| author | wenzelm | 
| Fri, 06 Apr 2012 12:02:24 +0200 | |
| changeset 47347 | af937661e4a1 | 
| parent 47255 | 30a1692557b0 | 
| child 49824 | c26665a197dc | 
| permissions | -rw-r--r-- | 
| 
3390
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Power.thy  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Copyright 1997 University of Cambridge  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 30960 | 6  | 
header {* Exponentiation *}
 | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
7  | 
|
| 15131 | 8  | 
theory Power  | 
| 47191 | 9  | 
imports Num  | 
| 15131 | 10  | 
begin  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
11  | 
|
| 30960 | 12  | 
subsection {* Powers for Arbitrary Monoids *}
 | 
13  | 
||
| 30996 | 14  | 
class power = one + times  | 
| 30960 | 15  | 
begin  | 
| 24996 | 16  | 
|
| 30960 | 17  | 
primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where  | 
18  | 
power_0: "a ^ 0 = 1"  | 
|
19  | 
| power_Suc: "a ^ Suc n = a * a ^ n"  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
20  | 
|
| 30996 | 21  | 
notation (latex output)  | 
22  | 
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | 
|
23  | 
||
24  | 
notation (HTML output)  | 
|
25  | 
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | 
|
26  | 
||
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
27  | 
text {* Special syntax for squares. *}
 | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
28  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
29  | 
abbreviation (xsymbols)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
30  | 
  power2 :: "'a \<Rightarrow> 'a"  ("(_\<twosuperior>)" [1000] 999) where
 | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
31  | 
"x\<twosuperior> \<equiv> x ^ 2"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
32  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
33  | 
notation (latex output)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
34  | 
  power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
35  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
36  | 
notation (HTML output)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
37  | 
  power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
38  | 
|
| 30960 | 39  | 
end  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
40  | 
|
| 30996 | 41  | 
context monoid_mult  | 
42  | 
begin  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
43  | 
|
| 
39438
 
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
 
wenzelm 
parents: 
36409 
diff
changeset
 | 
44  | 
subclass power .  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
45  | 
|
| 30996 | 46  | 
lemma power_one [simp]:  | 
47  | 
"1 ^ n = 1"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
48  | 
by (induct n) simp_all  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
49  | 
|
| 30996 | 50  | 
lemma power_one_right [simp]:  | 
| 31001 | 51  | 
"a ^ 1 = a"  | 
| 30996 | 52  | 
by simp  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
53  | 
|
| 30996 | 54  | 
lemma power_commutes:  | 
55  | 
"a ^ n * a = a * a ^ n"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
56  | 
by (induct n) (simp_all add: mult_assoc)  | 
| 
21199
 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 
krauss 
parents: 
17149 
diff
changeset
 | 
57  | 
|
| 30996 | 58  | 
lemma power_Suc2:  | 
59  | 
"a ^ Suc n = a ^ n * a"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
60  | 
by (simp add: power_commutes)  | 
| 
28131
 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 
huffman 
parents: 
25874 
diff
changeset
 | 
61  | 
|
| 30996 | 62  | 
lemma power_add:  | 
63  | 
"a ^ (m + n) = a ^ m * a ^ n"  | 
|
64  | 
by (induct m) (simp_all add: algebra_simps)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
65  | 
|
| 30996 | 66  | 
lemma power_mult:  | 
67  | 
"a ^ (m * n) = (a ^ m) ^ n"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
68  | 
by (induct n) (simp_all add: power_add)  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
69  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
70  | 
lemma power2_eq_square: "a\<twosuperior> = a * a"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
71  | 
by (simp add: numeral_2_eq_2)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
72  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
73  | 
lemma power3_eq_cube: "a ^ 3 = a * a * a"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
74  | 
by (simp add: numeral_3_eq_3 mult_assoc)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
75  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
76  | 
lemma power_even_eq:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
77  | 
"a ^ (2*n) = (a ^ n) ^ 2"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
78  | 
by (subst mult_commute) (simp add: power_mult)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
79  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
80  | 
lemma power_odd_eq:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
81  | 
"a ^ Suc (2*n) = a * (a ^ n) ^ 2"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
82  | 
by (simp add: power_even_eq)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
83  | 
|
| 
47255
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
84  | 
lemma power_numeral_even:  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
85  | 
"z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)"  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
86  | 
unfolding numeral_Bit0 power_add Let_def ..  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
87  | 
|
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
88  | 
lemma power_numeral_odd:  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
89  | 
"z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)"  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
90  | 
unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
91  | 
unfolding power_Suc power_add Let_def mult_assoc ..  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
92  | 
|
| 30996 | 93  | 
end  | 
94  | 
||
95  | 
context comm_monoid_mult  | 
|
96  | 
begin  | 
|
97  | 
||
98  | 
lemma power_mult_distrib:  | 
|
99  | 
"(a * b) ^ n = (a ^ n) * (b ^ n)"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
100  | 
by (induct n) (simp_all add: mult_ac)  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
101  | 
|
| 30996 | 102  | 
end  | 
103  | 
||
| 47191 | 104  | 
context semiring_numeral  | 
105  | 
begin  | 
|
106  | 
||
107  | 
lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k"  | 
|
108  | 
by (simp only: sqr_conv_mult numeral_mult)  | 
|
109  | 
||
110  | 
lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l"  | 
|
111  | 
by (induct l, simp_all only: numeral_class.numeral.simps pow.simps  | 
|
112  | 
numeral_sqr numeral_mult power_add power_one_right)  | 
|
113  | 
||
114  | 
lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)"  | 
|
115  | 
by (rule numeral_pow [symmetric])  | 
|
116  | 
||
117  | 
end  | 
|
118  | 
||
| 30996 | 119  | 
context semiring_1  | 
120  | 
begin  | 
|
121  | 
||
122  | 
lemma of_nat_power:  | 
|
123  | 
"of_nat (m ^ n) = of_nat m ^ n"  | 
|
124  | 
by (induct n) (simp_all add: of_nat_mult)  | 
|
125  | 
||
| 47191 | 126  | 
lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0"  | 
| 
47209
 
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
 
huffman 
parents: 
47192 
diff
changeset
 | 
127  | 
by (simp add: numeral_eq_Suc)  | 
| 47191 | 128  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
129  | 
lemma zero_power2: "0\<twosuperior> = 0" (* delete? *)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
130  | 
by (rule power_zero_numeral)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
131  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
132  | 
lemma one_power2: "1\<twosuperior> = 1" (* delete? *)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
133  | 
by (rule power_one)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
134  | 
|
| 30996 | 135  | 
end  | 
136  | 
||
137  | 
context comm_semiring_1  | 
|
138  | 
begin  | 
|
139  | 
||
140  | 
text {* The divides relation *}
 | 
|
141  | 
||
142  | 
lemma le_imp_power_dvd:  | 
|
143  | 
assumes "m \<le> n" shows "a ^ m dvd a ^ n"  | 
|
144  | 
proof  | 
|
145  | 
have "a ^ n = a ^ (m + (n - m))"  | 
|
146  | 
using `m \<le> n` by simp  | 
|
147  | 
also have "\<dots> = a ^ m * a ^ (n - m)"  | 
|
148  | 
by (rule power_add)  | 
|
149  | 
finally show "a ^ n = a ^ m * a ^ (n - m)" .  | 
|
150  | 
qed  | 
|
151  | 
||
152  | 
lemma power_le_dvd:  | 
|
153  | 
"a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b"  | 
|
154  | 
by (rule dvd_trans [OF le_imp_power_dvd])  | 
|
155  | 
||
156  | 
lemma dvd_power_same:  | 
|
157  | 
"x dvd y \<Longrightarrow> x ^ n dvd y ^ n"  | 
|
158  | 
by (induct n) (auto simp add: mult_dvd_mono)  | 
|
159  | 
||
160  | 
lemma dvd_power_le:  | 
|
161  | 
"x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m"  | 
|
162  | 
by (rule power_le_dvd [OF dvd_power_same])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
163  | 
|
| 30996 | 164  | 
lemma dvd_power [simp]:  | 
165  | 
assumes "n > (0::nat) \<or> x = 1"  | 
|
166  | 
shows "x dvd (x ^ n)"  | 
|
167  | 
using assms proof  | 
|
168  | 
assume "0 < n"  | 
|
169  | 
then have "x ^ n = x ^ Suc (n - 1)" by simp  | 
|
170  | 
then show "x dvd (x ^ n)" by simp  | 
|
171  | 
next  | 
|
172  | 
assume "x = 1"  | 
|
173  | 
then show "x dvd (x ^ n)" by simp  | 
|
174  | 
qed  | 
|
175  | 
||
176  | 
end  | 
|
177  | 
||
178  | 
context ring_1  | 
|
179  | 
begin  | 
|
180  | 
||
181  | 
lemma power_minus:  | 
|
182  | 
"(- a) ^ n = (- 1) ^ n * a ^ n"  | 
|
183  | 
proof (induct n)  | 
|
184  | 
case 0 show ?case by simp  | 
|
185  | 
next  | 
|
186  | 
case (Suc n) then show ?case  | 
|
187  | 
by (simp del: power_Suc add: power_Suc2 mult_assoc)  | 
|
188  | 
qed  | 
|
189  | 
||
| 47191 | 190  | 
lemma power_minus_Bit0:  | 
191  | 
"(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)"  | 
|
192  | 
by (induct k, simp_all only: numeral_class.numeral.simps power_add  | 
|
193  | 
power_one_right mult_minus_left mult_minus_right minus_minus)  | 
|
194  | 
||
195  | 
lemma power_minus_Bit1:  | 
|
196  | 
"(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))"  | 
|
| 
47220
 
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
 
huffman 
parents: 
47209 
diff
changeset
 | 
197  | 
by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left)  | 
| 47191 | 198  | 
|
199  | 
lemma power_neg_numeral_Bit0 [simp]:  | 
|
200  | 
"neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))"  | 
|
201  | 
by (simp only: neg_numeral_def power_minus_Bit0 power_numeral)  | 
|
202  | 
||
203  | 
lemma power_neg_numeral_Bit1 [simp]:  | 
|
204  | 
"neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))"  | 
|
205  | 
by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps)  | 
|
206  | 
||
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
207  | 
lemma power2_minus [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
208  | 
