| author | wenzelm | 
| Fri, 23 Sep 2011 16:50:39 +0200 | |
| changeset 45064 | b099f5cfd32c | 
| parent 44969 | c56a40059258 | 
| child 45618 | cdb15f190788 | 
| permissions | -rw-r--r-- | 
| 30293 | 1  | 
(*<*)  | 
| 30401 | 2  | 
theory Main_Doc  | 
| 30293 | 3  | 
imports Main  | 
4  | 
begin  | 
|
5  | 
||
| 
43564
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
6  | 
setup {*
 | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
7  | 
let  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
8  | 
fun pretty_term_type_only ctxt (t, T) =  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
9  | 
(if fastype_of t = Sign.certify_typ (Proof_Context.theory_of ctxt) T then ()  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
10  | 
else error "term_type_only: type mismatch";  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
11  | 
Syntax.pretty_typ ctxt T)  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
12  | 
in  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
13  | 
    Thy_Output.antiquotation @{binding term_type_only}
 | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
14  | 
(Args.term -- Args.typ_abbrev)  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
15  | 
      (fn {source, context = ctxt, ...} => fn arg =>
 | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
16  | 
Thy_Output.output ctxt  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
17  | 
(Thy_Output.maybe_pretty_source pretty_term_type_only ctxt source [arg]))  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
18  | 
end  | 
| 30293 | 19  | 
*}  | 
20  | 
(*>*)  | 
|
21  | 
text{*
 | 
|
22  | 
||
23  | 
\begin{abstract}
 | 
|
| 30442 | 24  | 
This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisticated class structure is only hinted at. For details see \url{http://isabelle.in.tum.de/dist/library/HOL/}.
 | 
| 30293 | 25  | 
\end{abstract}
 | 
26  | 
||
27  | 
\section{HOL}
 | 
|
28  | 
||
| 30440 | 29  | 
The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}.
 | 
30  | 
\smallskip  | 
|
31  | 
||
32  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
33  | 
@{const HOL.undefined} & @{typeof HOL.undefined}\\
 | 
|
34  | 
@{const HOL.default} & @{typeof HOL.default}\\
 | 
|
35  | 
\end{tabular}
 | 
|
36  | 
||
37  | 
\subsubsection*{Syntax}
 | 
|
| 30293 | 38  | 
|
| 30440 | 39  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
40  | 
@{term"~(x = y)"} & @{term[source]"\<not> (x = y)"} & (\verb$~=$)\\
 | 
|
41  | 
@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
 | 
|
42  | 
@{term"If x y z"} & @{term[source]"If x y z"}\\
 | 
|
43  | 
@{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\<lambda>x. e\<^isub>2)"}\\
 | 
|
44  | 
\end{supertabular}
 | 
|
45  | 
||
46  | 
||
47  | 
\section{Orderings}
 | 
|
48  | 
||
49  | 
A collection of classes defining basic orderings:  | 
|
50  | 
preorder, partial order, linear order, dense linear order and wellorder.  | 
|
51  | 
\smallskip  | 
|
| 30293 | 52  | 
|
| 30425 | 53  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 35277 | 54  | 
@{const Orderings.less_eq} & @{typeof Orderings.less_eq} & (\verb$<=$)\\
 | 
55  | 
@{const Orderings.less} & @{typeof Orderings.less}\\
 | 
|
| 30440 | 56  | 
@{const Orderings.Least} & @{typeof Orderings.Least}\\
 | 
57  | 
@{const Orderings.min} & @{typeof Orderings.min}\\
 | 
|
58  | 
@{const Orderings.max} & @{typeof Orderings.max}\\
 | 
|
59  | 
@{const[source] top} & @{typeof Orderings.top}\\
 | 
|
60  | 
@{const[source] bot} & @{typeof Orderings.bot}\\
 | 
|
61  | 
@{const Orderings.mono} & @{typeof Orderings.mono}\\
 | 
|
62  | 
@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
 | 
|
| 30293 | 63  | 
\end{supertabular}
 | 
64  | 
||
65  | 
\subsubsection*{Syntax}
 | 
|
66  | 
||
| 30440 | 67  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
68  | 
@{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\verb$>=$)\\
 | 
|
| 30293 | 69  | 
@{term[source]"x > y"} & @{term"x > y"}\\
 | 
70  | 
@{term"ALL x<=y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
 | 
|
| 30440 | 71  | 
@{term"EX x<=y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
 | 
72  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
 | 
|
| 30293 | 73  | 
@{term"LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
 | 
74  | 
\end{supertabular}
 | 
|
75  | 
||
| 30401 | 76  | 
|
77  | 
\section{Lattices}
 | 
|
78  | 
||
79  | 
Classes semilattice, lattice, distributive lattice and complete lattice (the  | 
|
80  | 
latter in theory @{theory Set}).
 | 
|
81  | 
||
82  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
83  | 
@{const Lattices.inf} & @{typeof Lattices.inf}\\
 | 
|
84  | 
@{const Lattices.sup} & @{typeof Lattices.sup}\\
 | 
|
| 44969 | 85  | 
@{const Complete_Lattices.Inf} & @{term_type_only Complete_Lattices.Inf "'a set \<Rightarrow> 'a::Inf"}\\
 | 
86  | 
@{const Complete_Lattices.Sup} & @{term_type_only Complete_Lattices.Sup "'a set \<Rightarrow> 'a::Sup"}\\
 | 
|
| 30401 | 87  | 
\end{tabular}
 | 
88  | 
||
89  | 
\subsubsection*{Syntax}
 | 
|
90  | 
||
| 30440 | 91  | 
Available by loading theory @{text Lattice_Syntax} in directory @{text
 | 
92  | 
Library}.  | 
|
| 30401 | 93  | 
|
94  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
95  | 
@{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
 | 
|
96  | 
@{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
 | 
|
97  | 
@{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
 | 
|
98  | 
@{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
 | 
|
99  | 
@{text[source]"\<Sqinter> A"} & @{term"Sup A"}\\
 | 
|
100  | 
@{text[source]"\<Squnion> A"} & @{term"Inf A"}\\
 | 
|
| 30440 | 101  | 
@{text[source]"\<top>"} & @{term[source] top}\\
 | 
102  | 
@{text[source]"\<bottom>"} & @{term[source] bot}\\
 | 
|
| 30401 | 103  | 
\end{supertabular}
 | 
104  | 
||
105  | 
||
| 30293 | 106  | 
\section{Set}
 | 
107  | 
||
108  | 
Sets are predicates: @{text[source]"'a set  =  'a \<Rightarrow> bool"}
 | 
|
109  | 
\bigskip  | 
|
110  | 
||
| 30425 | 111  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30370 | 112  | 
@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
 | 
| 32142 | 113  | 
@{const Set.insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
 | 
| 30293 | 114  | 
@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
 | 
| 38323 | 115  | 
@{const Set.member} & @{term_type_only Set.member "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\texttt{:})\\
 | 
| 32208 | 116  | 
@{const Set.union} & @{term_type_only Set.union "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Un})\\
 | 
117  | 
@{const Set.inter} & @{term_type_only Set.inter "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\texttt{Int})\\
 | 
|
| 30293 | 118  | 
@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
 | 
119  | 
@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
 | 
|
120  | 
@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
 | 
|
121  | 
@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
 | 
|
122  | 
@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
 | 
|
123  | 
@{const UNIV} & @{term_type_only UNIV "'a set"}\\
 | 
|
124  | 
@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
 | 
|
125  | 
@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
 | 
|
126  | 
@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
 | 
|
127  | 
\end{supertabular}
 | 
|
128  | 
||
129  | 
\subsubsection*{Syntax}
 | 
|
130  | 
||
| 30425 | 131  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 30293 | 132  | 
@{text"{x\<^isub>1,\<dots>,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\<dots> (insert x\<^isub>n {})\<dots>)"}\\
 | 
133  | 
@{term"x ~: A"} & @{term[source]"\<not>(x \<in> A)"}\\
 | 
|
134  | 
@{term"A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
 | 
|
135  | 
@{term"A \<subset> B"} & @{term[source]"A < B"}\\
 | 
|
136  | 
@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
 | 
|
137  | 
@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
 | 
|
| 30440 | 138  | 
@{term"{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
 | 
| 30425 | 139  | 
@{term[mode=xsymbols]"UN x:I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
 | 
| 30370 | 140  | 
@{term[mode=xsymbols]"UN x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
 | 
| 30425 | 141  | 
@{term[mode=xsymbols]"INT x:I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
 | 
| 30370 | 142  | 
@{term[mode=xsymbols]"INT x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
 | 
| 30293 | 143  | 
@{term"ALL x:A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
 | 
144  | 
@{term"EX x:A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
 | 
|
145  | 
@{term"range f"} & @{term[source]"f ` UNIV"}\\
 | 
|
146  | 
\end{supertabular}
 | 
|
147  | 
||
148  | 
||
149  | 
\section{Fun}
 | 
|
150  | 
||
| 32933 | 151  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30293 | 152  | 
@{const "Fun.id"} & @{typeof Fun.id}\\
 | 
| 32933 | 153  | 
@{const "Fun.comp"} & @{typeof Fun.comp} & (\texttt{o})\\
 | 
| 30293 | 154  | 
@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
 | 
155  | 
@{const "Fun.inj"} & @{typeof Fun.inj}\\
 | 
|
156  | 
@{const "Fun.surj"} & @{typeof Fun.surj}\\
 | 
|
157  | 
@{const "Fun.bij"} & @{typeof Fun.bij}\\
 | 
|
158  | 
@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
 | 
|
159  | 
@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
 | 
|
160  | 
\end{supertabular}
 | 
|
161  | 
||
162  | 
\subsubsection*{Syntax}
 | 
|
163  | 
||
164  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
165  | 
@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
 | 
|
166  | 
@{text"f(x\<^isub>1:=y\<^isub>1,\<dots>,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\<dots>(x\<^isub>n:=y\<^isub>n)"}\\
 | 
|
167  | 
\end{tabular}
 | 
|
168  | 
||
169  | 
||
| 33019 | 170  | 
\section{Hilbert\_Choice}
 | 
171  | 
||
172  | 
Hilbert's selection ($\varepsilon$) operator: @{term"SOME x. P"}.
 | 
|
173  | 
\smallskip  | 
|
174  | 
||
175  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
| 33057 | 176  | 
@{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
 | 
| 33019 | 177  | 
\end{tabular}
 | 
178  | 
||
179  | 
\subsubsection*{Syntax}
 | 
|
180  | 
||
181  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
| 33057 | 182  | 
@{term inv} & @{term[source]"inv_into UNIV"}
 | 
| 33019 | 183  | 
\end{tabular}
 | 
184  | 
||
| 30293 | 185  | 
\section{Fixed Points}
 | 
186  | 
||
187  | 
Theory: @{theory Inductive}.
 | 
|
188  | 
||
189  | 
Least and greatest fixed points in a complete lattice @{typ 'a}:
 | 
|
190  | 
||
191  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
192  | 
@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
 | 
|
193  | 
@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
 | 
|
194  | 
\end{tabular}
 | 
|
195  | 
||
196  | 
Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
 | 
|
197  | 
||
198  | 
\section{Sum\_Type}
 | 
|
199  | 
||
200  | 
Type constructor @{text"+"}.
 | 
|
201  | 
||
202  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
203  | 
@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
 | 
|
204  | 
@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
 | 
|
205  | 
@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
 | 
|
206  | 
\end{tabular}
 | 
|
207  | 
||
208  | 
||
209  | 
\section{Product\_Type}
 | 
|
210  | 
||
211  | 
Types @{typ unit} and @{text"\<times>"}.
