doc-src/TutorialI/Inductive/document/Mutual.tex
author paulson
Fri, 18 Mar 2005 14:31:50 +0100
changeset 15614 b098158a3f39
parent 15481 fc075ae929e4
child 16069 3f2a9f400168
permissions -rw-r--r--
auto update
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Mutual}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
     4
\isamarkupfalse%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     5
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10790
diff changeset
     6
\isamarkupsubsection{Mutually Inductive Definitions%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     7
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
     8
\isamarkuptrue%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     9
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    10
\begin{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    11
Just as there are datatypes defined by mutual recursion, there are sets defined
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    12
by mutual induction. As a trivial example we consider the even and odd
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    13
natural numbers:%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    14
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    15
\isamarkuptrue%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    16
\isacommand{consts}\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    17
\ \ \ \ \ \ \ odd\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    18
\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    19
\isamarkupfalse%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    20
\isacommand{inductive}\ even\ odd\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    21
\isakeyword{intros}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    22
zero{\isacharcolon}\ \ {\isachardoublequote}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    23
evenI{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ odd\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    24
oddI{\isacharcolon}\ \ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ odd{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    25
%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    26
\begin{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    27
\noindent
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    28
The mutually inductive definition of multiple sets is no different from
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    29
that of a single set, except for induction: just as for mutually recursive
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    30
datatypes, induction needs to involve all the simultaneously defined sets. In
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    31
the above case, the induction rule is called \isa{even{\isacharunderscore}odd{\isachardot}induct}
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    32
(simply concatenate the names of the sets involved) and has the conclusion
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    33
\begin{isabelle}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    34
\ \ \ \ \ {\isacharparenleft}{\isacharquery}x\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isacharquery}y\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isacharquery}Q\ {\isacharquery}y{\isacharparenright}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    35
\end{isabelle}
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    36
11494
23a118849801 revisions and indexing
paulson
parents: 10878
diff changeset
    37
If we want to prove that all even numbers are divisible by two, we have to
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    38
generalize the statement as follows:%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    39
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    40
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    41
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}m\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ m{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}n\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    42
\isamarkuptrue%
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14470
diff changeset
    43
\isamarkupfalse%
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    44
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    45
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    46
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    47
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    48
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    49
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    50
\isamarkupfalse%
15614
b098158a3f39 auto update
paulson
parents: 15481
diff changeset
    51
\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    52
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    53
\isamarkupfalse%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    54
\end{isabellebody}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    55
%%% Local Variables:
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    56
%%% mode: latex
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    57
%%% TeX-master: "root"
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    58
%%% End: