| author | wenzelm | 
| Wed, 08 Aug 2012 14:30:27 +0200 | |
| changeset 48734 | af91cd2301ba | 
| parent 47108 | 2a1953f0d20d | 
| child 50526 | 899c9c4e4a4c | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/Multivariate_Analysis/Determinants.thy  | 
2  | 
Author: Amine Chaieb, University of Cambridge  | 
|
| 33175 | 3  | 
*)  | 
4  | 
||
5  | 
header {* Traces, Determinant of square matrices and some properties *}
 | 
|
6  | 
||
7  | 
theory Determinants  | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
8  | 
imports  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
9  | 
Cartesian_Euclidean_Space  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
10  | 
"~~/src/HOL/Library/Permutations"  | 
| 33175 | 11  | 
begin  | 
12  | 
||
13  | 
subsection{* First some facts about products*}
 | 
|
14  | 
lemma setprod_insert_eq: "finite A \<Longrightarrow> setprod f (insert a A) = (if a \<in> A then setprod f A else f a * setprod f A)"  | 
|
15  | 
apply clarsimp  | 
|
16  | 
by(subgoal_tac "insert a A = A", auto)  | 
|
17  | 
||
18  | 
lemma setprod_add_split:  | 
|
19  | 
assumes mn: "(m::nat) <= n + 1"  | 
|
20  | 
  shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}"
 | 
|
21  | 
proof-  | 
|
22  | 
  let ?A = "{m .. n+p}"
 | 
|
23  | 
  let ?B = "{m .. n}"
 | 
|
24  | 
  let ?C = "{n+1..n+p}"
 | 
|
25  | 
from mn have un: "?B \<union> ?C = ?A" by auto  | 
|
26  | 
  from mn have dj: "?B \<inter> ?C = {}" by auto
 | 
|
27  | 
have f: "finite ?B" "finite ?C" by simp_all  | 
|
28  | 
from setprod_Un_disjoint[OF f dj, of f, unfolded un] show ?thesis .  | 
|
29  | 
qed  | 
|
30  | 
||
31  | 
||
32  | 
lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\<lambda>i. f (i + p)) {m..n}"
 | 
|
33  | 
apply (rule setprod_reindex_cong[where f="op + p"])  | 
|
34  | 
apply (auto simp add: image_iff Bex_def inj_on_def)  | 
|
35  | 
apply arith  | 
|
36  | 
apply (rule ext)  | 
|
37  | 
apply (simp add: add_commute)  | 
|
38  | 
done  | 
|
39  | 
||
40  | 
lemma setprod_singleton: "setprod f {x} = f x" by simp
 | 
|
41  | 
||
42  | 
lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" by simp
 | 
|
43  | 
||
44  | 
lemma setprod_numseg: "setprod f {m..0} = (if m=0 then f 0 else 1)"
 | 
|
45  | 
  "setprod f {m .. Suc n} = (if m \<le> Suc n then f (Suc n) * setprod f {m..n}
 | 
|
46  | 
                             else setprod f {m..n})"
 | 
|
47  | 
by (auto simp add: atLeastAtMostSuc_conv)  | 
|
48  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
49  | 
lemma setprod_le: assumes fS: "finite S" and fg: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (g x :: 'a::linordered_idom)"  | 
| 33175 | 50  | 
shows "setprod f S \<le> setprod g S"  | 
51  | 
using fS fg  | 
|
52  | 
apply(induct S)  | 
|
53  | 
apply simp  | 
|
54  | 
apply auto  | 
|
55  | 
apply (rule mult_mono)  | 
|
56  | 
apply (auto intro: setprod_nonneg)  | 
|
57  | 
done  | 
|
58  | 
||
59  | 
(* FIXME: In Finite_Set there is a useless further assumption *)  | 
|
| 36409 | 60  | 
lemma setprod_inversef: "finite A ==> setprod (inverse \<circ> f) A = (inverse (setprod f A) :: 'a:: field_inverse_zero)"  | 
| 33175 | 61  | 
apply (erule finite_induct)  | 
62  | 
apply (simp)  | 
|
63  | 
apply simp  | 
|
64  | 
done  | 
|
65  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
66  | 
lemma setprod_le_1: assumes fS: "finite S" and f: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (1::'a::linordered_idom)"  | 
| 33175 | 67  | 
shows "setprod f S \<le> 1"  | 
68  | 
using setprod_le[OF fS f] unfolding setprod_1 .  | 
|
69  | 
||
70  | 
subsection{* Trace *}
 | 
|
71  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
72  | 
definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a" where  | 
| 33175 | 73  | 
"trace A = setsum (\<lambda>i. ((A$i)$i)) (UNIV::'n set)"  | 
74  | 
||
75  | 
lemma trace_0: "trace(mat 0) = 0"  | 
|
76  | 
by (simp add: trace_def mat_def)  | 
|
77  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
78  | 
lemma trace_I: "trace(mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))"
 | 
| 33175 | 79  | 
by (simp add: trace_def mat_def)  | 
80  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
81  | 
lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B"  | 
| 33175 | 82  | 
by (simp add: trace_def setsum_addf)  | 
83  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
84  | 
lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B"  | 
| 33175 | 85  | 
by (simp add: trace_def setsum_subtractf)  | 
86  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
87  | 
lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'n) ** B) = trace (B**A)"  | 
| 33175 | 88  | 
apply (simp add: trace_def matrix_matrix_mult_def)  | 
89  | 
apply (subst setsum_commute)  | 
|
90  | 
by (simp add: mult_commute)  | 
|
91  | 
||
92  | 
(* ------------------------------------------------------------------------- *)  | 
|
93  | 
(* Definition of determinant. *)  | 
|
94  | 
(* ------------------------------------------------------------------------- *)  | 
|
95  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
96  | 
definition det:: "'a::comm_ring_1^'n^'n \<Rightarrow> 'a" where  | 
| 33175 | 97  | 
  "det A = setsum (\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)) {p. p permutes (UNIV :: 'n set)}"
 | 
98  | 
||
99  | 
(* ------------------------------------------------------------------------- *)  | 
|
100  | 
(* A few general lemmas we need below. *)  | 
|
101  | 
(* ------------------------------------------------------------------------- *)  | 
|
102  | 
||
103  | 
lemma setprod_permute:  | 
|
104  | 
assumes p: "p permutes S"  | 
|
105  | 
shows "setprod f S = setprod (f o p) S"  | 
|
106  | 
proof-  | 
|
107  | 
  {assume "\<not> finite S" hence ?thesis by simp}
 | 
|
108  | 
moreover  | 
|
109  | 
  {assume fS: "finite S"
 | 
|
110  | 
then have ?thesis  | 
|
111  | 
apply (simp add: setprod_def cong del:strong_setprod_cong)  | 
|
112  | 
apply (rule ab_semigroup_mult.fold_image_permute)  | 
|
113  | 
apply (auto simp add: p)  | 
|
114  | 
apply unfold_locales  | 
|
115  | 
done}  | 
|
116  | 
ultimately show ?thesis by blast  | 
|
117  | 
qed  | 
|
118  | 
||
119  | 
lemma setproduct_permute_nat_interval: "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}"
 | 
|
120  | 
by (blast intro!: setprod_permute)  | 
|
121  | 
||
122  | 
(* ------------------------------------------------------------------------- *)  | 
|
123  | 
(* Basic determinant properties. *)  | 
|
124  | 
(* ------------------------------------------------------------------------- *)  | 
|
125  | 
||
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
126  | 
lemma det_transpose: "det (transpose A) = det (A::'a::comm_ring_1 ^'n^'n)"  | 
| 33175 | 127  | 
proof-  | 
128  | 
let ?di = "\<lambda>A i j. A$i$j"  | 
|
129  | 
let ?U = "(UNIV :: 'n set)"  | 
|
130  | 
have fU: "finite ?U" by simp  | 
|
131  | 
  {fix p assume p: "p \<in> {p. p permutes ?U}"
 | 
|
132  | 
from p have pU: "p permutes ?U" by blast  | 
|
133  | 
have sth: "sign (inv p) = sign p"  | 
|
| 
44260
 
7784fa3232ce
Determinants.thy: avoid using mem_def/Collect_def
 
huffman 
parents: 
44228 
diff
changeset
 | 
134  | 
by (metis sign_inverse fU p mem_Collect_eq permutation_permutes)  | 
| 33175 | 135  | 
from permutes_inj[OF pU]  | 
136  | 
have pi: "inj_on p ?U" by (blast intro: subset_inj_on)  | 
|
137  | 
from permutes_image[OF pU]  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
138  | 
have "setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U = setprod (\<lambda>i. ?di (transpose A) i (inv p i)) (p ` ?U)" by simp  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
139  | 
also have "\<dots> = setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) o p) ?U"  | 
| 33175 | 140  | 
unfolding setprod_reindex[OF pi] ..  | 
141  | 
also have "\<dots> = setprod (\<lambda>i. ?di A i (p i)) ?U"  | 
|
142  | 
proof-  | 
|
143  | 
      {fix i assume i: "i \<in> ?U"
 | 
|
144  | 
from i permutes_inv_o[OF pU] permutes_in_image[OF pU]  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
145  | 
have "((\<lambda>i. ?di (transpose A) i (inv p i)) o p) i = ?di A i (p i)"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
146  | 