"(- a)\<twosuperior> = a\<twosuperior>"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
209  | 
by (rule power_minus_Bit0)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
210  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
211  | 
lemma power_minus1_even [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
212  | 
"-1 ^ (2*n) = 1"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
213  | 
proof (induct n)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
214  | 
case 0 show ?case by simp  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
215  | 
next  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
216  | 
case (Suc n) then show ?case by (simp add: power_add power2_eq_square)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
217  | 
qed  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
218  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
219  | 
lemma power_minus1_odd:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
220  | 
"-1 ^ Suc (2*n) = -1"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
221  | 
by simp  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
222  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
223  | 
lemma power_minus_even [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
224  | 
"(-a) ^ (2*n) = a ^ (2*n)"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
225  | 
by (simp add: power_minus [of a])  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
226  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
227  | 
end  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
228  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
229  | 
context ring_1_no_zero_divisors  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
230  | 
begin  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
231  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
232  | 
lemma field_power_not_zero:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
233  | 
"a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
234  | 
by (induct n) auto  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
235  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
236  | 
lemma zero_eq_power2 [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
237  | 
"a\<twosuperior> = 0 \<longleftrightarrow> a = 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
238  | 
unfolding power2_eq_square by simp  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
239  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
240  | 
lemma power2_eq_1_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
241  | 
"a\<twosuperior> = 1 \<longleftrightarrow> a = 1 \<or> a = - 1"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
242  | 
unfolding power2_eq_square by (rule square_eq_1_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
243  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
244  | 
end  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
245  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
246  | 
context idom  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
247  | 
begin  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
248  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
249  | 
lemma power2_eq_iff: "x\<twosuperior> = y\<twosuperior> \<longleftrightarrow> x = y \<or> x = - y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
250  | 
unfolding power2_eq_square by (rule square_eq_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
251  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
252  | 
end  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
253  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
254  | 
context division_ring  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
255  | 
begin  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
256  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
257  | 
text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
 | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
258  | 
lemma nonzero_power_inverse:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
259  | 
"a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
260  | 
by (induct n)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
261  | 
(simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
262  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
263  | 
end  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
264  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
265  | 
context field  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
266  | 
begin  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
267  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
268  | 
lemma nonzero_power_divide:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
269  | 
"b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
270  | 
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
271  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
272  | 
end  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
273  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
274  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
275  | 
subsection {* Exponentiation on ordered types *}
 | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
276  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
277  | 
context linordered_ring (* TODO: move *)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
278  | 
begin  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
279  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
280  | 
lemma sum_squares_ge_zero:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
281  | 
"0 \<le> x * x + y * y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
282  | 
by (intro add_nonneg_nonneg zero_le_square)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
283  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
284  | 
lemma not_sum_squares_lt_zero:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
285  | 
"\<not> x * x + y * y < 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
286  | 
by (simp add: not_less sum_squares_ge_zero)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
287  | 
|
| 30996 | 288  | 
end  | 
289  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
33364 
diff
changeset
 | 
290  | 
context linordered_semidom  | 
| 30996 | 291  | 
begin  | 
292  | 
||
293  | 
lemma zero_less_power [simp]:  | 
|
294  | 
"0 < a \<Longrightarrow> 0 < a ^ n"  | 
|
295  | 
by (induct n) (simp_all add: mult_pos_pos)  | 
|
296  | 
||
297  | 
lemma zero_le_power [simp]:  | 
|
298  | 
"0 \<le> a \<Longrightarrow> 0 \<le> a ^ n"  | 
|
299  | 
by (induct n) (simp_all add: mult_nonneg_nonneg)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
300  | 
|
| 47241 | 301  | 
lemma power_mono:  | 
302  | 
"a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n"  | 
|
303  | 
by (induct n) (auto intro: mult_mono order_trans [of 0 a b])  | 
|
304  | 
||
305  | 
lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n"  | 
|
306  | 
using power_mono [of 1 a n] by simp  | 
|
307  | 
||
308  | 
lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1"  | 
|
309  | 
using power_mono [of a 1 n] by simp  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
310  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
311  | 
lemma power_gt1_lemma:  | 
| 30996 | 312  | 
assumes gt1: "1 < a"  | 
313  | 
shows "1 < a * a ^ n"  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
314  | 
proof -  | 
| 30996 | 315  | 
from gt1 have "0 \<le> a"  | 
316  | 
by (fact order_trans [OF zero_le_one less_imp_le])  | 
|
317  | 
have "1 * 1 < a * 1" using gt1 by simp  | 
|
318  | 
also have "\<dots> \<le> a * a ^ n" using gt1  | 
|
319  | 
by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le  | 
|
| 14577 | 320  | 
zero_le_one order_refl)  | 
321  | 
finally show ?thesis by simp  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
322  | 
qed  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
323  | 
|
| 30996 | 324  | 
lemma power_gt1:  | 
325  | 
"1 < a \<Longrightarrow> 1 < a ^ Suc n"  | 
|
326  | 
by (simp add: power_gt1_lemma)  | 
|
| 24376 | 327  | 
|
| 30996 | 328  | 
lemma one_less_power [simp]:  | 
329  | 
"1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n"  | 
|
330  | 
by (cases n) (simp_all add: power_gt1_lemma)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
331  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
332  | 
lemma power_le_imp_le_exp:  | 
| 30996 | 333  | 
assumes gt1: "1 < a"  | 
334  | 
shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n"  | 
|
335  | 
proof (induct m arbitrary: n)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
336  | 
case 0  | 
| 14577 | 337  | 
show ?case by simp  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
338  | 
next  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
339  | 
case (Suc m)  | 
| 14577 | 340  | 
show ?case  | 
341  | 
proof (cases n)  | 
|
342  | 
case 0  | 
|
| 30996 | 343  | 
with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp  | 
| 14577 | 344  | 
with gt1 show ?thesis  | 
345  | 
by (force simp only: power_gt1_lemma  | 
|
| 30996 | 346  | 
not_less [symmetric])  | 
| 14577 | 347  | 
next  | 
348  | 
case (Suc n)  | 
|
| 30996 | 349  | 
with Suc.prems Suc.hyps show ?thesis  | 
| 14577 | 350  | 
by (force dest: mult_left_le_imp_le  | 
| 30996 | 351  | 
simp add: less_trans [OF zero_less_one gt1])  | 
| 14577 | 352  | 
qed  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
353  | 
qed  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
354  | 
|
| 14577 | 355  | 
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
 | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
356  | 
lemma power_inject_exp [simp]:  | 
| 30996 | 357  | 
"1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n"  | 
| 14577 | 358  | 
by (force simp add: order_antisym power_le_imp_le_exp)  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
359  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
360  | 
text{*Can relax the first premise to @{term "0<a"} in the case of the
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
361  | 
natural numbers.*}  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
362  | 
lemma power_less_imp_less_exp:  | 
| 30996 | 363  | 
"1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n"  | 
364  | 
by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"]  | 
|
365  | 
power_le_imp_le_exp)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
366  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
367  | 
lemma power_strict_mono [rule_format]:  | 
| 30996 | 368  | 
"a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n"  | 
369  | 
by (induct n)  | 
|
370  | 
(auto simp add: mult_strict_mono le_less_trans [of 0 a b])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
371  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
372  | 
text{*Lemma for @{text power_strict_decreasing}*}
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
373  | 
lemma power_Suc_less:  | 
| 30996 | 374  | 
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n"  | 
375  | 
by (induct n)  | 
