| 
16697
 | 
     1  | 
(*  Title:      HOLCF/Pcpodef.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Brian Huffman
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* Subtypes of pcpos *}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Pcpodef
  | 
| 
 | 
     9  | 
imports Adm
  | 
| 
23152
 | 
    10  | 
uses ("Tools/pcpodef_package.ML")
 | 
| 
16697
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
subsection {* Proving a subtype is a partial order *}
 | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
text {*
 | 
| 
 | 
    16  | 
  A subtype of a partial order is itself a partial order,
  | 
| 
 | 
    17  | 
  if the ordering is defined in the standard way.
  | 
| 
 | 
    18  | 
*}
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
theorem typedef_po:
  | 
| 
 | 
    21  | 
  fixes Abs :: "'a::po \<Rightarrow> 'b::sq_ord"
  | 
| 
 | 
    22  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
    23  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
    24  | 
  shows "OFCLASS('b, po_class)"
 | 
| 
 | 
    25  | 
 apply (intro_classes, unfold less)
  | 
| 
 | 
    26  | 
   apply (rule refl_less)
  | 
| 
16918
 | 
    27  | 
  apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
  | 
| 
 | 
    28  | 
  apply (erule (1) antisym_less)
  | 
| 
 | 
    29  | 
 apply (erule (1) trans_less)
  | 
| 
16697
 | 
    30  | 
done
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  | 
| 
17812
 | 
    33  | 
subsection {* Proving a subtype is chain-finite *}
 | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma monofun_Rep:
  | 
| 
 | 
    36  | 
  assumes less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
    37  | 
  shows "monofun Rep"
  | 
| 
 | 
    38  | 
by (rule monofunI, unfold less)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemmas ch2ch_Rep = ch2ch_monofun [OF monofun_Rep]
  | 
| 
 | 
    41  | 
lemmas ub2ub_Rep = ub2ub_monofun [OF monofun_Rep]
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
theorem typedef_chfin:
  | 
| 
 | 
    44  | 
  fixes Abs :: "'a::chfin \<Rightarrow> 'b::po"
  | 
| 
 | 
    45  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
    46  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
    47  | 
  shows "OFCLASS('b, chfin_class)"
 | 
| 
 | 
    48  | 
 apply (intro_classes, clarify)
  | 
| 
 | 
    49  | 
 apply (drule ch2ch_Rep [OF less])
  | 
| 
 | 
    50  | 
 apply (drule chfin [rule_format])
  | 
| 
 | 
    51  | 
 apply (unfold max_in_chain_def)
  | 
| 
 | 
    52  | 
 apply (simp add: type_definition.Rep_inject [OF type])
  | 
| 
 | 
    53  | 
done
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  | 
| 
16697
 | 
    56  | 
subsection {* Proving a subtype is complete *}
 | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
text {*
 | 
| 
 | 
    59  | 
  A subtype of a cpo is itself a cpo if the ordering is
  | 
| 
 | 
    60  | 
  defined in the standard way, and the defining subset
  | 
| 
 | 
    61  | 
  is closed with respect to limits of chains.  A set is
  | 
| 
 | 
    62  | 
  closed if and only if membership in the set is an
  | 
| 
 | 
    63  | 
  admissible predicate.
  | 
| 
 | 
    64  | 
*}
  | 
| 
 | 
    65  | 
  | 
| 
16918
 | 
    66  | 
lemma Abs_inverse_lub_Rep:
  | 
| 
16697
 | 
    67  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
  | 
| 
 | 
    68  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
    69  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
    70  | 
    and adm:  "adm (\<lambda>x. x \<in> A)"
  | 
| 
16918
 | 
    71  | 
  shows "chain S \<Longrightarrow> Rep (Abs (\<Squnion>i. Rep (S i))) = (\<Squnion>i. Rep (S i))"
  | 
| 
 | 
    72  | 
 apply (rule type_definition.Abs_inverse [OF type])
  | 
| 
 | 
    73  | 
 apply (erule admD [OF adm ch2ch_Rep [OF less], rule_format])
  | 
| 
16697
 | 
    74  | 
 apply (rule type_definition.Rep [OF type])
  | 
| 
 | 
    75  | 
done
  | 
| 
 | 
    76  | 
  | 
| 
16918
 | 
    77  | 
theorem typedef_lub:
  | 
| 
16697
 | 
    78  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
  | 
| 
 | 
    79  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
    80  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
    81  | 
    and adm: "adm (\<lambda>x. x \<in> A)"
  | 
| 
16918
 | 
    82  | 
  shows "chain S \<Longrightarrow> range S <<| Abs (\<Squnion>i. Rep (S i))"
  | 
| 
 | 
    83  | 
 apply (frule ch2ch_Rep [OF less])
  | 
| 
16697
 | 
    84  | 
 apply (rule is_lubI)
  | 
| 
 | 
    85  | 
  apply (rule ub_rangeI)
  | 
| 
16918
 | 
    86  | 
  apply (simp only: less Abs_inverse_lub_Rep [OF type less adm])
  | 
| 
 | 
    87  | 
  apply (erule is_ub_thelub)
  | 
| 
 | 
    88  | 
 apply (simp only: less Abs_inverse_lub_Rep [OF type less adm])
  | 
| 
 | 
    89  | 
 apply (erule is_lub_thelub)
  | 
| 
 | 
    90  | 
 apply (erule ub2ub_Rep [OF less])
  | 
| 
16697
 | 
    91  | 
done
  | 
| 
 | 
    92  | 
  | 
| 
16918
 | 
    93  | 
lemmas typedef_thelub = typedef_lub [THEN thelubI, standard]
  | 
| 
 | 
    94  | 
  | 
| 
16697
 | 
    95  | 
theorem typedef_cpo:
  | 
| 
 | 
    96  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
  | 
| 
 | 
    97  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
    98  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
    99  | 
    and adm: "adm (\<lambda>x. x \<in> A)"
  | 
| 
 | 
   100  | 
  shows "OFCLASS('b, cpo_class)"
 | 
| 
16918
 | 
   101  | 
proof
  | 
| 
 | 
   102  | 
  fix S::"nat \<Rightarrow> 'b" assume "chain S"
  | 
| 
 | 
   103  | 
  hence "range S <<| Abs (\<Squnion>i. Rep (S i))"
  | 
| 
 | 
   104  | 
    by (rule typedef_lub [OF type less adm])
  | 
| 
 | 
   105  | 
  thus "\<exists>x. range S <<| x" ..
  | 
| 
 | 
   106  | 
qed
  | 
| 
16697
 | 
   107  | 
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
subsubsection {* Continuity of @{term Rep} and @{term Abs} *}
 | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
text {* For any sub-cpo, the @{term Rep} function is continuous. *}
 | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
theorem typedef_cont_Rep:
  | 
| 
 | 
   114  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
  | 
| 
 | 
   115  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   116  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   117  | 
    and adm: "adm (\<lambda>x. x \<in> A)"
  | 
| 
 | 
   118  | 
  shows "cont Rep"
  | 
| 
 | 
   119  | 
 apply (rule contI)
  | 
| 
16918
 | 
   120  | 
 apply (simp only: typedef_thelub [OF type less adm])
  | 
| 
 | 
   121  | 
 apply (simp only: Abs_inverse_lub_Rep [OF type less adm])
  | 
| 
16697
 | 
   122  | 
 apply (rule thelubE [OF _ refl])
  | 
| 
16918
 | 
   123  | 
 apply (erule ch2ch_Rep [OF less])
  | 
| 
16697
 | 
   124  | 
done
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
text {*
 | 
| 
 | 
   127  | 
  For a sub-cpo, we can make the @{term Abs} function continuous
 | 
| 
 | 
   128  | 
  only if we restrict its domain to the defining subset by
  | 
| 
 | 
   129  | 
  composing it with another continuous function.