unfolding transpose_def by (simp add: fun_eq_iff)}  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
147  | 
then show "setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) o p) ?U = setprod (\<lambda>i. ?di A i (p i)) ?U" by (auto intro: setprod_cong)  | 
| 33175 | 148  | 
qed  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
149  | 
finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U) = of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" using sth  | 
| 33175 | 150  | 
by simp}  | 
151  | 
then show ?thesis unfolding det_def apply (subst setsum_permutations_inverse)  | 
|
152  | 
apply (rule setsum_cong2) by blast  | 
|
153  | 
qed  | 
|
154  | 
||
155  | 
lemma det_lowerdiagonal:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
156  | 
  fixes A :: "'a::comm_ring_1^('n::{finite,wellorder})^('n::{finite,wellorder})"
 | 
| 33175 | 157  | 
assumes ld: "\<And>i j. i < j \<Longrightarrow> A$i$j = 0"  | 
158  | 
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)"  | 
|
159  | 
proof-  | 
|
160  | 
let ?U = "UNIV:: 'n set"  | 
|
161  | 
  let ?PU = "{p. p permutes ?U}"
 | 
|
162  | 
let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)"  | 
|
163  | 
have fU: "finite ?U" by simp  | 
|
164  | 
from finite_permutations[OF fU] have fPU: "finite ?PU" .  | 
|
165  | 
  have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
 | 
|
166  | 
  {fix p assume p: "p \<in> ?PU -{id}"
 | 
|
167  | 
from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+  | 
|
168  | 
from permutes_natset_le[OF pU] pid obtain i where  | 
|
169  | 
i: "p i > i" by (metis not_le)  | 
|
170  | 
from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast  | 
|
171  | 
from setprod_zero[OF fU ex] have "?pp p = 0" by simp}  | 
|
172  | 
  then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
 | 
|
173  | 
from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis  | 
|
174  | 
unfolding det_def by (simp add: sign_id)  | 
|
175  | 
qed  | 
|
176  | 
||
177  | 
lemma det_upperdiagonal:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
178  | 
  fixes A :: "'a::comm_ring_1^'n::{finite,wellorder}^'n::{finite,wellorder}"
 | 
| 33175 | 179  | 
assumes ld: "\<And>i j. i > j \<Longrightarrow> A$i$j = 0"  | 
180  | 
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)"  | 
|
181  | 
proof-  | 
|
182  | 
let ?U = "UNIV:: 'n set"  | 
|
183  | 
  let ?PU = "{p. p permutes ?U}"
 | 
|
184  | 
let ?pp = "(\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set))"  | 
|
185  | 
have fU: "finite ?U" by simp  | 
|
186  | 
from finite_permutations[OF fU] have fPU: "finite ?PU" .  | 
|
187  | 
  have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
 | 
|
188  | 
  {fix p assume p: "p \<in> ?PU -{id}"
 | 
|
189  | 
from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+  | 
|
190  | 
from permutes_natset_ge[OF pU] pid obtain i where  | 
|
191  | 
i: "p i < i" by (metis not_le)  | 
|
192  | 
from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast  | 
|
193  | 
from setprod_zero[OF fU ex] have "?pp p = 0" by simp}  | 
|
194  | 
  then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
 | 
|
195  | 
from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis  | 
|
196  | 
unfolding det_def by (simp add: sign_id)  | 
|
197  | 
qed  | 
|
198  | 
||
199  | 
lemma det_diagonal:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
200  | 
fixes A :: "'a::comm_ring_1^'n^'n"  | 
| 33175 | 201  | 
assumes ld: "\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0"  | 
202  | 
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV::'n set)"  | 
|
203  | 
proof-  | 
|
204  | 
let ?U = "UNIV:: 'n set"  | 
|
205  | 
  let ?PU = "{p. p permutes ?U}"
 | 
|
206  | 
let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)"  | 
|
207  | 
have fU: "finite ?U" by simp  | 
|
208  | 
from finite_permutations[OF fU] have fPU: "finite ?PU" .  | 
|
209  | 
  have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
 | 
|
210  | 
  {fix p assume p: "p \<in> ?PU - {id}"
 | 
|
211  | 
then have "p \<noteq> id" by simp  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
212  | 
then obtain i where i: "p i \<noteq> i" unfolding fun_eq_iff by auto  | 
| 33175 | 213  | 
from ld [OF i [symmetric]] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast  | 
214  | 
from setprod_zero [OF fU ex] have "?pp p = 0" by simp}  | 
|
215  | 
  then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0"  by blast
 | 
|
216  | 
from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis  | 
|
217  | 
unfolding det_def by (simp add: sign_id)  | 
|
218  | 
qed  | 
|
219  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
220  | 
lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n) = 1"  | 
| 33175 | 221  | 
proof-  | 
222  | 
let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n"  | 
|
223  | 
let ?U = "UNIV :: 'n set"  | 
|
224  | 
let ?f = "\<lambda>i j. ?A$i$j"  | 
|
225  | 
  {fix i assume i: "i \<in> ?U"
 | 
|
226  | 
have "?f i i = 1" using i by (vector mat_def)}  | 
|
227  | 
hence th: "setprod (\<lambda>i. ?f i i) ?U = setprod (\<lambda>x. 1) ?U"  | 
|
228  | 
by (auto intro: setprod_cong)  | 
|
229  | 
  {fix i j assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i \<noteq> j"
 | 
|
230  | 
have "?f i j = 0" using i j ij by (vector mat_def) }  | 
|
231  | 
then have "det ?A = setprod (\<lambda>i. ?f i i) ?U" using det_diagonal  | 
|
232  | 
by blast  | 
|
233  | 
also have "\<dots> = 1" unfolding th setprod_1 ..  | 
|
234  | 
finally show ?thesis .  | 
|
235  | 
qed  | 
|
236  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
237  | 
lemma det_0: "det (mat 0 :: 'a::comm_ring_1^'n^'n) = 0"  | 
| 33175 | 238  | 
by (simp add: det_def setprod_zero)  | 
239  | 
||
240  | 
lemma det_permute_rows:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
241  | 
fixes A :: "'a::comm_ring_1^'n^'n"  | 
| 33175 | 242  | 
assumes p: "p permutes (UNIV :: 'n::finite set)"  | 
243  | 
shows "det(\<chi> i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A"  | 
|
244  | 
apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric])  | 
|
245  | 
apply (subst sum_permutations_compose_right[OF p])  | 
|
246  | 
proof(rule setsum_cong2)  | 
|
247  | 
let ?U = "UNIV :: 'n set"  | 
|
248  | 
  let ?PU = "{p. p permutes ?U}"
 | 
|
249  | 
fix q assume qPU: "q \<in> ?PU"  | 
|
250  | 
have fU: "finite ?U" by simp  | 
|
251  | 
from qPU have q: "q permutes ?U" by blast  | 
|
252  | 
from p q have pp: "permutation p" and qp: "permutation q"  | 
|
253  | 
by (metis fU permutation_permutes)+  | 
|
254  | 
from permutes_inv[OF p] have ip: "inv p permutes ?U" .  | 
|
255  | 
have "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod ((\<lambda>i. A$p i$(q o p) i) o inv p) ?U"  | 
|
256  | 
by (simp only: setprod_permute[OF ip, symmetric])  | 
|
257  | 
also have "\<dots> = setprod (\<lambda>i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U"  | 
|
258  | 
by (simp only: o_def)  | 
|
259  | 
also have "\<dots> = setprod (\<lambda>i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p])  | 
|
260  | 
finally have thp: "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod (\<lambda>i. A$i$q i) ?U"  | 
|
261  | 
by blast  | 
|
262  | 
show "of_int (sign (q o p)) * setprod (\<lambda>i. A$ p i$ (q o p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\<lambda>i. A$i$q i) ?U"  | 
|
263  | 
by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult)  | 
|
264  | 
qed  | 
|
265  | 
||
266  | 
lemma det_permute_columns:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
267  | 
fixes A :: "'a::comm_ring_1^'n^'n"  | 
| 33175 | 268  | 
assumes p: "p permutes (UNIV :: 'n set)"  | 
269  | 
shows "det(\<chi> i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A"  | 
|
270  | 
proof-  | 
|
271  | 
let ?Ap = "\<chi> i j. A$i$ p j :: 'a^'n^'n"  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
272  | 
let ?At = "transpose A"  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
273  | 
have "of_int (sign p) * det A = det (transpose (\<chi> i. transpose A $ p i))"  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
274  | 
unfolding det_permute_rows[OF p, of ?At] det_transpose ..  | 
| 33175 | 275  | 
moreover  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
276  | 
have "?Ap = transpose (\<chi> i. transpose A $ p i)"  | 
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
277  | 
by (simp add: transpose_def vec_eq_iff)  | 
| 33175 | 278  | 
ultimately show ?thesis by simp  | 
279  | 
qed  | 
|
280  | 
||
281  | 
lemma det_identical_rows:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
282  | 
fixes A :: "'a::linordered_idom^'n^'n"  | 
| 33175 | 283  | 
assumes ij: "i \<noteq> j"  | 
284  | 
and r: "row i A = row j A"  | 
|
285  | 
shows "det A = 0"  | 
|
286  | 
proof-  | 
|
287  | 
have tha: "\<And>(a::'a) b. a = b ==> b = - a ==> a = 0"  | 
|
288  | 
by simp  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
44457 
diff
changeset
 | 
289  | 
have th1: "of_int (-1) = - 1" by simp  | 
| 33175 | 290  | 
let ?p = "Fun.swap i j id"  | 
291  | 
let ?A = "\<chi> i. A $ ?p i"  | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
292  | 
from r have "A = ?A" by (simp add: vec_eq_iff row_def swap_def)  | 
| 33175 | 293  | 
hence "det A = det ?A" by simp  | 
294  | 
moreover have "det A = - det ?A"  | 
|
295  | 
by (simp add: det_permute_rows[OF permutes_swap_id] sign_swap_id ij th1)  | 
|
296  | 
ultimately show "det A = 0" by (metis tha)  | 
|
297  | 
qed  | 
|
298  | 
||
299  | 
lemma det_identical_columns:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
300  | 
fixes A :: "'a::linordered_idom^'n^'n"  | 
| 33175 | 301  | 
assumes ij: "i \<noteq> j"  | 
302  | 
and r: "column i A = column j A"  | 
|
303  | 
shows "det A = 0"  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
304  | 
apply (subst det_transpose[symmetric])  | 
| 33175 | 305  | 
apply (rule det_identical_rows[OF ij])  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
306  | 
by (metis row_transpose r)  | 
| 33175 | 307  | 
|
308  | 
lemma det_zero_row:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
309  | 
  fixes A :: "'a::{idom, ring_char_0}^'n^'n"
 | 
| 33175 | 310  | 
assumes r: "row i A = 0"  | 
311  | 
shows "det A = 0"  | 
|
312  | 
using r  | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
313  | 
apply (simp add: row_def det_def vec_eq_iff)  | 
| 33175 | 314  | 
apply (rule setsum_0')  | 
315  | 
apply (auto simp: sign_nz)  | 
|
316  | 
done  | 
|
317  | 
||
318  | 
lemma det_zero_column:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
319  | 
  fixes A :: "'a::{idom,ring_char_0}^'n^'n"
 | 
| 33175 | 320  | 
assumes r: "column i A = 0"  | 
321  | 
shows "det A = 0"  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
322  | 
apply (subst det_transpose[symmetric])  | 
| 33175 | 323  | 
apply (rule det_zero_row [of i])  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
324  | 
by (metis row_transpose r)  | 
| 33175 | 325  | 
|
326  | 
lemma det_row_add:  | 
|
327  | 
fixes a b c :: "'n::finite \<Rightarrow> _ ^ 'n"  | 
|
328  | 
shows "det((\<chi> i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) =  | 
|
329  | 
det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) +  | 
|
330  | 
det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)"  | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
331  | 
unfolding det_def vec_lambda_beta setsum_addf[symmetric]  | 
| 33175 | 332  | 
proof (rule setsum_cong2)  | 
333  | 
let ?U = "UNIV :: 'n set"  | 
|
334  | 
  let ?pU = "{p. p permutes ?U}"
 | 
|
335  | 
let ?f = "(\<lambda>i. if i = k then a i + b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"  | 
|
336  | 
let ?g = "(\<lambda> i. if i = k then a i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"  | 
|
337  | 
let ?h = "(\<lambda> i. if i = k then b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"  | 
|
338  | 
fix p assume p: "p \<in> ?pU"  | 
|
339  | 
  let ?Uk = "?U - {k}"
 | 
|
340  | 
from p have pU: "p permutes ?U" by blast  | 
|
341  | 
have kU: "?U = insert k ?Uk" by blast  | 
|
342  | 
  {fix j assume j: "j \<in> ?Uk"
 | 
|
343  | 
from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j"  | 
|
344  | 
by simp_all}  | 
|
345  | 
then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"  | 
|
346  | 
and th2: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?h i $ p i) ?Uk"  | 
|
347  | 
apply -  | 
|
348  | 
apply (rule setprod_cong, simp_all)+  | 
|
349  | 
done  | 
|
350  | 
have th3: "finite ?Uk" "k \<notin> ?Uk" by auto  | 
|
351  | 
have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"  | 
|
352  | 
unfolding kU[symmetric] ..  | 
|
353  | 
also have "\<dots> = ?f k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk"  | 
|
354  | 
apply (rule setprod_insert)  | 
|
355  | 
apply simp  | 
|
356  | 
by blast  | 
|
| 36350 | 357  | 
also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk)" by (simp add: field_simps)  | 
| 33175 | 358  | 
also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?h i $ p i) ?Uk)" by (metis th1 th2)  | 
359  | 
also have "\<dots> = setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk) + setprod (\<lambda>i. ?h i $ p i) (insert k ?Uk)"  | 
|
360  | 
unfolding setprod_insert[OF th3] by simp  | 
|
361  | 
finally have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?g i $ p i) ?U + setprod (\<lambda>i. ?h i $ p i) ?U" unfolding kU[symmetric] .  | 
|
362  | 
then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * setprod (\<lambda>i. ?h i $ p i) ?U"  | 
|
| 36350 | 363  | 
by (simp add: field_simps)  | 
| 33175 | 364  | 
qed  | 
365  | 
||
366  | 
lemma det_row_mul:  | 
|
367  | 
fixes a b :: "'n::finite \<Rightarrow> _ ^ 'n"  | 
|
368  | 
shows "det((\<chi> i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) =  | 
|
369  | 
c* det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)"  | 
|
370  | 
||
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
371  | 
unfolding det_def vec_lambda_beta setsum_right_distrib  | 
| 33175 | 372  | 
proof (rule setsum_cong2)  | 
373  | 
let ?U = "UNIV :: 'n set"  | 
|
374  | 
  let ?pU = "{p. p permutes ?U}"
 | 
|
375  | 
let ?f = "(\<lambda>i. if i = k then c*s a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n"  | 
|
376  | 
let ?g = "(\<lambda> i. if i = k then a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n"  | 
|
377  | 
fix p assume p: "p \<in> ?pU"  | 
|
378  | 
  let ?Uk = "?U - {k}"
 | 
|
379  | 
from p have pU: "p permutes ?U" by blast  | 
|
380  | 
have kU: "?U = insert k ?Uk" by blast  | 
|
381  | 
  {fix j assume j: "j \<in> ?Uk"
 | 
|
382  | 
from j have "?f j $ p j = ?g j $ p j" by simp}  | 
|
383  | 
then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"  | 
|
384  | 
apply -  | 
|
385  | 
apply (rule setprod_cong, simp_all)  | 
|
386  | 
done  | 
|
387  | 
have th3: "finite ?Uk" "k \<notin> ?Uk" by auto  | 
|
388  | 
have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"  | 
|
389  | 
unfolding kU[symmetric] ..  | 
|
390  | 
also have "\<dots> = ?f k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk"  | 
|
391  | 
apply (rule setprod_insert)  | 
|
392  | 
apply simp  | 
|
393  | 
by blast  | 
|
| 36350 | 394  | 
also have "\<dots> = (c*s a k) $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" by (simp add: field_simps)  | 
| 33175 | 395  | 
also have "\<dots> = c* (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk)"  | 
396  | 
unfolding th1 by (simp add: mult_ac)  | 
|
397  | 
also have "\<dots> = c* (setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk))"  | 
|
398  | 
unfolding setprod_insert[OF th3] by simp  | 
|
399  | 
finally have "setprod (\<lambda>i. ?f i $ p i) ?U = c* (setprod (\<lambda>i. ?g i $ p i) ?U)" unfolding kU[symmetric] .  | 
|
400  | 
then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = c * (of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U)"  | 
|
| 36350 | 401  | 
by (simp add: field_simps)  | 
| 33175 | 402  | 
qed  | 
403  | 
||
404  | 
lemma det_row_0:  | 
|
405  | 
fixes b :: "'n::finite \<Rightarrow> _ ^ 'n"  | 
|
406  | 
shows "det((\<chi> i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0"  | 
|
407  | 
using det_row_mul[of k 0 "\<lambda>i. 1" b]  | 
|
408  | 
apply (simp)  | 
|
409  | 
unfolding vector_smult_lzero .  | 
|
410  | 
||
411  | 
lemma det_row_operation:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
412  | 
fixes A :: "'a::linordered_idom^'n^'n"  | 
| 33175 | 413  | 
assumes ij: "i \<noteq> j"  | 