 | 
|
212  | 
||
213  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
214  | 
@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
 | 
|
215  | 
@{const Pair} & @{typeof Pair}\\
 | 
|
216  | 
@{const fst} & @{typeof fst}\\
 | 
|
217  | 
@{const snd} & @{typeof snd}\\
 | 
|
218  | 
@{const split} & @{typeof split}\\
 | 
|
219  | 
@{const curry} & @{typeof curry}\\
 | 
|
220  | 
@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
 | 
|
221  | 
\end{supertabular}
 | 
|
222  | 
||
223  | 
\subsubsection*{Syntax}
 | 
|
224  | 
||
| 30440 | 225  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
 | 
| 30293 | 226  | 
@{term"Pair a b"} & @{term[source]"Pair a b"}\\
 | 
227  | 
@{term"split (\<lambda>x y. t)"} & @{term[source]"split (\<lambda>x y. t)"}\\
 | 
|
| 30440 | 228  | 
@{term"A <*> B"} &  @{text"Sigma A (\<lambda>\<^raw:\_>. B)"} & (\verb$<*>$)
 | 
| 30293 | 229  | 
\end{tabular}
 | 
230  | 
||
231  | 
Pairs may be nested. Nesting to the right is printed as a tuple,  | 
|
| 30440 | 232  | 
e.g.\ \mbox{@{term"(a,b,c)"}} is really \mbox{@{text"(a, (b, c))"}.}
 | 
| 30293 | 233  | 
Pattern matching with pairs and tuples extends to all binders,  | 
| 30440 | 234  | 
e.g.\ \mbox{@{prop"ALL (x,y):A. P"},} @{term"{(x,y). P}"}, etc.
 | 
| 30293 | 235  | 
|
236  | 
||
237  | 
\section{Relation}
 | 
|
238  | 
||
| 30440 | 239  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
| 30293 | 240  | 
@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
 | 
| 32243 | 241  | 
@{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('b*'c)set\<Rightarrow>('a*'c)set"}\\
 | 
| 30293 | 242  | 
@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
 | 
243  | 
@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
 | 
|
244  | 
@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
 | 
|
245  | 
@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
 | 
|
246  | 
@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
 | 
|
247  | 
@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
 | 
|
248  | 
@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
 | 
|
249  | 
@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
 | 
|
250  | 
@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
251  | 
@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
252  | 
@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
253  | 
@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
254  | 
@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
255  | 
@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
 | 
|
| 30440 | 256  | 
@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
 | 
257  | 
\end{supertabular}
 | 
|
| 30293 | 258  | 
|
259  | 
\subsubsection*{Syntax}
 | 
|
260  | 
||
| 30440 | 261  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
262  | 
@{term"converse r"} & @{term[source]"converse r"} & (\verb$^-1$)
 | 
|
| 30293 | 263  | 
\end{tabular}
 | 
264  | 
||
265  | 
\section{Equiv\_Relations}
 | 
|
266  | 
||
267  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
268  | 
@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
 | 
|
269  | 
@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
 | 
|
270  | 
@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
 | 
|
271  | 
@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
 | 
|
272  | 
%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
 | 
|
273  | 
\end{supertabular}
 | 
|
274  | 
||
275  | 
\subsubsection*{Syntax}
 | 
|
276  | 
||
277  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
278  | 
@{term"congruent r f"} & @{term[source]"congruent r f"}\\
 | 
|
279  | 
@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
 | 
|
280  | 
\end{tabular}
 | 
|
281  | 
||
282  | 
||
283  | 