  | 
| 
 | 
   130  | 
*}
  | 
| 
 | 
   131  | 
  | 
| 
16918
 | 
   132  | 
theorem typedef_is_lubI:
  | 
| 
 | 
   133  | 
  assumes less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   134  | 
  shows "range (\<lambda>i. Rep (S i)) <<| Rep x \<Longrightarrow> range S <<| x"
  | 
| 
 | 
   135  | 
 apply (rule is_lubI)
  | 
| 
 | 
   136  | 
  apply (rule ub_rangeI)
  | 
| 
 | 
   137  | 
  apply (subst less)
  | 
| 
 | 
   138  | 
  apply (erule is_ub_lub)
  | 
| 
 | 
   139  | 
 apply (subst less)
  | 
| 
 | 
   140  | 
 apply (erule is_lub_lub)
  | 
| 
 | 
   141  | 
 apply (erule ub2ub_Rep [OF less])
  | 
| 
 | 
   142  | 
done
  | 
| 
 | 
   143  | 
  | 
| 
16697
 | 
   144  | 
theorem typedef_cont_Abs:
  | 
| 
 | 
   145  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
  | 
| 
 | 
   146  | 
  fixes f :: "'c::cpo \<Rightarrow> 'a::cpo"
  | 
| 
 | 
   147  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   148  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
16918
 | 
   149  | 
    and adm: "adm (\<lambda>x. x \<in> A)" (* not used *)
  | 
| 
16697
 | 
   150  | 
    and f_in_A: "\<And>x. f x \<in> A"
  | 
| 
 | 
   151  | 
    and cont_f: "cont f"
  | 
| 
 | 
   152  | 
  shows "cont (\<lambda>x. Abs (f x))"
  | 
| 
 | 
   153  | 
 apply (rule contI)
  | 
| 
16918
 | 
   154  | 
 apply (rule typedef_is_lubI [OF less])
  | 
| 
 | 
   155  | 
 apply (simp only: type_definition.Abs_inverse [OF type f_in_A])
  | 
| 
 | 
   156  | 
 apply (erule cont_f [THEN contE])
  | 
| 
16697
 | 
   157  | 
done
  | 
| 
 | 
   158  | 
  | 
| 
17833
 | 
   159  | 
subsection {* Proving subtype elements are compact *}
 | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
theorem typedef_compact:
  | 
| 
 | 
   162  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
  | 
| 
 | 
   163  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   164  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   165  | 
    and adm: "adm (\<lambda>x. x \<in> A)"
  | 
| 
 | 
   166  | 
  shows "compact (Rep k) \<Longrightarrow> compact k"
  | 
| 
 | 
   167  | 
proof (unfold compact_def)
  | 
| 
 | 
   168  | 
  have cont_Rep: "cont Rep"
  | 
| 
 | 
   169  | 
    by (rule typedef_cont_Rep [OF type less adm])
  | 
| 
 | 
   170  | 
  assume "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> x)"
  | 
| 
 | 
   171  | 
  with cont_Rep have "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> Rep x)" by (rule adm_subst)
  | 
| 
 | 
   172  | 
  thus "adm (\<lambda>x. \<not> k \<sqsubseteq> x)" by (unfold less)
  | 
| 
 | 
   173  | 
qed
  | 
| 
 | 
   174  | 
  | 
| 
16697
 | 
   175  | 
subsection {* Proving a subtype is pointed *}
 | 
| 
 | 
   176  | 
  | 
| 
 | 
   177  | 
text {*
 | 
| 
 | 
   178  | 
  A subtype of a cpo has a least element if and only if
  | 
| 
 | 
   179  | 
  the defining subset has a least element.
  | 
| 
 | 
   180  | 
*}
  | 
| 
 | 
   181  | 
  | 
| 
16918
 | 
   182  | 
theorem typedef_pcpo_generic:
  | 
| 
16697
 | 
   183  | 
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
  | 
| 
 | 
   184  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   185  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   186  | 
    and z_in_A: "z \<in> A"
  | 
| 
 | 
   187  | 
    and z_least: "\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x"
  | 
| 
 | 
   188  | 
  shows "OFCLASS('b, pcpo_class)"
 | 
| 
 | 
   189  | 
 apply (intro_classes)
  | 
| 
 | 
   190  | 
 apply (rule_tac x="Abs z" in exI, rule allI)
  | 
| 
 | 
   191  | 
 apply (unfold less)
  | 
| 
 | 
   192  | 
 apply (subst type_definition.Abs_inverse [OF type z_in_A])
  | 
| 
 | 
   193  | 
 apply (rule z_least [OF type_definition.Rep [OF type]])
  | 
| 
 | 
   194  | 
done
  | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
text {*
 | 
| 
 | 
   197  | 
  As a special case, a subtype of a pcpo has a least element
  | 
| 
 | 
   198  | 
  if the defining subset contains @{term \<bottom>}.
 | 
| 
 | 
   199  | 
*}
  | 
| 
 | 
   200  | 
  | 
| 
16918
 | 
   201  | 
theorem typedef_pcpo:
  | 
| 
16697
 | 
   202  | 
  fixes Abs :: "'a::pcpo \<Rightarrow> 'b::cpo"
  | 
| 
 | 
   203  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   204  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   205  | 
    and UU_in_A: "\<bottom> \<in> A"
  | 
| 
 | 
   206  | 
  shows "OFCLASS('b, pcpo_class)"
 | 
| 
16918
 | 
   207  | 
by (rule typedef_pcpo_generic [OF type less UU_in_A], rule minimal)
  | 
| 
16697
 | 
   208  | 
  | 
| 
 | 
   209  | 
subsubsection {* Strictness of @{term Rep} and @{term Abs} *}
 | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
text {*
 | 
| 
 | 
   212  | 
  For a sub-pcpo where @{term \<bottom>} is a member of the defining
 | 
| 
 | 
   213  | 
  subset, @{term Rep} and @{term Abs} are both strict.
