author | wenzelm |
Thu, 04 Oct 2001 15:29:22 +0200 | |
changeset 11679 | afdbee613f58 |
parent 6382 | 8b0c9205da75 |
child 12030 | 46d57d0290a2 |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Sprod0.thy |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1479 | 3 |
Author: Franz Regensburger |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
6382 | 6 |
Strict product with typedef. |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
Sprod0 = Cfun3 + |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
2640 | 11 |
constdefs |
12 |
Spair_Rep :: ['a,'b] => ['a,'b] => bool |
|
13 |
"Spair_Rep == (%a b. %x y.(~a=UU & ~b=UU --> x=a & y=b ))" |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
14 |
|
6382 | 15 |
typedef (Sprod) ('a, 'b) "**" (infixr 20) = "{f. ? a b. f = Spair_Rep (a::'a) (b::'b)}" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
16 |
|
2394 | 17 |
syntax (symbols) |
2640 | 18 |
"**" :: [type, type] => type ("(_ \\<otimes>/ _)" [21,20] 20) |
2394 | 19 |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
consts |
1479 | 21 |
Ispair :: "['a,'b] => ('a ** 'b)" |
22 |
Isfst :: "('a ** 'b) => 'a" |
|
23 |
Issnd :: "('a ** 'b) => 'b" |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
24 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
1150
diff
changeset
|
25 |
defs |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
26 |
(*defining the abstract constants*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
27 |
|
1479 | 28 |
Ispair_def "Ispair a b == Abs_Sprod(Spair_Rep a b)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
29 |
|
2640 | 30 |
Isfst_def "Isfst(p) == @z. (p=Ispair UU UU --> z=UU) |
1479 | 31 |
&(! a b. ~a=UU & ~b=UU & p=Ispair a b --> z=a)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
32 |
|
2640 | 33 |
Issnd_def "Issnd(p) == @z. (p=Ispair UU UU --> z=UU) |
1479 | 34 |
&(! a b. ~a=UU & ~b=UU & p=Ispair a b --> z=b)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
35 |
|
1274 | 36 |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
37 |
end |