\section{Transitive\_Closure}
 | 
|
284  | 
||
285  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
286  | 
@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
287  | 
@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
288  | 
@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
| 30988 | 289  | 
@{const compower} & @{term_type_only "op ^^ :: ('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set" "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set"}\\
 | 
| 30293 | 290  | 
\end{tabular}
 | 
291  | 
||
292  | 
\subsubsection*{Syntax}
 | 
|
293  | 
||
| 30440 | 294  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
295  | 
@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\verb$^*$)\\
 | 
|
296  | 
@{term"trancl r"} & @{term[source]"trancl r"} & (\verb$^+$)\\
 | 
|
297  | 
@{term"reflcl r"} & @{term[source]"reflcl r"} & (\verb$^=$)
 | 
|
| 30293 | 298  | 
\end{tabular}
 | 
299  | 
||
300  | 
||
301  | 
\section{Algebra}
 | 
|
302  | 
||
| 35061 | 303  | 
Theories @{theory Groups}, @{theory Rings}, @{theory Fields} and @{theory
 | 
| 30440 | 304  | 
Divides} define a large collection of classes describing common algebraic  | 
305  | 
structures from semigroups up to fields. Everything is done in terms of  | 
|
306  | 
overloaded operators:  | 
|
307  | 
||
308  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
|
309  | 
@{text "0"} & @{typeof zero}\\
 | 
|
310  | 
@{text "1"} & @{typeof one}\\
 | 
|
311  | 
@{const plus} & @{typeof plus}\\
 | 
|
312  | 
@{const minus} & @{typeof minus}\\
 | 
|
313  | 
@{const uminus} & @{typeof uminus} & (\verb$-$)\\
 | 
|
314  | 
@{const times} & @{typeof times}\\
 | 
|
315  | 
@{const inverse} & @{typeof inverse}\\
 | 
|
316  | 
@{const divide} & @{typeof divide}\\
 | 
|
317  | 
@{const abs} & @{typeof abs}\\
 | 
|
318  | 
@{const sgn} & @{typeof sgn}\\
 | 
|
319  | 
@{const dvd_class.dvd} & @{typeof "dvd_class.dvd"}\\
 | 
|
320  | 
@{const div_class.div} & @{typeof "div_class.div"}\\
 | 
|
321  | 
@{const div_class.mod} & @{typeof "div_class.mod"}\\
 | 
|
322  | 
\end{supertabular}
 | 
|
323  | 
||
324  | 
\subsubsection*{Syntax}
 | 
|
325  | 
||
326  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
327  | 
@{term"abs x"} & @{term[source]"abs x"}
 | 
|
328  | 
\end{tabular}
 | 
|
| 30293 | 329  | 
|
330  | 
||
331  | 
\section{Nat}
 | 
|
332  | 
||
333  | 
@{datatype nat}
 | 
|
334  | 
\bigskip  | 
|
335  | 
||
336  | 
\begin{tabular}{@ {} lllllll @ {}}
 | 
|
337  | 
@{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
338  | 
@{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
339  | 
@{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
340  | 
@{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
 | 
|
341  | 
@{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
 | 
|
342  | 
@{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
 | 
|
343  | 
@{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
 | 
|
344  | 
@{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
 | 
|
345  | 
@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
346  | 
@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
347  | 
@{term "Min :: nat set \<Rightarrow> nat"} &
 | 
|
348  | 
@{term "Max :: nat set \<Rightarrow> nat"}\\
 | 
|
349  | 
\end{tabular}
 | 
|
350  | 
||
351  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
| 30988 | 352  | 
@{const Nat.of_nat} & @{typeof Nat.of_nat}\\
 | 
353  | 
@{term "op ^^ :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"} &
 | 
|
354  | 
  @{term_type_only "op ^^ :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"}
 | 
|
| 30293 | 355  | 
\end{tabular}
 | 
356  | 
||
357  | 
\section{Int}
 | 
|
358  | 
||
359  | 
Type @{typ int}
 | 
|
360  | 
\bigskip  | 
