| 
1459
 | 
     1  | 
(*  Title:      FOLP/classical
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
1459
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
0
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Like Provers/classical but modified because match_tac is unsuitable for
  | 
| 
 | 
     7  | 
proof objects.
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
Theorem prover for classical reasoning, including predicate calculus, set
  | 
| 
 | 
    10  | 
theory, etc.
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
Rules must be classified as intr, elim, safe, hazardous.
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
A rule is unsafe unless it can be applied blindly without harmful results.
  | 
| 
 | 
    15  | 
For a rule to be safe, its premises and conclusion should be logically
  | 
| 
 | 
    16  | 
equivalent.  There should be no variables in the premises that are not in
  | 
| 
 | 
    17  | 
the conclusion.
  | 
| 
 | 
    18  | 
*)
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
signature CLASSICAL_DATA =
  | 
| 
 | 
    21  | 
  sig
  | 
| 
1459
 | 
    22  | 
  val mp: thm                   (* [| P-->Q;  P |] ==> Q *)
  | 
| 
 | 
    23  | 
  val not_elim: thm             (* [| ~P;  P |] ==> R *)
  | 
| 
 | 
    24  | 
  val swap: thm                 (* ~P ==> (~Q ==> P) ==> Q *)
  | 
| 
 | 
    25  | 
  val sizef : thm -> int        (* size function for BEST_FIRST *)
  | 
| 
0
 | 
    26  | 
  val hyp_subst_tacs: (int -> tactic) list
  | 
| 
 | 
    27  | 
  end;
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
(*Higher precedence than := facilitates use of references*)
  | 
| 
 | 
    30  | 
infix 4 addSIs addSEs addSDs addIs addEs addDs;
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
signature CLASSICAL =
  | 
| 
 | 
    34  | 
  sig
  | 
| 
 | 
    35  | 
  type claset
  | 
| 
 | 
    36  | 
  val empty_cs: claset
  | 
| 
 | 
    37  | 
  val addDs : claset * thm list -> claset
  | 
| 
 | 
    38  | 
  val addEs : claset * thm list -> claset
  | 
| 
 | 
    39  | 
  val addIs : claset * thm list -> claset
  | 
| 
 | 
    40  | 
  val addSDs: claset * thm list -> claset
  | 
| 
 | 
    41  | 
  val addSEs: claset * thm list -> claset
  | 
| 
 | 
    42  | 
  val addSIs: claset * thm list -> claset
  | 
| 
 | 
    43  | 
  val print_cs: claset -> unit
  | 
| 
4653
 | 
    44  | 
  val rep_cs: claset -> 
  | 
| 
0
 | 
    45  | 
      {safeIs: thm list, safeEs: thm list, hazIs: thm list, hazEs: thm list, 
 | 
| 
 | 
    46  | 
       safe0_brls:(bool*thm)list, safep_brls: (bool*thm)list,
  | 
| 
 | 
    47  | 
       haz_brls: (bool*thm)list}
  | 
| 
 | 
    48  | 
  val best_tac : claset -> int -> tactic
  | 
| 
 | 
    49  | 
  val contr_tac : int -> tactic
  | 
| 
 | 
    50  | 
  val fast_tac : claset -> int -> tactic
  | 
| 
 | 
    51  | 
  val inst_step_tac : int -> tactic
  | 
| 
 | 
    52  | 
  val joinrules : thm list * thm list -> (bool * thm) list
  | 
| 
 | 
    53  | 
  val mp_tac: int -> tactic
  | 
| 
 | 
    54  | 
  val safe_tac : claset -> tactic
  | 
| 
 | 
    55  | 
  val safe_step_tac : claset -> int -> tactic
  | 
| 
 | 
    56  | 
  val slow_step_tac : claset -> int -> tactic
  | 
| 
 | 
    57  | 
  val step_tac : claset -> int -> tactic
  | 
| 
 | 
    58  | 
  val swapify : thm list -> thm list
  | 
| 
 | 
    59  | 
  val swap_res_tac : thm list -> int -> tactic
  | 
| 
 | 
    60  | 
  val uniq_mp_tac: int -> tactic
  | 
| 
 | 
    61  | 
  end;
