x)"
46935
38ecb2dc3636 structured case and induct rules
paulson
parents: 46821
diff changeset
    96
using assms
38ecb2dc3636 structured case and induct rules
paulson
parents: 46821
diff changeset
    97
by (rule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE]) auto
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    98
46935
38ecb2dc3636 structured case and induct rules
paulson
parents: 46821
diff changeset
    99
lemma nat_into_Ord [simp]: "n \<in> nat ==> Ord(n)"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   100
by (erule nat_induct, auto)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   101
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   102
(* @{term"i \<in> nat ==> 0 \<le> i"}; same thing as @{term"0<succ(i)"}  *)
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 32960
diff changeset
   103
lemmas nat_0_le = nat_into_Ord [THEN Ord_0_le]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   104
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   105
(* @{term"i \<in> nat ==> i \<le> i"}; same thing as @{term"i<succ(i)"}  *)
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 32960
diff changeset
   106
lemmas nat_le_refl = nat_into_Ord [THEN le_refl]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   107
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   108
lemma Ord_nat [iff]: "Ord(nat)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   109
apply (rule OrdI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   110
apply (erule_tac [2] nat_into_Ord [THEN Ord_is_Transset])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   111
apply (unfold Transset_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   112
apply (rule ballI)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   113
apply (erule nat_induct, auto)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   114
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   115
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   116
lemma Limit_nat [iff]: "Limit(nat)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   117
apply (unfold Limit_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   118
apply (safe intro!: ltI Ord_nat)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   119
apply (erule ltD)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   120
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   121
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   122
lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   123
by (induct a rule: nat_induct, auto)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   124
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   125
lemma succ_natD: "succ(i): nat ==> i \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   126
by (rule Ord_trans [OF succI1], auto)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   127
46935
38ecb2dc3636 structured case and induct rules
paulson
parents: 46821
diff changeset
   128
lemma nat_succ_iff [iff]: "succ(n): nat \<longleftrightarrow> n \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   129
by (blast dest!: succ_natD)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   130
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   131
lemma nat_le_Limit: "Limit(i) ==> nat \<le> i"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   132
apply (rule subset_imp_le)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   133
apply (simp_all add: Limit_is_Ord)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   134
apply (rule subsetI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   135
apply (erule nat_induct)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   136
 apply (erule Limit_has_0 [THEN ltD])
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   137
apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   138
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   139
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   140
(* [| succ(i): k;  k \<in> nat |] ==> i \<in> k *)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   141
lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   142
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   143
lemma lt_nat_in_nat: "[| m<n;  n \<in> nat |] ==> m \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   144
apply (erule ltE)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   145
apply (erule Ord_trans, assumption, simp)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   146
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   147
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   148
lemma le_in_nat: "[| m \<le> n; n \<in> nat |] ==> m \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   149
by (blast dest!: lt_nat_in_nat)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   150
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   151
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   152
subsection\<open>Variations on Mathematical Induction\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   153
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   154
(*complete induction*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   155
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   156
lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   157
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   158
lemmas complete_induct_rule =
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 26056
diff changeset
   159
        complete_induct [rule_format, case_names less, consumes 1]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   160
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   161
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   162
lemma nat_induct_from_lemma [rule_format]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   163
    "[| n \<in> nat;  m \<in> nat;
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   164
        !!x. [| x \<in> nat;  m \<le> x;  P(x) |] ==> P(succ(x)) |]
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   165
     ==> m \<le> n \<longrightarrow> P(m) \<longrightarrow> P(n)"
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   166
apply (erule nat_induct)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   167
apply (simp_all add: distrib_simps le0_iff le_succ_iff)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   168
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   169
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   170
(*Induction starting from m rather than 0*)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   171
lemma nat_induct_from:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   172
    "[| m \<le> n;  m \<in> nat;  n \<in> nat;
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   173
        P(m);
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   174
        !!x. [| x \<in> nat;  m \<le> x;  P(x) |] ==> P(succ(x)) |]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   175
     ==> P(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   176
apply (blast intro: nat_induct_from_lemma)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   177
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   178
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   179
(*Induction suitable for subtraction and less-than*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   180
lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   181
    "[| m \<in> nat;  n \<in> nat;
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   182
        !!x. x \<in> nat ==> P(x,0);
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   183
        !!y. y \<in> nat ==> P(0,succ(y));
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   184
        !!x y. [| x \<in> nat;  y \<in> nat;  P(x,y) |] ==> P(succ(x),succ(y)) |]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   185
     ==> P(m,n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   186
apply (erule_tac x = m in rev_bspec)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   187
apply (erule nat_induct, simp)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   188
apply (rule ballI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   189
apply (rename_tac i j)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   190
apply (erule_tac n=j in nat_induct, auto)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   191
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   192
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   193
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   194
(** Induction principle analogous to trancl_induct **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   195
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   196
lemma succ_lt_induct_lemma [rule_format]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   197
     "m \<in> nat ==> P(m,succ(m)) \<longrightarrow> (\<forall>x\<in>nat. P(m,x) \<longrightarrow> P(m,succ(x))) \<longrightarrow>
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   198
                 (\<forall>n\<in>nat. m<n \<longrightarrow> P(m,n))"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   199