|
361  | 
||
362  | 
\begin{tabular}{@ {} llllllll @ {}}
 | 
|
363  | 
@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
364  | 
@{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
365  | 
@{term "uminus :: int \<Rightarrow> int"} &
 | 
|
366  | 
@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
367  | 
@{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
 | 
|
368  | 
@{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
 | 
|
369  | 
@{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
 | 
|
370  | 
@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
 | 
|
371  | 
@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
 | 
|
372  | 
@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
 | 
|
373  | 
@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
374  | 
@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
375  | 
@{term "Min :: int set \<Rightarrow> int"} &
 | 
|
376  | 
@{term "Max :: int set \<Rightarrow> int"}\\
 | 
|
377  | 
@{term "abs :: int \<Rightarrow> int"} &
 | 
|
378  | 
@{term "sgn :: int \<Rightarrow> int"}\\
 | 
|
379  | 
\end{tabular}
 | 
|
380  | 
||
| 30440 | 381  | 
\begin{tabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30293 | 382  | 
@{const Int.nat} & @{typeof Int.nat}\\
 | 
383  | 
@{const Int.of_int} & @{typeof Int.of_int}\\
 | 
|
| 30440 | 384  | 
@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\verb$Ints$)
 | 
| 30293 | 385  | 
\end{tabular}
 | 
386  | 
||
387  | 
\subsubsection*{Syntax}
 | 
|
388  | 
||
389  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
390  | 
@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
 | 
|
391  | 
\end{tabular}
 | 
|
392  | 
||
393  | 
||
| 30401 | 394  | 
\section{Finite\_Set}
 | 
395  | 
||
396  | 
||
397  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
398  | 
@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
 | 
|
399  | 
@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set => nat"}\\
 | 
|
400  | 
@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
 | 
|
401  | 
@{const Finite_Set.fold_image} & @{typ "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
 | 
|
| 35805 | 402  | 
@{const Big_Operators.setsum} & @{term_type_only Big_Operators.setsum "('a => 'b) => 'a set => 'b::comm_monoid_add"}\\
 | 
403  | 
@{const Big_Operators.setprod} & @{term_type_only Big_Operators.setprod "('a => 'b) => 'a set => 'b::comm_monoid_mult"}\\
 | 
|
| 30401 | 404  | 
\end{supertabular}
 | 
405  | 
||
406  | 
||
407  | 
\subsubsection*{Syntax}
 | 
|
408  | 
||
| 30440 | 409  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
410  | 
@{term"setsum (%x. x) A"} & @{term[source]"setsum (\<lambda>x. x) A"} & (\verb$SUM$)\\
 | 
|
| 30401 | 411  | 
@{term"setsum (%x. t) A"} & @{term[source]"setsum (\<lambda>x. t) A"}\\
 | 
412  | 
@{term[source]"\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
 | 
|
| 30440 | 413  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}} & (\verb$PROD$)\\
 | 
| 30401 | 414  | 
\end{supertabular}
 | 
415  | 
||
416  | 
||
| 30293 | 417  | 
\section{Wellfounded}
 | 
418  | 
||
419  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
420  | 
@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
421  | 
@{const Wellfounded.acyclic} & @{term_type_only Wellfounded.acyclic "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
422  | 
@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
 | 
|
423  | 
@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
 | 
|
424  | 
@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
 | 
|
425  | 
@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
426  | 
@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
 | 
|
427  | 
@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
 | 
|
428  | 
\end{supertabular}
 | 
|
429  | 
||
430  | 
||
| 30384 | 431  | 
\section{SetInterval}
 | 
| 30321 | 432  | 
|
433  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
| 30370 | 434  | 
@{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
 | 
435  | 
@{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
 | 
|
436  | 
@{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
 | 
|
437  | 
@{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
 | 
|
438  | 
@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
439  | 
@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
440  | 
@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
441  | 
@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
| 30321 | 442  | 
\end{supertabular}
 | 
443  | 
||
444  | 
\subsubsection*{Syntax}
 | 
|
445  | 
||
446  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
447  | 
@{term "lessThan y"} & @{term[source] "lessThan y"}\\
 | 
|
448  | 
@{term "atMost y"} & @{term[source] "atMost y"}\\
 | 
|
449  | 
@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
 | 
|
450  | 
@{term "atLeast x"} & @{term[source] "atLeast x"}\\
 | 
|
451  | 
@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
 | 
|
452  | 
@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
 | 
|
453  | 
@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
 | 
|
454  | 
@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
 | 
|
| 30370 | 455  | 
@{term[mode=xsymbols] "UN i:{..n}. A"} & @{term[source] "\<Union> i \<in> {..n}. A"}\\
 | 
456  | 
@{term[mode=xsymbols] "UN i:{..<n}. A"} & @{term[source] "\<Union> i \<in> {..<n}. A"}\\
 | 
|
457  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Inter>"} instead of @{text"\<Union>"}}\\
 | 
|
| 30321 | 458  | 
@{term "setsum (%x. t) {a..b}"} & @{term[source] "setsum (\<lambda>x. t) {a..b}"}\\
 | 
| 30370 | 459  | 
@{term "setsum (%x. t) {a..<b}"} & @{term[source] "setsum (\<lambda>x. t) {a..<b}"}\\
 | 
| 30386 | 460  | 
@{term "setsum (%x. t) {..b}"} & @{term[source] "setsum (\<lambda>x. t) {..b}"}\\
 | 
461  | 
@{term "setsum (%x. t) {..<b}"} & @{term[source] "setsum (\<lambda>x. t) {..<b}"}\\
 | 
|
| 30372 | 462  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for @{text"\<Prod>"} instead of @{text"\<Sum>"}}\\
 | 
| 30321 | 463  | 
\end{supertabular}
 | 
464  | 
||
465  | 
||
| 30293 | 466  | 
\section{Power}
 | 
467  | 
||
468  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
469  | 
@{const Power.power} & @{typeof Power.power}
 | 
|
470  | 
\end{tabular}
 | 
|
471  | 
||
472  | 
||
473  | 
\section{Option}
 | 
|
474  | 
||
475  | 
@{datatype option}
 | 
|
476  | 
\bigskip  | 
|
477  | 
||
478  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
479  | 
@{const Option.the} & @{typeof Option.the}\\
 | 
|
480  | 
@{const Option.map} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
 | 
|
| 41532 | 481  | 
@{const Option.set} & @{term_type_only Option.set "'a option \<Rightarrow> 'a set"}\\
 | 
482  | 
@{const Option.bind} & @{term_type_only Option.bind "'a option \<Rightarrow> ('a \<Rightarrow> 'b option) \<Rightarrow> 'b option"}
 | 
|
| 30293 | 483  | 
\end{tabular}
 | 
484  | 
||
485  | 
\section{List}
 | 
|
486  | 
||
487  | 
@{datatype list}
 | 
|
488  | 
\bigskip  | 
|
489  | 
||
490  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
491  | 
@{const List.append} & @{typeof List.append}\\
 | 
|
492  | 
@{const List.butlast} & @{typeof List.butlast}\\
 | 
|
493  | 
@{const List.concat} & @{typeof List.concat}\\
 | 
|
494  | 
@{const List.distinct} & @{typeof List.distinct}\\
 | 
|
495  | 
@{const List.drop} & @{typeof List.drop}\\
 | 
|
496  | 
@{const List.dropWhile} & @{typeof List.dropWhile}\\
 | 
|
497  | 