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL = 
  | 
| 
 | 
    65  | 
struct
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
local open Data in
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
(** Useful tactics for classical reasoning **)
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
val imp_elim = make_elim mp;
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
(*Solve goal that assumes both P and ~P. *)
  | 
| 
1459
 | 
    74  | 
val contr_tac = etac not_elim THEN'  assume_tac;
  | 
| 
0
 | 
    75  | 
  | 
| 
 | 
    76  | 
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
  | 
| 
 | 
    77  | 
fun mp_tac i = eresolve_tac ([not_elim,imp_elim]) i  THEN  assume_tac i;
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
(*Like mp_tac but instantiates no variables*)
  | 
| 
 | 
    80  | 
fun uniq_mp_tac i = ematch_tac ([not_elim,imp_elim]) i  THEN  uniq_assume_tac i;
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
(*Creates rules to eliminate ~A, from rules to introduce A*)
  | 
| 
 | 
    83  | 
fun swapify intrs = intrs RLN (2, [swap]);
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
(*Uses introduction rules in the normal way, or on negated assumptions,
  | 
| 
 | 
    86  | 
  trying rules in order. *)
  | 
| 
 | 
    87  | 
fun swap_res_tac rls = 
  | 
| 
 | 
    88  | 
    let fun tacf rl = rtac rl ORELSE' etac (rl RSN (2,swap))
  | 
| 
 | 
    89  | 
    in  assume_tac ORELSE' contr_tac ORELSE' FIRST' (map tacf rls)
  | 
| 
 | 
    90  | 
    end;
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
(*** Classical rule sets ***)
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
datatype claset =
  | 
| 
 | 
    96  | 
 CS of {safeIs: thm list,
 | 
| 
1459
 | 
    97  | 
        safeEs: thm list,
  | 
| 
 | 
    98  | 
        hazIs: thm list,
  | 
| 
 | 
    99  | 
        hazEs: thm list,
  | 
| 
 | 
   100  | 
        (*the following are computed from the above*)
  | 
| 
 | 
   101  | 
        safe0_brls: (bool*thm)list,
  | 
| 
 | 
   102  | 
        safep_brls: (bool*thm)list,
  | 
| 
 | 
   103  | 
        haz_brls: (bool*thm)list};
  | 
| 
0
 | 
   104  | 
  
  | 
| 
4653
 | 
   105  | 
fun rep_cs (CS x) = x;
  | 
| 
0
 | 
   106  | 
  | 
| 
 | 
   107  | 
(*For use with biresolve_tac.  Combines intrs with swap to catch negated
  | 
| 
 | 
   108  | 
  assumptions.  Also pairs elims with true. *)
  | 
| 
 | 
   109  | 
fun joinrules (intrs,elims) =  
  | 
| 
 | 
   110  | 
  map (pair true) (elims @ swapify intrs)  @  map (pair false) intrs;
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
(*Note that allE precedes exI in haz_brls*)
  | 
| 
 | 
   113  | 
fun make_cs {safeIs,safeEs,hazIs,hazEs} =
 | 
| 
 | 
   114  | 
  let val (safe0_brls, safep_brls) = (*0 subgoals vs 1 or more*)
  | 
| 
17496
 | 
   115  | 
          List.partition (curry (op =) 0 o subgoals_of_brl) 
  | 
| 
4440
 | 
   116  | 
             (sort (make_ord lessb) (joinrules(safeIs, safeEs)))
  | 
| 
0
 | 
   117  | 
  in CS{safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs,
 | 
| 
1459
 | 
   118  | 
        safe0_brls=safe0_brls, safep_brls=safep_brls,
  | 
| 
4440
 | 
   119  | 
        haz_brls = sort (make_ord lessb) (joinrules(hazIs, hazEs))}
  | 
| 
0
 | 
   120  | 
  end;
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
(*** Manipulation of clasets ***)
  | 
| 
 | 
   123  | 
  | 
| 
 | 
   124  | 
val empty_cs = make_cs{safeIs=[], safeEs=[], hazIs=[], hazEs=[]};
 | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
fun print_cs (CS{safeIs,safeEs,hazIs,hazEs,...}) =
 | 
| 
 | 
   127  | 
 (writeln"Introduction rules";  prths hazIs;
  | 
| 
 | 
   128  | 
  writeln"Safe introduction rules";  prths safeIs;
  | 
| 
 | 
   129  | 
  writeln"Elimination rules";  prths hazEs;
  | 
| 
 | 
   130  | 
  writeln"Safe elimination rules";  prths safeEs;
  | 
| 
 | 
   131  | 
  ());
  | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSIs ths =
 | 
| 
 | 
   134  | 
  make_cs {safeIs=ths@safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
 | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSEs ths =
 | 
| 
 | 
   137  | 
  make_cs {safeIs=safeIs, safeEs=ths@safeEs, hazIs=hazIs, hazEs=hazEs};
 | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
fun cs addSDs ths = cs addSEs (map make_elim ths);
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addIs ths =
 | 
| 
 | 
   142  | 
  make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=ths@hazIs, hazEs=hazEs};
 | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addEs ths =
 | 
| 
 | 
   145  | 
  make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=ths@hazEs};
 | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
fun cs addDs ths = cs addEs (map make_elim ths);
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
(*** Simple tactics for theorem proving ***)
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
(*Attack subgoals using safe inferences*)
  | 
| 
 | 
   152  | 
fun safe_step_tac (CS{safe0_brls,safep_brls,...}) = 
 | 
| 
 | 
   153  | 
  FIRST' [uniq_assume_tac,
  | 
| 
1459
 | 
   154  | 
          uniq_mp_tac,
  | 
| 
 | 
   155  | 
          biresolve_tac safe0_brls,
  | 
| 
 | 
   156  | 
          FIRST' hyp_subst_tacs,
  | 
| 
 | 
   157  | 
          biresolve_tac safep_brls] ;
  | 
| 
0
 | 
   158  | 
  | 
| 
 | 
   159  | 
(*Repeatedly attack subgoals using safe inferences*)
  | 
| 
 | 
   160  | 
fun safe_tac cs = DETERM (REPEAT_FIRST (safe_step_tac cs));
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
(*These steps could instantiate variables and are therefore unsafe.*)
  | 
| 
 | 
   163  | 
val inst_step_tac = assume_tac APPEND' contr_tac;
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
(*Single step for the prover.  FAILS unless it makes progress. *)
  | 
| 
 | 
   166  | 
fun step_tac (cs as (CS{haz_brls,...})) i = 
 | 
| 
 | 
   167  | 
  FIRST [safe_tac cs,
  | 
| 
 | 
   168  | 
         inst_step_tac i,
  | 
| 
 | 
   169  | 
         biresolve_tac haz_brls i];
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
(*** The following tactics all fail unless they solve one goal ***)
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
(*Dumb but fast*)
  | 
| 
 | 
   174  | 
fun fast_tac cs = SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));
  | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
(*Slower but smarter than fast_tac*)
  | 
| 
 | 
   177  | 
fun best_tac cs = 
  | 
| 
 | 
   178  | 
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));
  | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
(*Using a "safe" rule to instantiate variables is unsafe.  This tactic
  | 
| 
 | 
   181  | 
  allows backtracking from "safe" rules to "unsafe" rules here.*)
  | 
| 
 | 
   182  | 
fun slow_step_tac (cs as (CS{haz_brls,...})) i = 
 | 
| 
 | 
   183  | 
    safe_tac cs ORELSE (assume_tac i APPEND biresolve_tac haz_brls i);
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
end; 
  | 
| 
 | 
   186  | 
end;
  |