|
376  | 
(auto simp add: mult_strict_left_mono)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
377  | 
|
| 30996 | 378  | 
lemma power_strict_decreasing [rule_format]:  | 
379  | 
"n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n"  | 
|
380  | 
proof (induct N)  | 
|
381  | 
case 0 then show ?case by simp  | 
|
382  | 
next  | 
|
383  | 
case (Suc N) then show ?case  | 
|
384  | 
apply (auto simp add: power_Suc_less less_Suc_eq)  | 
|
385  | 
apply (subgoal_tac "a * a^N < 1 * a^n")  | 
|
386  | 
apply simp  | 
|
387  | 
apply (rule mult_strict_mono) apply auto  | 
|
388  | 
done  | 
|
389  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
390  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
391  | 
text{*Proof resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 392  | 
lemma power_decreasing [rule_format]:  | 
393  | 
"n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n"  | 
|
394  | 
proof (induct N)  | 
|
395  | 
case 0 then show ?case by simp  | 
|
396  | 
next  | 
|
397  | 
case (Suc N) then show ?case  | 
|
398  | 
apply (auto simp add: le_Suc_eq)  | 
|
399  | 
apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp)  | 
|
400  | 
apply (rule mult_mono) apply auto  | 
|
401  | 
done  | 
|
402  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
403  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
404  | 
lemma power_Suc_less_one:  | 
| 30996 | 405  | 
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1"  | 
406  | 
using power_strict_decreasing [of 0 "Suc n" a] by simp  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
407  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
408  | 
text{*Proof again resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 409  | 
lemma power_increasing [rule_format]:  | 
410  | 
"n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N"  | 
|
411  | 
proof (induct N)  | 
|
412  | 
case 0 then show ?case by simp  | 
|
413  | 
next  | 
|
414  | 
case (Suc N) then show ?case  | 
|
415  | 
apply (auto simp add: le_Suc_eq)  | 
|
416  | 
apply (subgoal_tac "1 * a^n \<le> a * a^N", simp)  | 
|
417  | 
apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one])  | 
|
418  | 
done  | 
|
419  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
420  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
421  | 
text{*Lemma for @{text power_strict_increasing}*}
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
422  | 
lemma power_less_power_Suc:  | 
| 30996 | 423  | 
"1 < a \<Longrightarrow> a ^ n < a * a ^ n"  | 
424  | 
by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
425  | 
|
| 30996 | 426  | 
lemma power_strict_increasing [rule_format]:  | 
427  | 
"n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N"  | 
|
428  | 
proof (induct N)  | 
|
429  | 
case 0 then show ?case by simp  | 
|
430  | 
next  | 
|
431  | 
case (Suc N) then show ?case  | 
|
432  | 
apply (auto simp add: power_less_power_Suc less_Suc_eq)  | 
|
433  | 
apply (subgoal_tac "1 * a^n < a * a^N", simp)  | 
|
434  | 
apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le)  | 
|
435  | 
done  | 
|
436  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
437  | 
|
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
438  | 
lemma power_increasing_iff [simp]:  | 
| 30996 | 439  | 
"1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y"  | 
440  | 
by (blast intro: power_le_imp_le_exp power_increasing less_imp_le)  | 
|
| 15066 | 441  | 
|
442  | 
lemma power_strict_increasing_iff [simp]:  | 
|
| 30996 | 443  | 
"1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
444  | 
by (blast intro: power_less_imp_less_exp power_strict_increasing)  | 
| 15066 | 445  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
446  | 
lemma power_le_imp_le_base:  | 
| 30996 | 447  | 
assumes le: "a ^ Suc n \<le> b ^ Suc n"  | 
448  | 
and ynonneg: "0 \<le> b"  | 
|
449  | 
shows "a \<le> b"  | 
|
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
450  | 
proof (rule ccontr)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
451  | 
assume "~ a \<le> b"  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
452  | 
then have "b < a" by (simp only: linorder_not_le)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
453  | 
then have "b ^ Suc n < a ^ Suc n"  | 
| 41550 | 454  | 
by (simp only: assms power_strict_mono)  | 
| 30996 | 455  | 
from le and this show False  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
456  | 
by (simp add: linorder_not_less [symmetric])  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
457  | 
qed  | 
| 14577 | 458  | 
|
| 22853 | 459  | 
lemma power_less_imp_less_base:  | 
460  | 
assumes less: "a ^ n < b ^ n"  | 
|
461  | 
assumes nonneg: "0 \<le> b"  | 
|
462  | 
shows "a < b"  | 
|
463  | 
proof (rule contrapos_pp [OF less])  | 
|
464  | 
assume "~ a < b"  | 
|
465  | 
hence "b \<le> a" by (simp only: linorder_not_less)  | 
|
466  | 
hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)  | 
|
| 30996 | 467  | 
thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less)  | 
| 22853 | 468  | 
qed  | 
469  | 
||
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
470  | 
lemma power_inject_base:  | 
| 30996 | 471  | 
"a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b"  | 
472  | 
by (blast intro: power_le_imp_le_base antisym eq_refl sym)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
473  | 
|
| 22955 | 474  | 
lemma power_eq_imp_eq_base:  | 
| 30996 | 475  | 
"a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b"  | 
476  | 
by (cases n) (simp_all del: power_Suc, rule power_inject_base)  | 
|
| 22955 | 477  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
478  | 
lemma power2_le_imp_le:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
479  | 
"x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
480  | 
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
481  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
482  | 
lemma power2_less_imp_less:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
483  | 
"x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
484  | 
by (rule power_less_imp_less_base)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
485  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
486  | 
lemma power2_eq_imp_eq:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
487  | 
"x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
488  | 
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
489  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
490  | 
end  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
491  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
492  | 
context linordered_ring_strict  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
493  | 
begin  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
494  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
495  | 
lemma sum_squares_eq_zero_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
496  | 
"x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
497  | 
by (simp add: add_nonneg_eq_0_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
498  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
499  | 
lemma sum_squares_le_zero_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
500  | 
"x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
501  | 
by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
502  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
503  | 
lemma sum_squares_gt_zero_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
504  | 
"0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
505  | 
by (simp add: not_le [symmetric] sum_squares_le_zero_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
506  | 
|
| 30996 | 507  | 
end  | 
508  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
33364 
diff
changeset
 | 
509  | 
context linordered_idom  | 
| 30996 | 510  | 
begin  | 
| 
29978
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
511  | 
|
| 30996 | 512  | 
lemma power_abs:  | 
513  | 
"abs (a ^ n) = abs a ^ n"  | 
|
514  | 
by (induct n) (auto simp add: abs_mult)  | 
|
515  | 
||
516  | 
lemma abs_power_minus [simp]:  | 
|
517  | 
"abs ((-a) ^ n) = abs (a ^ n)"  | 
|
| 35216 | 518  | 
by (simp add: power_abs)  | 
| 30996 | 519  | 
|
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35216 
diff
changeset
 | 
520  | 
lemma zero_less_power_abs_iff [simp, no_atp]:  | 
| 30996 | 521  | 
"0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0"  | 
522  | 
proof (induct n)  | 
|
523  | 
case 0 show ?case by simp  | 
|
524  | 
next  | 
|
525  | 
case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff)  | 
|
| 
29978
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
526  | 
qed  | 
| 
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
527  | 
|
| 30996 | 528  | 
lemma zero_le_power_abs [simp]:  | 
529  | 
"0 \<le> abs a ^ n"  | 
|
530  | 
by (rule zero_le_power [OF abs_ge_zero])  | 
|
531  | 
||
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
532  | 
lemma zero_le_power2 [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
533  | 
"0 \<le> a\<twosuperior>"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
534  | 
by (simp add: power2_eq_square)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
535  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
536  | 
lemma zero_less_power2 [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
537  | 
"0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
538  | 
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
539  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
540  | 
lemma power2_less_0 [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
541  | 
"\<not> a\<twosuperior> < 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
542  | 
by (force simp add: power2_eq_square mult_less_0_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
543  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
544  | 
lemma abs_power2 [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
545  | 
"abs (a\<twosuperior>) = a\<twosuperior>"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
546  | 
by (simp add: power2_eq_square abs_mult abs_mult_self)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
547  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
548  | 
lemma power2_abs [simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
549  | 
"(abs a)\<twosuperior> = a\<twosuperior>"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
550  | 
by (simp add: power2_eq_square abs_mult_self)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
551  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
552  | 
lemma odd_power_less_zero:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
553  | 
"a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
554  | 
proof (induct n)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
555  | 
case 0  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
556  | 
then show ?case by simp  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
557  | 
next  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
558  | 