apply (erule nat_induct)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   200
 apply (intro impI, rule nat_induct [THEN ballI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   201
   prefer 4 apply (intro impI, rule nat_induct [THEN ballI])
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   202
apply (auto simp add: le_iff)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   203
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   204
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   205
lemma succ_lt_induct:
46935
38ecb2dc3636 structured case and induct rules
paulson
parents: 46821
diff changeset
   206
    "[| m<n;  n \<in> nat;
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   207
        P(m,succ(m));
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   208
        !!x. [| x \<in> nat;  P(m,x) |] ==> P(m,succ(x)) |]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   209
     ==> P(m,n)"
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   210
by (blast intro: succ_lt_induct_lemma lt_nat_in_nat)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   211
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   212
subsection\<open>quasinat: to allow a case-split rule for @{term nat_case}\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   213
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   214
text\<open>True if the argument is zero or any successor\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   215
lemma [iff]: "quasinat(0)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   216
by (simp add: quasinat_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   217
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   218
lemma [iff]: "quasinat(succ(x))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   219
by (simp add: quasinat_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   220
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   221
lemma nat_imp_quasinat: "n \<in> nat ==> quasinat(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   222
by (erule natE, simp_all)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   223
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   224
lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0"
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   225
by (simp add: quasinat_def nat_case_def)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   226
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   227
lemma nat_cases_disj: "k=0 | (\<exists>y. k = succ(y)) | ~ quasinat(k)"
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   228
apply (case_tac "k=0", simp)
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   229
apply (case_tac "\<exists>m. k = succ(m)")
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   230
apply (simp_all add: quasinat_def)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   231
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   232
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   233
lemma nat_cases:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   234
     "[|k=0 ==> P;  !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P"
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   235
by (insert nat_cases_disj [of k], blast)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   236
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   237
(** nat_case **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   238
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   239
lemma nat_case_0 [simp]: "nat_case(a,b,0) = a"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   240
by (simp add: nat_case_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   241
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   242
lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   243
by (simp add: nat_case_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   244
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   245
lemma nat_case_type [TC]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   246
    "[| n \<in> nat;  a \<in> C(0);  !!m. m \<in> nat ==> b(m): C(succ(m)) |]
58860
fee7cfa69c50 eliminated spurious semicolons;
wenzelm
parents: 46954
diff changeset
   247
     ==> nat_case(a,b,n) \<in> C(n)"
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   248
by (erule nat_induct, auto)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   249
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   250
lemma split_nat_case:
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 46820
diff changeset
   251
  "P(nat_case(a,b,k)) \<longleftrightarrow>
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   252
   ((k=0 \<longrightarrow> P(a)) & (\<forall>x. k=succ(x) \<longrightarrow> P(b(x))) & (~ quasinat(k) \<longrightarrow> P(0)))"
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   253
apply (rule nat_cases [of k])
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   254
apply (auto simp add: non_nat_case)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   255
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   256
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   257
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   258
subsection\<open>Recursion on the Natural Numbers\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   259
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   260
(** nat_rec is used to define eclose and transrec, then becomes obsolete.
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   261
    The operator rec, from arith.thy, has fewer typing conditions **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   262
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   263
lemma nat_rec_0: "nat_rec(0,a,b) = a"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   264
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   265
 apply (rule wf_Memrel)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   266
apply (rule nat_case_0)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   267
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   268
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   269
lemma nat_rec_succ: "m \<in> nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   270
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   271
 apply (rule wf_Memrel)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   272
apply (simp add: vimage_singleton_iff)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   273
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   274
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   275
(** The union of two natural numbers is a natural number -- their maximum **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   276
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   277
lemma Un_nat_type [TC]: "[| i \<in> nat; j \<in> nat |] ==> i \<union> j \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   278
apply (rule Un_least_lt [THEN ltD])
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   279
apply (simp_all add: lt_def)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   280
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   281
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46935
diff changeset
   282
lemma Int_nat_type [TC]: "[| i \<in> nat; j \<in> nat |] ==> i \<inter> j \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   283
apply (rule Int_greatest_lt [THEN ltD])
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   284
apply (simp_all add: lt_def)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   285
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   286
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   287
(*needed to simplify unions over nat*)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   288
lemma nat_nonempty [simp]: "nat \<noteq> 0"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   289
by blast
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   290
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   291
text\<open>A natural number is the set of its predecessors\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   292
lemma nat_eq_Collect_lt: "i \<in> nat ==> {j\<in>nat. j<i} = i"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   293
apply (rule equalityI)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   294
apply (blast dest: ltD)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   295
apply (auto simp add: Ord_mem_iff_lt)
46820
c656222c4dc1 mathematical symbols instead of ASCII
paulson
parents: 45602
diff changeset
   296
apply (blast intro: lt_trans)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   297
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   298
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 46820
diff changeset
   299
lemma Le_iff [iff]: "<x,y> \<in> Le \<longleftrightarrow> x \<le> y & x \<in> nat & y \<in> nat"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   300
by (force simp add: Le_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   301
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   302
end