414  | 
shows "det (\<chi> k. if k = i then row i A + c *s row j A else row k A) = det A"  | 
|
415  | 
proof-  | 
|
416  | 
let ?Z = "(\<chi> k. if k = i then row j A else row k A) :: 'a ^'n^'n"  | 
|
417  | 
have th: "row i ?Z = row j ?Z" by (vector row_def)  | 
|
418  | 
have th2: "((\<chi> k. if k = i then row i A else row k A) :: 'a^'n^'n) = A"  | 
|
419  | 
by (vector row_def)  | 
|
420  | 
show ?thesis  | 
|
421  | 
unfolding det_row_add [of i] det_row_mul[of i] det_identical_rows[OF ij th] th2  | 
|
422  | 
by simp  | 
|
423  | 
qed  | 
|
424  | 
||
425  | 
lemma det_row_span:  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
426  | 
fixes A :: "real^'n^'n"  | 
| 33175 | 427  | 
  assumes x: "x \<in> span {row j A |j. j \<noteq> i}"
 | 
428  | 
shows "det (\<chi> k. if k = i then row i A + x else row k A) = det A"  | 
|
429  | 
proof-  | 
|
430  | 
let ?U = "UNIV :: 'n set"  | 
|
431  | 
  let ?S = "{row j A |j. j \<noteq> i}"
 | 
|
432  | 
let ?d = "\<lambda>x. det (\<chi> k. if k = i then x else row k A)"  | 
|
433  | 
let ?P = "\<lambda>x. ?d (row i A + x) = det A"  | 
|
434  | 
  {fix k
 | 
|
435  | 
||
436  | 
have "(if k = i then row i A + 0 else row k A) = row k A" by simp}  | 
|
437  | 
then have P0: "?P 0"  | 
|
438  | 
apply -  | 
|
439  | 
apply (rule cong[of det, OF refl])  | 
|
440  | 
by (vector row_def)  | 
|
441  | 
moreover  | 
|
442  | 
  {fix c z y assume zS: "z \<in> ?S" and Py: "?P y"
 | 
|
443  | 
from zS obtain j where j: "z = row j A" "i \<noteq> j" by blast  | 
|
444  | 
let ?w = "row i A + y"  | 
|
445  | 
have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector  | 
|
446  | 
have thz: "?d z = 0"  | 
|
447  | 
apply (rule det_identical_rows[OF j(2)])  | 
|
448  | 
using j by (vector row_def)  | 
|
449  | 
have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" unfolding th0 ..  | 
|
450  | 
then have "?P (c*s z + y)" unfolding thz Py det_row_mul[of i] det_row_add[of i]  | 
|
451  | 
by simp }  | 
|
452  | 
||
453  | 
ultimately show ?thesis  | 
|
454  | 
apply -  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
455  | 
apply (rule span_induct_alt[of ?P ?S, OF P0, folded smult_conv_scaleR])  | 
| 33175 | 456  | 
apply blast  | 
457  | 
apply (rule x)  | 
|
458  | 
done  | 
|
459  | 
qed  | 
|
460  | 
||
461  | 
(* ------------------------------------------------------------------------- *)  | 
|
462  | 
(* May as well do this, though it's a bit unsatisfactory since it ignores *)  | 
|
463  | 
(* exact duplicates by considering the rows/columns as a set. *)  | 
|
464  | 
(* ------------------------------------------------------------------------- *)  | 
|
465  | 
||
466  | 
lemma det_dependent_rows:  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
467  | 
fixes A:: "real^'n^'n"  | 
| 33175 | 468  | 
assumes d: "dependent (rows A)"  | 
469  | 
shows "det A = 0"  | 
|
470  | 
proof-  | 
|
471  | 
let ?U = "UNIV :: 'n set"  | 
|
472  | 
  from d obtain i where i: "row i A \<in> span (rows A - {row i A})"
 | 
|
473  | 
unfolding dependent_def rows_def by blast  | 
|
474  | 
  {fix j k assume jk: "j \<noteq> k"
 | 
|
475  | 
and c: "row j A = row k A"  | 
|
476  | 
from det_identical_rows[OF jk c] have ?thesis .}  | 
|
477  | 
moreover  | 
|
478  | 
  {assume H: "\<And> i j. i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A"
 | 
|
479  | 
    have th0: "- row i A \<in> span {row j A|j. j \<noteq> i}"
 | 
|
480  | 
apply (rule span_neg)  | 
|
481  | 
apply (rule set_rev_mp)  | 
|
482  | 
apply (rule i)  | 
|
483  | 
apply (rule span_mono)  | 
|
484  | 
using H i by (auto simp add: rows_def)  | 
|
485  | 
from det_row_span[OF th0]  | 
|
486  | 
have "det A = det (\<chi> k. if k = i then 0 *s 1 else row k A)"  | 
|
487  | 
unfolding right_minus vector_smult_lzero ..  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
488  | 
with det_row_mul[of i "0::real" "\<lambda>i. 1"]  | 
| 33175 | 489  | 
have "det A = 0" by simp}  | 
490  | 
ultimately show ?thesis by blast  | 
|
491  | 
qed  | 
|
492  | 
||
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
493  | 
lemma det_dependent_columns: assumes d: "dependent(columns (A::real^'n^'n))" shows "det A = 0"  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
494  | 
by (metis d det_dependent_rows rows_transpose det_transpose)  | 
| 33175 | 495  | 
|
496  | 
(* ------------------------------------------------------------------------- *)  | 
|
497  | 
(* Multilinearity and the multiplication formula. *)  | 
|
498  | 
(* ------------------------------------------------------------------------- *)  | 
|
499  | 
||
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
500  | 
lemma Cart_lambda_cong: "(\<And>x. f x = g x) \<Longrightarrow> (vec_lambda f::'a^'n) = (vec_lambda g :: 'a^'n)"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
501  | 
apply (rule iffD1[OF vec_lambda_unique]) by vector  | 
| 33175 | 502  | 
|
503  | 
lemma det_linear_row_setsum:  | 
|
504  | 
assumes fS: "finite S"  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
505  | 
shows "det ((\<chi> i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) = setsum (\<lambda>j. det ((\<chi> i. if i = k then a i j else c i)::'a^'n^'n)) S"  | 
| 33175 | 506  | 
proof(induct rule: finite_induct[OF fS])  | 
507  | 
case 1 thus ?case apply simp unfolding setsum_empty det_row_0[of k] ..  | 
|
508  | 
next  | 
|
509  | 
case (2 x F)  | 
|
510  | 
then show ?case by (simp add: det_row_add cong del: if_weak_cong)  | 
|
511  | 
qed  | 
|
512  | 
||
513  | 
lemma finite_bounded_functions:  | 
|
514  | 
assumes fS: "finite S"  | 
|
515  | 
  shows "finite {f. (\<forall>i \<in> {1.. (k::nat)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1 .. k} \<longrightarrow> f i = i)}"
 | 
|
516  | 
proof(induct k)  | 
|
517  | 
case 0  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
518  | 
  have th: "{f. \<forall>i. f i = i} = {id}" by auto
 | 
| 33175 | 519  | 
show ?case by (auto simp add: th)  | 
520  | 
next  | 
|
521  | 
case (Suc k)  | 
|
522  | 
let ?f = "\<lambda>(y::nat,g) i. if i = Suc k then y else g i"  | 
|
523  | 
  let ?S = "?f ` (S \<times> {f. (\<forall>i\<in>{1..k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)})"
 | 
|
524  | 
  have "?S = {f. (\<forall>i\<in>{1.. Suc k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1.. Suc k} \<longrightarrow> f i = i)}"
 | 
|
525  | 
apply (auto simp add: image_iff)  | 
|
526  | 
apply (rule_tac x="x (Suc k)" in bexI)  | 
|
527  | 
apply (rule_tac x = "\<lambda>i. if i = Suc k then i else x i" in exI)  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
528  | 
apply auto  | 
| 33175 | 529  | 
done  | 
530  | 
with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f]  | 
|
531  | 
show ?case by metis  | 
|
532  | 
qed  | 
|
533  | 
||
534  | 
||
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
535  | 
lemma eq_id_iff[simp]: "(\<forall>x. f x = x) = (f = id)" by auto  | 
| 33175 | 536  | 
|
537  | 
lemma det_linear_rows_setsum_lemma:  | 
|
538  | 
assumes fS: "finite S" and fT: "finite T"  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
539  | 
shows "det((\<chi> i. if i \<in> T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) =  | 
| 33175 | 540  | 
setsum (\<lambda>f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n))  | 
541  | 
                 {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
 | 
|
542  | 
using fT  | 
|
543  | 
proof(induct T arbitrary: a c set: finite)  | 
|
544  | 
case empty  | 
|
545  | 
  have th0: "\<And>x y. (\<chi> i. if i \<in> {} then x i else y i) = (\<chi> i. y i)" by vector
 | 
|
546  | 
from "empty.prems" show ?case unfolding th0 by simp  | 
|
547  | 
next  | 
|
548  | 
case (insert z T a c)  | 
|
549  | 
  let ?F = "\<lambda>T. {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
 | 
|
550  | 
let ?h = "\<lambda>(y,g) i. if i = z then y else g i"  | 
|
551  | 
let ?k = "\<lambda>h. (h(z),(\<lambda>i. if i = z then i else h i))"  | 
|
552  | 
let ?s = "\<lambda> k a c f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)"  | 
|
553  | 
let ?c = "\<lambda>i. if i = z then a i j else c i"  | 
|
554  | 
have thif: "\<And>a b c d. (if a \<or> b then c else d) = (if a then c else if b then c else d)" by simp  | 