case (Suc n)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
559  | 
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
560  | 
by (simp add: mult_ac power_add power2_eq_square)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
561  | 
thus ?case  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
562  | 
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
563  | 
qed  | 
| 30996 | 564  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
565  | 
lemma odd_0_le_power_imp_0_le:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
566  | 
"0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
567  | 
using odd_power_less_zero [of a n]  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
568  | 
by (force simp add: linorder_not_less [symmetric])  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
569  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
570  | 
lemma zero_le_even_power'[simp]:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
571  | 
"0 \<le> a ^ (2*n)"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
572  | 
proof (induct n)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
573  | 
case 0  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
574  | 
show ?case by simp  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
575  | 
next  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
576  | 
case (Suc n)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
577  | 
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
578  | 
by (simp add: mult_ac power_add power2_eq_square)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
579  | 
thus ?case  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
580  | 
by (simp add: Suc zero_le_mult_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
581  | 
qed  | 
| 30996 | 582  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
583  | 
lemma sum_power2_ge_zero:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
584  | 
"0 \<le> x\<twosuperior> + y\<twosuperior>"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
585  | 
by (intro add_nonneg_nonneg zero_le_power2)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
586  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
587  | 
lemma not_sum_power2_lt_zero:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
588  | 
"\<not> x\<twosuperior> + y\<twosuperior> < 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
589  | 
unfolding not_less by (rule sum_power2_ge_zero)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
590  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
591  | 
lemma sum_power2_eq_zero_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
592  | 
"x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
593  | 
unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
594  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
595  | 
lemma sum_power2_le_zero_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
596  | 
"x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
597  | 
by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero)  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
598  | 
|
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
599  | 
lemma sum_power2_gt_zero_iff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
600  | 
"0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
601  | 
unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff)  | 
| 30996 | 602  | 
|
603  | 
end  | 
|
604  | 
||
| 
29978
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
605  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
606  | 
subsection {* Miscellaneous rules *}
 | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
607  | 
|
| 
47255
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
608  | 
lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))"  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
609  | 
unfolding One_nat_def by (cases m) simp_all  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
610  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
611  | 
lemma power2_sum:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
612  | 
fixes x y :: "'a::comm_semiring_1"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
613  | 
shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
614  | 
by (simp add: algebra_simps power2_eq_square mult_2_right)  | 
| 30996 | 615  | 
|
| 
47192
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
616  | 
lemma power2_diff:  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
617  | 
fixes x y :: "'a::comm_ring_1"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
618  | 
shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y"  | 
| 
 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 
huffman 
parents: 
47191 
diff
changeset
 | 
619  | 
by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute)  | 
| 30996 | 620  | 
|
621  | 
lemma power_0_Suc [simp]:  | 
|
622  | 
  "(0::'a::{power, semiring_0}) ^ Suc n = 0"
 | 
|
623  | 
by simp  | 
|
| 30313 | 624  | 
|
| 30996 | 625  | 
text{*It looks plausible as a simprule, but its effect can be strange.*}
 | 
626  | 
lemma power_0_left:  | 
|
627  | 
  "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
 | 
|
628  | 
by (induct n) simp_all  | 
|
629  | 
||
630  | 
lemma power_eq_0_iff [simp]:  | 
|
631  | 
"a ^ n = 0 \<longleftrightarrow>  | 
|
632  | 
     a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0"
 | 
|
633  | 
by (induct n)  | 
|
634  | 
(auto simp add: no_zero_divisors elim: contrapos_pp)  | 
|
635  | 
||
| 36409 | 636  | 
lemma (in field) power_diff:  | 