 | 
| 
 | 
   214  | 
*}
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
theorem typedef_Abs_strict:
  | 
| 
 | 
   217  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   218  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   219  | 
    and UU_in_A: "\<bottom> \<in> A"
  | 
| 
 | 
   220  | 
  shows "Abs \<bottom> = \<bottom>"
  | 
| 
 | 
   221  | 
 apply (rule UU_I, unfold less)
  | 
| 
 | 
   222  | 
 apply (simp add: type_definition.Abs_inverse [OF type UU_in_A])
  | 
| 
 | 
   223  | 
done
  | 
| 
 | 
   224  | 
  | 
| 
 | 
   225  | 
theorem typedef_Rep_strict:
  | 
| 
 | 
   226  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   227  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   228  | 
    and UU_in_A: "\<bottom> \<in> A"
  | 
| 
 | 
   229  | 
  shows "Rep \<bottom> = \<bottom>"
  | 
| 
 | 
   230  | 
 apply (rule typedef_Abs_strict [OF type less UU_in_A, THEN subst])
  | 
| 
 | 
   231  | 
 apply (rule type_definition.Abs_inverse [OF type UU_in_A])
  | 
| 
 | 
   232  | 
done
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
theorem typedef_Abs_defined:
  | 
| 
 | 
   235  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   236  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   237  | 
    and UU_in_A: "\<bottom> \<in> A"
  | 
| 
 | 
   238  | 
  shows "\<lbrakk>x \<noteq> \<bottom>; x \<in> A\<rbrakk> \<Longrightarrow> Abs x \<noteq> \<bottom>"
  | 
| 
 | 
   239  | 
 apply (rule typedef_Abs_strict [OF type less UU_in_A, THEN subst])
  | 
| 
 | 
   240  | 
 apply (simp add: type_definition.Abs_inject [OF type] UU_in_A)
  | 
| 
 | 
   241  | 
done
  | 
| 
 | 
   242  | 
  | 
| 
 | 
   243  | 
theorem typedef_Rep_defined:
  | 
| 
 | 
   244  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   245  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   246  | 
    and UU_in_A: "\<bottom> \<in> A"
  | 
| 
 | 
   247  | 
  shows "x \<noteq> \<bottom> \<Longrightarrow> Rep x \<noteq> \<bottom>"
  | 
| 
 | 
   248  | 
 apply (rule typedef_Rep_strict [OF type less UU_in_A, THEN subst])
  | 
| 
 | 
   249  | 
 apply (simp add: type_definition.Rep_inject [OF type])
  | 
| 
 | 
   250  | 
done
  | 
| 
 | 
   251  | 
  | 
| 
19519
 | 
   252  | 
subsection {* Proving a subtype is flat *}
 | 
| 
 | 
   253  | 
  | 
| 
 | 
   254  | 
theorem typedef_flat:
  | 
| 
 | 
   255  | 
  fixes Abs :: "'a::flat \<Rightarrow> 'b::pcpo"
  | 
| 
 | 
   256  | 
  assumes type: "type_definition Rep Abs A"
  | 
| 
 | 
   257  | 
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
  | 
| 
 | 
   258  | 
    and UU_in_A: "\<bottom> \<in> A"
  | 
| 
 | 
   259  | 
  shows "OFCLASS('b, flat_class)"
 | 
| 
 | 
   260  | 
 apply (intro_classes)
  | 
| 
 | 
   261  | 
 apply (unfold less)
  | 
| 
 | 
   262  | 
 apply (simp add: type_definition.Rep_inject [OF type, symmetric])
  | 
| 
 | 
   263  | 
 apply (simp add: typedef_Rep_strict [OF type less UU_in_A])
  | 
| 
 | 
   264  | 
 apply (simp add: ax_flat)
  | 
| 
 | 
   265  | 
done
  | 
| 
 | 
   266  | 
  | 
| 
16697
 | 
   267  | 
subsection {* HOLCF type definition package *}
 | 
| 
 | 
   268  | 
  | 
| 
23152
 | 
   269  | 
use "Tools/pcpodef_package.ML"
  | 
| 
16697
 | 
   270  | 
  | 
| 
 | 
   271  | 
end
  |