|
555  | 
have thif2: "\<And>a b c d e. (if a then b else if c then d else e) =  | 
|
556  | 
(if c then (if a then b else d) else (if a then b else e))" by simp  | 
|
557  | 
from `z \<notin> T` have nz: "\<And>i. i \<in> T \<Longrightarrow> i = z \<longleftrightarrow> False" by auto  | 
|
558  | 
have "det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) =  | 
|
559  | 
det (\<chi> i. if i = z then setsum (a i) S  | 
|
560  | 
else if i \<in> T then setsum (a i) S else c i)"  | 
|
561  | 
unfolding insert_iff thif ..  | 
|
562  | 
also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<in> T then setsum (a i) S  | 
|
563  | 
else if i = z then a i j else c i))"  | 
|
564  | 
unfolding det_linear_row_setsum[OF fS]  | 
|
565  | 
apply (subst thif2)  | 
|
566  | 
using nz by (simp cong del: if_weak_cong cong add: if_cong)  | 
|
567  | 
finally have tha:  | 
|
568  | 
"det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) =  | 
|
569  | 
(\<Sum>(j, f)\<in>S \<times> ?F T. det (\<chi> i. if i \<in> T then a i (f i)  | 
|
570  | 
else if i = z then a i j  | 
|
571  | 
else c i))"  | 
|
572  | 
unfolding insert.hyps unfolding setsum_cartesian_product by blast  | 
|
573  | 
show ?case unfolding tha  | 
|
574  | 
apply(rule setsum_eq_general_reverses[where h= "?h" and k= "?k"],  | 
|
575  | 
blast intro: finite_cartesian_product fS finite,  | 
|
576  | 
blast intro: finite_cartesian_product fS finite)  | 
|
577  | 
using `z \<notin> T`  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
578  | 
apply auto  | 
| 33175 | 579  | 
apply (rule cong[OF refl[of det]])  | 
580  | 
by vector  | 
|
581  | 
qed  | 
|
582  | 
||
583  | 
lemma det_linear_rows_setsum:  | 
|
584  | 
assumes fS: "finite (S::'n::finite set)"  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
585  | 
  shows "det (\<chi> i. setsum (a i) S) = setsum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \<forall>i. f i \<in> S}"
 | 
| 33175 | 586  | 
proof-  | 
587  | 
have th0: "\<And>x y. ((\<chi> i. if i \<in> (UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)" by vector  | 
|
588  | 
||
589  | 
from det_linear_rows_setsum_lemma[OF fS, of "UNIV :: 'n set" a, unfolded th0, OF finite] show ?thesis by simp  | 
|
590  | 
qed  | 
|
591  | 
||
592  | 
lemma matrix_mul_setsum_alt:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
593  | 
fixes A B :: "'a::comm_ring_1^'n^'n"  | 
| 33175 | 594  | 
shows "A ** B = (\<chi> i. setsum (\<lambda>k. A$i$k *s B $ k) (UNIV :: 'n set))"  | 
595  | 
by (vector matrix_matrix_mult_def setsum_component)  | 
|
596  | 
||
597  | 
lemma det_rows_mul:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
598  | 
"det((\<chi> i. c i *s a i)::'a::comm_ring_1^'n^'n) =  | 
| 33175 | 599  | 
setprod (\<lambda>i. c i) (UNIV:: 'n set) * det((\<chi> i. a i)::'a^'n^'n)"  | 
600  | 
proof (simp add: det_def setsum_right_distrib cong add: setprod_cong, rule setsum_cong2)  | 
|
601  | 
let ?U = "UNIV :: 'n set"  | 
|
602  | 
  let ?PU = "{p. p permutes ?U}"
 | 
|
603  | 
fix p assume pU: "p \<in> ?PU"  | 
|
604  | 
let ?s = "of_int (sign p)"  | 
|
605  | 
from pU have p: "p permutes ?U" by blast  | 
|
606  | 
have "setprod (\<lambda>i. c i * a i $ p i) ?U = setprod c ?U * setprod (\<lambda>i. a i $ p i) ?U"  | 
|
607  | 
unfolding setprod_timesf ..  | 
|
608  | 
then show "?s * (\<Prod>xa\<in>?U. c xa * a xa $ p xa) =  | 
|
| 36350 | 609  | 
setprod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" by (simp add: field_simps)  | 
| 33175 | 610  | 
qed  | 
611  | 
||
612  | 
lemma det_mul:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
613  | 
fixes A B :: "'a::linordered_idom^'n^'n"  | 
| 33175 | 614  | 
shows "det (A ** B) = det A * det B"  | 
615  | 
proof-  | 
|
616  | 
let ?U = "UNIV :: 'n set"  | 
|
617  | 
  let ?F = "{f. (\<forall>i\<in> ?U. f i \<in> ?U) \<and> (\<forall>i. i \<notin> ?U \<longrightarrow> f i = i)}"
 | 
|
618  | 
  let ?PU = "{p. p permutes ?U}"
 | 
|
619  | 
have fU: "finite ?U" by simp  | 
|
620  | 
have fF: "finite ?F" by (rule finite)  | 
|
621  | 
  {fix p assume p: "p permutes ?U"
 | 
|
622  | 
||
623  | 
have "p \<in> ?F" unfolding mem_Collect_eq permutes_in_image[OF p]  | 
|
624  | 
using p[unfolded permutes_def] by simp}  | 
|
625  | 
then have PUF: "?PU \<subseteq> ?F" by blast  | 
|
626  | 
  {fix f assume fPU: "f \<in> ?F - ?PU"
 | 
|
627  | 
have fUU: "f ` ?U \<subseteq> ?U" using fPU by auto  | 
|
628  | 
from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U"  | 
|
629  | 
"\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)" unfolding permutes_def  | 
|
630  | 
by auto  | 
|
631  | 
||
632  | 
let ?A = "(\<chi> i. A$i$f i *s B$f i) :: 'a^'n^'n"  | 
|
633  | 
let ?B = "(\<chi> i. B$f i) :: 'a^'n^'n"  | 
|
634  | 
    {assume fni: "\<not> inj_on f ?U"
 | 
|
635  | 
then obtain i j where ij: "f i = f j" "i \<noteq> j"  | 
|
636  | 
unfolding inj_on_def by blast  | 
|
637  | 
from ij  | 
|
638  | 
have rth: "row i ?B = row j ?B" by (vector row_def)  | 
|
639  | 
from det_identical_rows[OF ij(2) rth]  | 
|
640  | 
have "det (\<chi> i. A$i$f i *s B$f i) = 0"  | 
|
641  | 
unfolding det_rows_mul by simp}  | 
|
642  | 
moreover  | 
|
643  | 
    {assume fi: "inj_on f ?U"
 | 
|
644  | 
from f fi have fith: "\<And>i j. f i = f j \<Longrightarrow> i = j"  | 
|
645  | 
unfolding inj_on_def by metis  | 
|
646  | 
note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]]  | 
|
647  | 
||
648  | 
      {fix y
 | 
|
649  | 
from fs f have "\<exists>x. f x = y" by blast  | 
|
650  | 
then obtain x where x: "f x = y" by blast  | 
|
651  | 
        {fix z assume z: "f z = y" from fith x z have "z = x" by metis}
 | 
|
652  | 
with x have "\<exists>!x. f x = y" by blast}  | 
|
653  | 
with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}  | 
|
654  | 
ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}  | 
|
655  | 
hence zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0" by simp  | 
|
656  | 
  {fix p assume pU: "p \<in> ?PU"
 | 
|
657  | 
from pU have p: "p permutes ?U" by blast  | 
|
658  | 
let ?s = "\<lambda>p. of_int (sign p)"  | 
|
659  | 
let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *  | 
|
660  | 
(?s q * (\<Prod>i\<in> ?U. B $ i $ q i))"  | 
|
661  | 
have "(setsum (\<lambda>q. ?s q *  | 
|
662  | 
(\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) =  | 
|
663  | 
(setsum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *  | 
|
664  | 
(?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)"  | 
|
665  | 
unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f]  | 
|
666  | 
proof(rule setsum_cong2)  | 
|
667  | 
fix q assume qU: "q \<in> ?PU"  | 
|
668  | 
hence q: "q permutes ?U" by blast  | 
|
669  | 
from p q have pp: "permutation p" and pq: "permutation q"  | 
|
670  | 
unfolding permutation_permutes by auto  | 
|
671  | 
have th00: "of_int (sign p) * of_int (sign p) = (1::'a)"  | 
|
672  | 
"\<And>a. of_int (sign p) * (of_int (sign p) * a) = a"  | 
|
673  | 
unfolding mult_assoc[symmetric] unfolding of_int_mult[symmetric]  | 
|
674  | 
by (simp_all add: sign_idempotent)  | 
|
675  | 
have ths: "?s q = ?s p * ?s (q o inv p)"  | 
|
676  | 
using pp pq permutation_inverse[OF pp] sign_inverse[OF pp]  | 
|
677  | 
by (simp add: th00 mult_ac sign_idempotent sign_compose)  | 
|
678  | 
have th001: "setprod (\<lambda>i. B$i$ q (inv p i)) ?U = setprod ((\<lambda>i. B$i$ q (inv p i)) o p) ?U"  | 
|
679  | 
by (rule setprod_permute[OF p])  | 
|
680  | 
have thp: "setprod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\<lambda>i. A$i$p i) ?U * setprod (\<lambda>i. B$i$ q (inv p i)) ?U"  | 
|
681  | 
unfolding th001 setprod_timesf[symmetric] o_def permutes_inverses[OF p]  | 
|
682  | 
apply (rule setprod_cong[OF refl])  | 
|
683  | 
using permutes_in_image[OF q] by vector  | 
|
684  | 
show "?s q * setprod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = ?s p * (setprod (\<lambda>i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\<lambda>i. B$i$(q o inv p) i) ?U)"  | 
|
685  | 
using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp]  | 
|
| 36350 | 686  | 
by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose)  | 
| 33175 | 687  | 
qed  | 
688  | 
}  | 
|
689  | 
then have th2: "setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU = det A * det B"  | 
