| 
30661
 | 
     1  | 
(* Author: Amine Chaieb, University of Cambridge *)
  | 
| 
29838
 | 
     2  | 
  | 
| 
30661
 | 
     3  | 
header {* Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs *}
 | 
| 
29838
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Glbs
  | 
| 
 | 
     6  | 
imports Lubs
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
46509
 | 
     9  | 
definition greatestP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a::ord \<Rightarrow> bool"
 | 
| 
 | 
    10  | 
  where "greatestP P x = (P x \<and> Collect P *<=  x)"
  | 
| 
29838
 | 
    11  | 
  | 
| 
46509
 | 
    12  | 
definition isLb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
  | 
| 
 | 
    13  | 
  where "isLb R S x = (x <=* S \<and> x: R)"
  | 
| 
29838
 | 
    14  | 
  | 
| 
46509
 | 
    15  | 
definition isGlb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
  | 
| 
 | 
    16  | 
  where "isGlb R S x = greatestP (isLb R S) x"
  | 
| 
29838
 | 
    17  | 
  | 
| 
46509
 | 
    18  | 
definition lbs :: "'a set \<Rightarrow> 'a::ord set \<Rightarrow> 'a set"
  | 
| 
 | 
    19  | 
  where "lbs R S = Collect (isLb R S)"
  | 
| 
 | 
    20  | 
  | 
| 
29838
 | 
    21  | 
  | 
| 
46509
 | 
    22  | 
subsection {* Rules about the Operators @{term greatestP}, @{term isLb}
 | 
| 
 | 
    23  | 
  and @{term isGlb} *}
 | 
| 
29838
 | 
    24  | 
  | 
| 
46509
 | 
    25  | 
lemma leastPD1: "greatestP P x \<Longrightarrow> P x"
  | 
| 
 | 
    26  | 
  by (simp add: greatestP_def)
  | 
| 
29838
 | 
    27  | 
  | 
| 
46509
 | 
    28  | 
lemma greatestPD2: "greatestP P x \<Longrightarrow> Collect P *<= x"
  | 
| 
 | 
    29  | 
  by (simp add: greatestP_def)
  | 
| 
29838
 | 
    30  | 
  | 
| 
46509
 | 
    31  | 
lemma greatestPD3: "greatestP P x \<Longrightarrow> y: Collect P \<Longrightarrow> x \<ge> y"
  | 
| 
 | 
    32  | 
  by (blast dest!: greatestPD2 setleD)
  | 
| 
29838
 | 
    33  | 
  | 
| 
46509
 | 
    34  | 
lemma isGlbD1: "isGlb R S x \<Longrightarrow> x <=* S"
  | 
| 
 | 
    35  | 
  by (simp add: isGlb_def isLb_def greatestP_def)
  | 
| 
29838
 | 
    36  | 
  | 
| 
46509
 | 
    37  | 
lemma isGlbD1a: "isGlb R S x \<Longrightarrow> x: R"
  | 
| 
 | 
    38  | 
  by (simp add: isGlb_def isLb_def greatestP_def)
  | 
| 
29838
 | 
    39  | 
  | 
| 
46509
 | 
    40  | 
lemma isGlb_isLb: "isGlb R S x \<Longrightarrow> isLb R S x"
  | 
| 
 | 
    41  | 
  unfolding isLb_def by (blast dest: isGlbD1 isGlbD1a)
  | 
| 
29838
 | 
    42  | 
  | 
| 
46509
 | 
    43  | 
lemma isGlbD2: "isGlb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
  | 
| 
 | 
    44  | 
  by (blast dest!: isGlbD1 setgeD)
  | 
| 
29838
 | 
    45  | 
  | 
| 
46509
 | 
    46  | 
lemma isGlbD3: "isGlb R S x \<Longrightarrow> greatestP (isLb R S) x"
  | 
| 
 | 
    47  | 
  by (simp add: isGlb_def)
  | 
| 
29838
 | 
    48  | 
  | 
| 
46509
 | 
    49  | 
lemma isGlbI1: "greatestP (isLb R S) x \<Longrightarrow> isGlb R S x"
  | 
| 
 | 
    50  | 
  by (simp add: isGlb_def)
  | 
| 
29838
 | 
    51  | 
  | 
| 
46509
 | 
    52  | 
lemma isGlbI2: "isLb R S x \<Longrightarrow> Collect (isLb R S) *<= x \<Longrightarrow> isGlb R S x"
  | 
| 
 | 
    53  | 
  by (simp add: isGlb_def greatestP_def)
  | 
| 
29838
 | 
    54  | 
  | 
| 
46509
 | 
    55  | 
lemma isLbD: "isLb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
  | 
| 
 | 
    56  | 
  by (simp add: isLb_def setge_def)
  | 
| 
29838
 | 
    57  | 
  | 
| 
46509
 | 
    58  | 
lemma isLbD2: "isLb R S x \<Longrightarrow> x <=* S "
  | 
| 
 | 
    59  | 
  by (simp add: isLb_def)
  | 
| 
29838
 | 
    60  | 
  | 
| 
46509
 | 
    61  | 
lemma isLbD2a: "isLb R S x \<Longrightarrow> x: R"
  | 
| 
 | 
    62  | 
  by (simp add: isLb_def)
  | 
| 
29838
 | 
    63  | 
  | 
| 
46509
 | 
    64  | 
lemma isLbI: "x <=* S \<Longrightarrow> x: R \<Longrightarrow> isLb R S x"
  | 
| 
 | 
    65  | 
  by (simp add: isLb_def)
  | 
| 
29838
 | 
    66  | 
  | 
| 
46509
 | 
    67  | 
lemma isGlb_le_isLb: "isGlb R S x \<Longrightarrow> isLb R S y \<Longrightarrow> x \<ge> y"
  | 
| 
 | 
    68  | 
  unfolding isGlb_def by (blast intro!: greatestPD3)
  | 
| 
29838
 | 
    69  | 
  | 
| 
46509
 | 
    70  | 
lemma isGlb_ubs: "isGlb R S x \<Longrightarrow> lbs R S *<= x"
  | 
| 
 | 
    71  | 
  unfolding lbs_def isGlb_def by (rule greatestPD2)
  | 
| 
29838
 | 
    72  | 
  | 
| 
 | 
    73  | 
end
  |