| 30996 | 637  | 
assumes nz: "a \<noteq> 0"  | 
638  | 
shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n"  | 
|
| 36409 | 639  | 
by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero)  | 
| 30313 | 640  | 
|
| 30996 | 641  | 
text{*Perhaps these should be simprules.*}
 | 
642  | 
lemma power_inverse:  | 
|
| 36409 | 643  | 
fixes a :: "'a::division_ring_inverse_zero"  | 
644  | 
shows "inverse (a ^ n) = inverse a ^ n"  | 
|
| 30996 | 645  | 
apply (cases "a = 0")  | 
646  | 
apply (simp add: power_0_left)  | 
|
647  | 
apply (simp add: nonzero_power_inverse)  | 
|
648  | 
done (* TODO: reorient or rename to inverse_power *)  | 
|
649  | 
||
650  | 
lemma power_one_over:  | 
|
| 36409 | 651  | 
  "1 / (a::'a::{field_inverse_zero, power}) ^ n =  (1 / a) ^ n"
 | 
| 30996 | 652  | 
by (simp add: divide_inverse) (rule power_inverse)  | 
653  | 
||
654  | 
lemma power_divide:  | 
|
| 36409 | 655  | 
"(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n"  | 
| 30996 | 656  | 
apply (cases "b = 0")  | 
657  | 
apply (simp add: power_0_left)  | 
|
658  | 
apply (rule nonzero_power_divide)  | 
|
659  | 
apply assumption  | 
|
| 30313 | 660  | 
done  | 
661  | 
||
| 
47255
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
662  | 
text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
663  | 
|
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
664  | 
lemmas zero_compare_simps =  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
665  | 
add_strict_increasing add_strict_increasing2 add_increasing  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
666  | 
zero_le_mult_iff zero_le_divide_iff  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
667  | 
zero_less_mult_iff zero_less_divide_iff  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
668  | 
mult_le_0_iff divide_le_0_iff  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
669  | 
mult_less_0_iff divide_less_0_iff  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
670  | 
zero_le_power2 power2_less_0  | 
| 
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
47241 
diff
changeset
 | 
671  | 
|
| 30313 | 672  | 
|
| 30960 | 673  | 
subsection {* Exponentiation for the Natural Numbers *}
 | 
| 14577 | 674  | 
|
| 30996 | 675  | 
lemma nat_one_le_power [simp]:  | 
676  | 
"Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n"  | 
|
677  | 
by (rule one_le_power [of i n, unfolded One_nat_def])  | 
|
| 23305 | 678  | 
|
| 30996 | 679  | 
lemma nat_zero_less_power_iff [simp]:  | 
680  | 
"x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0"  | 
|
681  | 
by (induct n) auto  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
682  | 
|
| 30056 | 683  | 
lemma nat_power_eq_Suc_0_iff [simp]:  | 
| 30996 | 684  | 
"x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0"  | 
685  | 
by (induct m) auto  | 
|
| 30056 | 686  | 
|
| 30996 | 687  | 
lemma power_Suc_0 [simp]:  | 
688  | 
"Suc 0 ^ n = Suc 0"  | 
|
689  | 
by simp  | 
|
| 30056 | 690  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
691  | 
text{*Valid for the naturals, but what if @{text"0<i<1"}?
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
692  | 
Premises cannot be weakened: consider the case where @{term "i=0"},
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
693  | 
@{term "m=1"} and @{term "n=0"}.*}
 | 
| 21413 | 694  | 
lemma nat_power_less_imp_less:  | 
695  | 
assumes nonneg: "0 < (i\<Colon>nat)"  | 
|
| 30996 | 696  | 
assumes less: "i ^ m < i ^ n"  | 
| 21413 | 697  | 
shows "m < n"  | 
698  | 
proof (cases "i = 1")  | 
|
699  | 
case True with less power_one [where 'a = nat] show ?thesis by simp  | 
|
700  | 
next  | 
|
701  | 
case False with nonneg have "1 < i" by auto  | 
|
702  | 
from power_strict_increasing_iff [OF this] less show ?thesis ..  | 
|
703  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
704  | 
|
| 
33274
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
705  | 
lemma power_dvd_imp_le:  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
706  | 
"i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n"  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
707  | 
apply (rule power_le_imp_le_exp, assumption)  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
708  | 
apply (erule dvd_imp_le, simp)  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
709  | 
done  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
710  | 
|
| 
31155
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
711  | 
|
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
712  | 
subsection {* Code generator tweak *}
 | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
713  | 
|
| 
45231
 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 
bulwahn 
parents: 
41550 
diff
changeset
 | 
714  | 
lemma power_power_power [code]:  | 
| 
31155
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
715  | 
  "power = power.power (1::'a::{power}) (op *)"
 | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
716  | 
unfolding power_def power.power_def ..  | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
717  | 
|
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
718  | 
declare power.power.simps [code]  | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
719  | 
|
| 33364 | 720  | 
code_modulename SML  | 
721  | 
Power Arith  | 
|
722  | 
||
723  | 
code_modulename OCaml  | 
|
724  | 
Power Arith  | 
|
725  | 
||
726  | 
code_modulename Haskell  | 
|
727  | 
Power Arith  | 
|
728  | 
||
| 
3390
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
729  | 
end  |