|
690  | 
unfolding det_def setsum_product  | 
|
691  | 
by (rule setsum_cong2)  | 
|
692  | 
have "det (A**B) = setsum (\<lambda>f. det (\<chi> i. A $ i $ f i *s B $ f i)) ?F"  | 
|
693  | 
unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] by simp  | 
|
694  | 
also have "\<dots> = setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU"  | 
|
695  | 
using setsum_mono_zero_cong_left[OF fF PUF zth, symmetric]  | 
|
696  | 
unfolding det_rows_mul by auto  | 
|
697  | 
finally show ?thesis unfolding th2 .  | 
|
698  | 
qed  | 
|
699  | 
||
700  | 
(* ------------------------------------------------------------------------- *)  | 
|
701  | 
(* Relation to invertibility. *)  | 
|
702  | 
(* ------------------------------------------------------------------------- *)  | 
|
703  | 
||
704  | 
lemma invertible_left_inverse:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
705  | 
fixes A :: "real^'n^'n"  | 
| 33175 | 706  | 
shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). B** A = mat 1)"  | 
707  | 
by (metis invertible_def matrix_left_right_inverse)  | 
|
708  | 
||
709  | 
lemma invertible_righ_inverse:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
710  | 
fixes A :: "real^'n^'n"  | 
| 33175 | 711  | 
shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). A** B = mat 1)"  | 
712  | 
by (metis invertible_def matrix_left_right_inverse)  | 
|
713  | 
||
714  | 
lemma invertible_det_nz:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
715  | 
fixes A::"real ^'n^'n"  | 
| 33175 | 716  | 
shows "invertible A \<longleftrightarrow> det A \<noteq> 0"  | 
717  | 
proof-  | 
|
718  | 
  {assume "invertible A"
 | 
|
719  | 
then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1"  | 
|
720  | 
unfolding invertible_righ_inverse by blast  | 
|
721  | 
hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp  | 
|
722  | 
hence "det A \<noteq> 0"  | 
|
723  | 
apply (simp add: det_mul det_I) by algebra }  | 
|
724  | 
moreover  | 
|
725  | 
  {assume H: "\<not> invertible A"
 | 
|
726  | 
let ?U = "UNIV :: 'n set"  | 
|
727  | 
have fU: "finite ?U" by simp  | 
|
728  | 
from H obtain c i where c: "setsum (\<lambda>i. c i *s row i A) ?U = 0"  | 
|
729  | 
and iU: "i \<in> ?U" and ci: "c i \<noteq> 0"  | 
|
730  | 
unfolding invertible_righ_inverse  | 
|
731  | 
unfolding matrix_right_invertible_independent_rows by blast  | 
|
732  | 
have stupid: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b"  | 
|
733  | 
apply (drule_tac f="op + (- a)" in cong[OF refl])  | 
|
734  | 
apply (simp only: ab_left_minus add_assoc[symmetric])  | 
|
735  | 
apply simp  | 
|
736  | 
done  | 
|
737  | 
from c ci  | 
|
738  | 
    have thr0: "- row i A = setsum (\<lambda>j. (1/ c i) *s (c j *s row j A)) (?U - {i})"
 | 
|
739  | 
unfolding setsum_diff1'[OF fU iU] setsum_cmul  | 
|
740  | 
apply -  | 
|
741  | 
apply (rule vector_mul_lcancel_imp[OF ci])  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
742  | 
apply (auto simp add: field_simps)  | 
| 33175 | 743  | 
unfolding stupid ..  | 
744  | 
    have thr: "- row i A \<in> span {row j A| j. j \<noteq> i}"
 | 
|
745  | 
unfolding thr0  | 
|
746  | 
apply (rule span_setsum)  | 
|
747  | 
apply simp  | 
|
748  | 
apply (rule ballI)  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
749  | 
apply (rule span_mul [where 'a="real^'n", folded smult_conv_scaleR])+  | 
| 33175 | 750  | 
apply (rule span_superset)  | 
751  | 
apply auto  | 
|
752  | 
done  | 
|
753  | 
let ?B = "(\<chi> k. if k = i then 0 else row k A) :: real ^'n^'n"  | 
|
754  | 
have thrb: "row i ?B = 0" using iU by (vector row_def)  | 
|
755  | 
have "det A = 0"  | 
|
756  | 
unfolding det_row_span[OF thr, symmetric] right_minus  | 
|
757  | 
unfolding det_zero_row[OF thrb] ..}  | 
|
758  | 
ultimately show ?thesis by blast  | 
|
759  | 
qed  | 
|
760  | 
||
761  | 
(* ------------------------------------------------------------------------- *)  | 
|
762  | 
(* Cramer's rule. *)  | 
|
763  | 
(* ------------------------------------------------------------------------- *)  | 
|
764  | 
||
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
765  | 
lemma cramer_lemma_transpose:  | 
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
766  | 
fixes A:: "real^'n^'n" and x :: "real^'n"  | 
| 33175 | 767  | 
shows "det ((\<chi> i. if i = k then setsum (\<lambda>i. x$i *s row i A) (UNIV::'n set)  | 
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
768  | 
else row i A)::real^'n^'n) = x$k * det A"  | 
| 33175 | 769  | 
(is "?lhs = ?rhs")  | 
770  | 
proof-  | 
|
771  | 
let ?U = "UNIV :: 'n set"  | 
|
772  | 
  let ?Uk = "?U - {k}"
 | 
|
773  | 
have U: "?U = insert k ?Uk" by blast  | 
|
774  | 
have fUk: "finite ?Uk" by simp  | 
|
775  | 
have kUk: "k \<notin> ?Uk" by simp  | 
|
776  | 
have th00: "\<And>k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s"  | 
|
| 36350 | 777  | 
by (vector field_simps)  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
778  | 
have th001: "\<And>f k . (\<lambda>x. if x = k then f k else f x) = f" by auto  | 
| 33175 | 779  | 
have "(\<chi> i. row i A) = A" by (vector row_def)  | 
780  | 
then have thd1: "det (\<chi> i. row i A) = det A" by simp  | 
|
781  | 
have thd0: "det (\<chi> i. if i = k then row k A + (\<Sum>i \<in> ?Uk. x $ i *s row i A) else row i A) = det A"  | 
|
782  | 
apply (rule det_row_span)  | 
|
783  | 
apply (rule span_setsum[OF fUk])  | 
|
784  | 
apply (rule ballI)  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
785  | 
apply (rule span_mul [where 'a="real^'n", folded smult_conv_scaleR])+  | 
| 33175 | 786  | 
apply (rule span_superset)  | 
787  | 
apply auto  | 
|
788  | 
done  | 
|
789  | 
show "?lhs = x$k * det A"  | 
|
790  | 
apply (subst U)  | 
|
791  | 
unfolding setsum_insert[OF fUk kUk]  | 
|
792  | 
apply (subst th00)  | 
|
793  | 
unfolding add_assoc  | 
|
794  | 
apply (subst det_row_add)  | 
|
795  | 
unfolding thd0  | 
|
796  | 
unfolding det_row_mul  | 
|
797  | 
unfolding th001[of k "\<lambda>i. row i A"]  | 
|
| 36350 | 798  | 
unfolding thd1 by (simp add: field_simps)  | 
| 33175 | 799  | 
qed  | 
800  | 
||
801  | 
lemma cramer_lemma:  | 
|
| 
36593
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
802  | 
fixes A :: "real^'n^'n"  | 
| 
 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 
huffman 
parents: 
36585 
diff
changeset
 | 
803  | 
shows "det((\<chi> i j. if j = k then (A *v x)$i else A$i$j):: real^'n^'n) = x$k * det A"  | 
| 33175 | 804  | 
proof-  | 
805  | 
let ?U = "UNIV :: 'n set"  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
806  | 
have stupid: "\<And>c. setsum (\<lambda>i. c i *s row i (transpose A)) ?U = setsum (\<lambda>i. c i *s column i A) ?U"  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
807  | 
by (auto simp add: row_transpose intro: setsum_cong2)  | 
| 33175 | 808  | 
show ?thesis unfolding matrix_mult_vsum  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
809  | 
unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric]  | 
| 33175 | 810  | 
unfolding stupid[of "\<lambda>i. x$i"]  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
811  | 
apply (subst det_transpose[symmetric])  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
812  | 
apply (rule cong[OF refl[of det]]) by (vector transpose_def column_def row_def)  | 
| 33175 | 813  | 
qed  | 
814  | 
||
815  | 
lemma cramer:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
816  | 
fixes A ::"real^'n^'n"  | 
| 33175 | 817  | 
assumes d0: "det A \<noteq> 0"  | 
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
35542 
diff
changeset
 | 
818  | 
shows "A *v x = b \<longleftrightarrow> x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)"  | 
| 33175 | 819  | 
proof-  | 
820  | 
from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1"  | 
|
821  | 
unfolding invertible_det_nz[symmetric] invertible_def by blast  | 
|
822  | 
have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid)  | 
|
823  | 
hence "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc)  | 
|
824  | 
then have xe: "\<exists>x. A*v x = b" by blast  | 
|
825  | 
  {fix x assume x: "A *v x = b"
 | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
35542 
diff
changeset
 | 
826  | 
have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)"  | 
| 33175 | 827  | 
unfolding x[symmetric]  | 
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
828  | 
using d0 by (simp add: vec_eq_iff cramer_lemma field_simps)}  | 
| 33175 | 829  | 
with xe show ?thesis by auto  | 
830  | 
qed  | 
|
831  | 
||
832  | 
(* ------------------------------------------------------------------------- *)  | 
|
833  | 
(* Orthogonality of a transformation and matrix. *)  | 
|
834  | 
(* ------------------------------------------------------------------------- *)  | 
|
835  | 
||
836  | 
definition "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)"  | 
|
837  | 
||
838  | 
lemma orthogonal_transformation: "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^_). norm (f v) = norm v)"  | 
|
839  | 
unfolding orthogonal_transformation_def  | 
|
840  | 
apply auto  | 
|
841  | 
apply (erule_tac x=v in allE)+  | 
|
| 35542 | 842  | 
apply (simp add: norm_eq_sqrt_inner)  | 
| 33175 | 843  | 
by (simp add: dot_norm linear_add[symmetric])  | 
844  | 
||
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
845  | 
definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1"  | 
| 33175 | 846  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
847  | 
lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1"  | 
| 33175 | 848  | 
by (metis matrix_left_right_inverse orthogonal_matrix_def)  | 
849  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
850  | 
lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1 :: _^'n^'n)"  | 
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
851  | 
by (simp add: orthogonal_matrix_def transpose_mat matrix_mul_lid)  | 
| 33175 | 852  | 
|
853  | 
lemma orthogonal_matrix_mul:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
854  | 
fixes A :: "real ^'n^'n"  | 
| 33175 | 855  | 
assumes oA : "orthogonal_matrix A"  | 
856  | 
and oB: "orthogonal_matrix B"  | 
|
857  | 
shows "orthogonal_matrix(A ** B)"  | 
|
858  | 
using oA oB  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
859  | 
unfolding orthogonal_matrix matrix_transpose_mul  | 
| 33175 | 860  | 
apply (subst matrix_mul_assoc)  | 
861  | 
apply (subst matrix_mul_assoc[symmetric])  | 
|
862  | 
by (simp add: matrix_mul_rid)  | 
|
863  | 
||
864  | 
lemma orthogonal_transformation_matrix:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
865  | 
fixes f:: "real^'n \<Rightarrow> real^'n"  | 
| 33175 | 866  | 
shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)"  | 
867  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
|
868  | 
proof-  | 
|
869  | 
let ?mf = "matrix f"  | 
|
870  | 
let ?ot = "orthogonal_transformation f"  | 
|
871  | 
let ?U = "UNIV :: 'n set"  | 
|
872  | 
have fU: "finite ?U" by simp  | 
|
873  | 
let ?m1 = "mat 1 :: real ^'n^'n"  | 
|
874  | 
  {assume ot: ?ot
 | 
|
875  | 
from ot have lf: "linear f" and fd: "\<forall>v w. f v \<bullet> f w = v \<bullet> w"  | 
|
876  | 
unfolding orthogonal_transformation_def orthogonal_matrix by blast+  | 
|
877  | 
    {fix i j
 | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
878  | 
let ?A = "transpose ?mf ** ?mf"  | 
| 33175 | 879  | 
have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)"  | 
880  | 
"\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)"  | 
|
881  | 
by simp_all  | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
882  | 
from fd[rule_format, of "cart_basis i" "cart_basis j", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul]  | 
| 33175 | 883  | 
have "?A$i$j = ?m1 $ i $ j"  | 
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
884  | 
by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def cart_basis_def th0 setsum_delta[OF fU] mat_def)}  | 
| 33175 | 885  | 
hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector  | 
886  | 
with lf have ?rhs by blast}  | 
|
887  | 
moreover  | 
|
888  | 
  {assume lf: "linear f" and om: "orthogonal_matrix ?mf"
 | 
|
889  | 
from lf om have ?lhs  | 
|
890  | 
unfolding orthogonal_matrix_def norm_eq orthogonal_transformation  | 
|
891  | 
unfolding matrix_works[OF lf, symmetric]  | 
|
892  | 
apply (subst dot_matrix_vector_mul)  | 
|
893  | 
by (simp add: dot_matrix_product matrix_mul_lid)}  | 
|
894  | 
ultimately show ?thesis by blast  | 
|
895  | 
qed  | 
|
896  | 
||
897  | 
lemma det_orthogonal_matrix:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
898  | 
fixes Q:: "'a::linordered_idom^'n^'n"  | 
| 33175 | 899  | 
assumes oQ: "orthogonal_matrix Q"  | 
900  | 
shows "det Q = 1 \<or> det Q = - 1"  | 
|
901  | 
proof-  | 
|
902  | 
||
903  | 
have th: "\<And>x::'a. x = 1 \<or> x = - 1 \<longleftrightarrow> x*x = 1" (is "\<And>x::'a. ?ths x")  | 
|
904  | 
proof-  | 
|
905  | 
fix x:: 'a  | 
|
| 36350 | 906  | 
have th0: "x*x - 1 = (x - 1)*(x + 1)" by (simp add: field_simps)  | 
| 33175 | 907  | 
have th1: "\<And>(x::'a) y. x = - y \<longleftrightarrow> x + y = 0"  | 
908  | 
apply (subst eq_iff_diff_eq_0) by simp  | 
|
909  | 
have "x*x = 1 \<longleftrightarrow> x*x - 1 = 0" by simp  | 
|
910  | 
also have "\<dots> \<longleftrightarrow> x = 1 \<or> x = - 1" unfolding th0 th1 by simp  | 
|
911  | 
finally show "?ths x" ..  | 
|
912  | 
qed  | 
|
| 
35150
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
913  | 
from oQ have "Q ** transpose Q = mat 1" by (metis orthogonal_matrix_def)  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
914  | 
hence "det (Q ** transpose Q) = det (mat 1:: 'a^'n^'n)" by simp  | 
| 
 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 
hoelzl 
parents: 
35028 
diff
changeset
 | 
915  | 
hence "det Q * det Q = 1" by (simp add: det_mul det_I det_transpose)  | 
| 33175 | 916  | 
then show ?thesis unfolding th .  | 
917  | 
qed  | 
|
918  | 
||
919  | 
(* ------------------------------------------------------------------------- *)  | 
|
920  | 
(* Linearity of scaling, and hence isometry, that preserves origin. *)  | 
|
921  | 
(* ------------------------------------------------------------------------- *)  | 
|
922  | 
lemma scaling_linear:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
923  | 
fixes f :: "real ^'n \<Rightarrow> real ^'n"  | 
| 33175 | 924  | 
assumes f0: "f 0 = 0" and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y"  | 
925  | 
shows "linear f"  | 
|
926  | 
proof-  | 
|
927  | 
  {fix v w
 | 
|
928  | 
    {fix x note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right] }
 | 
|
929  | 
note th0 = this  | 
|
930  | 
have "f v \<bullet> f w = c^2 * (v \<bullet> w)"  | 
|
931  | 
unfolding dot_norm_neg dist_norm[symmetric]  | 
|
932  | 
unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)}  | 
|
933  | 
note fc = this  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
934  | 
show ?thesis unfolding linear_def vector_eq[where 'a="real^'n"] smult_conv_scaleR by (simp add: inner_add fc field_simps)  | 
| 33175 | 935  | 
qed  | 
936  | 
||
937  | 
lemma isometry_linear:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
938  | 
"f (0:: real^'n) = (0:: real^'n) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y  | 
| 33175 | 939  | 
\<Longrightarrow> linear f"  | 
940  | 
by (rule scaling_linear[where c=1]) simp_all  | 
|
941  | 
||
942  | 
(* ------------------------------------------------------------------------- *)  | 
|
943  | 
(* Hence another formulation of orthogonal transformation. *)  | 
|
944  | 
(* ------------------------------------------------------------------------- *)  | 
|
945  | 
||
946  | 
lemma orthogonal_transformation_isometry:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
947  | 
"orthogonal_transformation f \<longleftrightarrow> f(0::real^'n) = (0::real^'n) \<and> (\<forall>x y. dist(f x) (f y) = dist x y)"  | 
| 33175 | 948  | 
unfolding orthogonal_transformation  | 
949  | 
apply (rule iffI)  | 
|
950  | 
apply clarify  | 
|
951  | 
apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_norm)  | 
|
952  | 
apply (rule conjI)  | 
|
953  | 
apply (rule isometry_linear)  | 
|
954  | 
apply simp  | 
|
955  | 
apply simp  | 
|
956  | 
apply clarify  | 
|
957  | 
apply (erule_tac x=v in allE)  | 
|
958  | 
apply (erule_tac x=0 in allE)  | 
|
959  | 
by (simp add: dist_norm)  | 
|
960  | 
||
961  | 
(* ------------------------------------------------------------------------- *)  | 
|
962  | 
(* Can extend an isometry from unit sphere. *)  | 
|
963  | 
(* ------------------------------------------------------------------------- *)  | 
|
964  | 
||
965  | 
lemma isometry_sphere_extend:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
966  | 
fixes f:: "real ^'n \<Rightarrow> real ^'n"  | 
| 33175 | 967  | 
assumes f1: "\<forall>x. norm x = 1 \<longrightarrow> norm (f x) = 1"  | 
968  | 
and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y"  | 
|
969  | 
shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)"  | 
|
970  | 
proof-  | 
|
971  | 
  {fix x y x' y' x0 y0 x0' y0' :: "real ^'n"
 | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
972  | 
assume H: "x = norm x *\<^sub>R x0" "y = norm y *\<^sub>R y0"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
973  | 
"x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'"  | 
| 33175 | 974  | 
"norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"  | 
975  | 
"norm(x0' - y0') = norm(x0 - y0)"  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
976  | 
hence *:"x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 " by(simp add: norm_eq norm_eq_1 inner_add inner_diff)  | 
| 33175 | 977  | 
have "norm(x' - y') = norm(x - y)"  | 
978  | 
apply (subst H(1))  | 
|
979  | 
apply (subst H(2))  | 
|
980  | 
apply (subst H(3))  | 
|
981  | 
apply (subst H(4))  | 
|
982  | 
using H(5-9)  | 
|
983  | 
apply (simp add: norm_eq norm_eq_1)  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
984  | 
apply (simp add: inner_diff smult_conv_scaleR) unfolding *  | 
| 36350 | 985  | 
by (simp add: field_simps) }  | 
| 33175 | 986  | 
note th0 = this  | 
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
987  | 
let ?g = "\<lambda>x. if x = 0 then 0 else norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)"  | 
| 33175 | 988  | 
  {fix x:: "real ^'n" assume nx: "norm x = 1"
 | 
989  | 
have "?g x = f x" using nx by auto}  | 
|
990  | 
hence thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x" by blast  | 
|
991  | 
have g0: "?g 0 = 0" by simp  | 
|
992  | 
  {fix x y :: "real ^'n"
 | 
|
993  | 
    {assume "x = 0" "y = 0"
 | 
|
994  | 
then have "dist (?g x) (?g y) = dist x y" by simp }  | 
|
995  | 
moreover  | 
|
996  | 
    {assume "x = 0" "y \<noteq> 0"
 | 
|
997  | 
then have "dist (?g x) (?g y) = dist x y"  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
35542 
diff
changeset
 | 
998  | 
apply (simp add: dist_norm)  | 
| 33175 | 999  | 
apply (rule f1[rule_format])  | 
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
35542 
diff
changeset
 | 
1000  | 
by(simp add: field_simps)}  | 
| 33175 | 1001  | 
moreover  | 
1002  | 
    {assume "x \<noteq> 0" "y = 0"
 | 
|
1003  | 
then have "dist (?g x) (?g y) = dist x y"  | 
|
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
35542 
diff
changeset
 | 
1004  | 
apply (simp add: dist_norm)  | 
| 33175 | 1005  | 
apply (rule f1[rule_format])  | 
| 
36362
 
06475a1547cb
fix lots of looping simp calls and other warnings
 
huffman 
parents: 
35542 
diff
changeset
 | 
1006  | 
by(simp add: field_simps)}  | 
| 33175 | 1007  | 
moreover  | 
1008  | 
    {assume z: "x \<noteq> 0" "y \<noteq> 0"
 | 
|
| 
44228
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1009  | 
have th00: "x = norm x *\<^sub>R (inverse (norm x) *\<^sub>R x)" "y = norm y *\<^sub>R (inverse (norm y) *\<^sub>R y)" "norm x *\<^sub>R f ((inverse (norm x) *\<^sub>R x)) = norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1010  | 
"norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y) = norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y)"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1011  | 
"norm (inverse (norm x) *\<^sub>R x) = 1"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1012  | 
"norm (f (inverse (norm x) *\<^sub>R x)) = 1"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1013  | 
"norm (inverse (norm y) *\<^sub>R y) = 1"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1014  | 
"norm (f (inverse (norm y) *\<^sub>R y)) = 1"  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1015  | 
"norm (f (inverse (norm x) *\<^sub>R x) - f (inverse (norm y) *\<^sub>R y)) =  | 
| 
 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 
huffman 
parents: 
41959 
diff
changeset
 | 
1016  | 
norm (inverse (norm x) *\<^sub>R x - inverse (norm y) *\<^sub>R y)"  | 
| 33175 | 1017  | 
using z  | 
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
1018  | 
by (auto simp add: field_simps intro: f1[rule_format] fd1[rule_format, unfolded dist_norm])  | 
| 33175 | 1019  | 
from z th0[OF th00] have "dist (?g x) (?g y) = dist x y"  | 
1020  | 
by (simp add: dist_norm)}  | 
|
1021  | 
ultimately have "dist (?g x) (?g y) = dist x y" by blast}  | 
|
1022  | 
note thd = this  | 
|
1023  | 
show ?thesis  | 
|
1024  | 
apply (rule exI[where x= ?g])  | 
|
1025  | 
unfolding orthogonal_transformation_isometry  | 
|
1026  | 
using g0 thfg thd by metis  | 
|
1027  | 
qed  | 
|
1028  | 
||
1029  | 
(* ------------------------------------------------------------------------- *)  | 
|
1030  | 
(* Rotation, reflection, rotoinversion. *)  | 
|
1031  | 
(* ------------------------------------------------------------------------- *)  | 
|
1032  | 
||
1033  | 
definition "rotation_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = 1"  | 
|
1034  | 
definition "rotoinversion_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = - 1"  | 
|
1035  | 
||
1036  | 
lemma orthogonal_rotation_or_rotoinversion:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
34291 
diff
changeset
 | 
1037  | 
fixes Q :: "'a::linordered_idom^'n^'n"  | 
| 33175 | 1038  | 
shows " orthogonal_matrix Q \<longleftrightarrow> rotation_matrix Q \<or> rotoinversion_matrix Q"  | 
1039  | 
by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix)  | 
|
1040  | 
(* ------------------------------------------------------------------------- *)  | 
|
1041  | 
(* Explicit formulas for low dimensions. *)  | 
|
1042  | 
(* ------------------------------------------------------------------------- *)  | 
|
1043  | 
||
1044  | 
lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp
 | 
|
1045  | 
||
1046  | 
lemma setprod_2: "setprod f {(1::nat)..2} = f 1 * f 2"
 | 
|
| 40077 | 1047  | 
by (simp add: eval_nat_numeral setprod_numseg mult_commute)  | 
| 33175 | 1048  | 
lemma setprod_3: "setprod f {(1::nat)..3} = f 1 * f 2 * f 3"
 | 
| 40077 | 1049  | 
by (simp add: eval_nat_numeral setprod_numseg mult_commute)  | 
| 33175 | 1050  | 
|
1051  | 
lemma det_1: "det (A::'a::comm_ring_1^1^1) = A$1$1"  | 
|
| 
44457
 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 
huffman 
parents: 
44260 
diff
changeset
 | 
1052  | 
by (simp add: det_def sign_id)  | 
| 33175 | 1053  | 
|
1054  | 
lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1"  | 
|
1055  | 
proof-  | 
|
1056  | 
  have f12: "finite {2::2}" "1 \<notin> {2::2}" by auto
 | 
|
1057  | 
show ?thesis  | 
|
1058  | 
unfolding det_def UNIV_2  | 
|
1059  | 
unfolding setsum_over_permutations_insert[OF f12]  | 
|
1060  | 
unfolding permutes_sing  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
44457 
diff
changeset
 | 
1061  | 
by (simp add: sign_swap_id sign_id swap_id_eq)  | 
| 33175 | 1062  | 
qed  | 
1063  | 
||
1064  | 
lemma det_3: "det (A::'a::comm_ring_1^3^3) =  | 
|
1065  | 
A$1$1 * A$2$2 * A$3$3 +  | 
|
1066  | 
A$1$2 * A$2$3 * A$3$1 +  | 
|
1067  | 
A$1$3 * A$2$1 * A$3$2 -  | 
|
1068  | 
A$1$1 * A$2$3 * A$3$2 -  | 
|
1069  | 
A$1$2 * A$2$1 * A$3$3 -  | 
|
1070  | 
A$1$3 * A$2$2 * A$3$1"  | 
|
1071  | 
proof-  | 
|
1072  | 
  have f123: "finite {2::3, 3}" "1 \<notin> {2::3, 3}" by auto
 | 
|
1073  | 
  have f23: "finite {3::3}" "2 \<notin> {3::3}" by auto
 | 
|
1074  | 
||
1075  | 
show ?thesis  | 
|
1076  | 
unfolding det_def UNIV_3  | 
|
1077  | 
unfolding setsum_over_permutations_insert[OF f123]  | 
|
1078  | 
unfolding setsum_over_permutations_insert[OF f23]  | 
|
1079  | 
||
1080  | 
unfolding permutes_sing  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
44457 
diff
changeset
 | 
1081  | 
by (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq)  | 
| 33175 | 1082  | 
qed  | 
1083  | 
||
1084  | 
end  |