@{const List.filter} & @{typeof List.filter}\\
 | 
|
498  | 
@{const List.foldl} & @{typeof List.foldl}\\
 | 
|
499  | 
@{const List.foldr} & @{typeof List.foldr}\\
 | 
|
500  | 
@{const List.hd} & @{typeof List.hd}\\
 | 
|
501  | 
@{const List.last} & @{typeof List.last}\\
 | 
|
502  | 
@{const List.length} & @{typeof List.length}\\
 | 
|
503  | 
@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
504  | 
@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
505  | 
@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
506  | 
@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
507  | 
@{const List.listrel} & @{term_type_only List.listrel "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
| 40272 | 508  | 
@{const List.listrel1} & @{term_type_only List.listrel1 "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
| 30293 | 509  | 
@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
 | 
510  | 
@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
 | 
|
511  | 
@{const List.listsum} & @{typeof List.listsum}\\
 | 
|
512  | 
@{const List.list_all2} & @{typeof List.list_all2}\\
 | 
|
513  | 
@{const List.list_update} & @{typeof List.list_update}\\
 | 
|
514  | 
@{const List.map} & @{typeof List.map}\\
 | 
|
515  | 
@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
 | 
|
| 32933 | 516  | 
@{const List.nth} & @{typeof List.nth}\\
 | 
| 30293 | 517  | 
@{const List.remdups} & @{typeof List.remdups}\\
 | 
518  | 
@{const List.removeAll} & @{typeof List.removeAll}\\
 | 
|
519  | 
@{const List.remove1} & @{typeof List.remove1}\\
 | 
|
520  | 
@{const List.replicate} & @{typeof List.replicate}\\
 | 
|
521  | 
@{const List.rev} & @{typeof List.rev}\\
 | 
|
522  | 
@{const List.rotate} & @{typeof List.rotate}\\
 | 
|
523  | 
@{const List.rotate1} & @{typeof List.rotate1}\\
 | 
|
524  | 
@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
 | 
|
525  | 
@{const List.sort} & @{typeof List.sort}\\
 | 
|
526  | 
@{const List.sorted} & @{typeof List.sorted}\\
 | 
|
527  | 
@{const List.splice} & @{typeof List.splice}\\
 | 
|
528  | 
@{const List.sublist} & @{typeof List.sublist}\\
 | 
|
529  | 
@{const List.take} & @{typeof List.take}\\
 | 
|
530  | 
@{const List.takeWhile} & @{typeof List.takeWhile}\\
 | 
|
531  | 
@{const List.tl} & @{typeof List.tl}\\
 | 
|
532  | 
@{const List.upt} & @{typeof List.upt}\\
 | 
|
533  | 
@{const List.upto} & @{typeof List.upto}\\
 | 
|
534  | 
@{const List.zip} & @{typeof List.zip}\\
 | 
|
535  | 
\end{supertabular}
 | 
|
536  | 
||
537  | 
\subsubsection*{Syntax}
 | 
|
538  | 
||
539  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
540  | 
@{text"[x\<^isub>1,\<dots>,x\<^isub>n]"} & @{text"x\<^isub>1 # \<dots> # x\<^isub>n # []"}\\
 | 
|
541  | 
@{term"[m..<n]"} & @{term[source]"upt m n"}\\
 | 
|
542  | 
@{term"[i..j]"} & @{term[source]"upto i j"}\\
 | 
|
543  | 
@{text"[e. x \<leftarrow> xs]"} & @{term"map (%x. e) xs"}\\
 | 
|
544  | 
@{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
 | 
|
545  | 
@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
 | 
|
546  | 
@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
 | 
|
547  | 
\end{supertabular}
 | 
|
548  | 
\medskip  | 
|
549  | 
||
| 30440 | 550  | 
List comprehension: @{text"[e. q\<^isub>1, \<dots>, q\<^isub>n]"} where each
 | 
551  | 
qualifier @{text q\<^isub>i} is either a generator \mbox{@{text"pat \<leftarrow> e"}} or a
 | 
|
| 30293 | 552  | 
guard, i.e.\ boolean expression.  | 
553  | 
||
554  | 
\section{Map}
 | 
|
555  | 
||
556  | 
Maps model partial functions and are often used as finite tables. However,  | 
|
557  | 
the domain of a map may be infinite.  | 
|
558  | 
||
559  | 
@{text"'a \<rightharpoonup> 'b  =  'a \<Rightarrow> 'b option"}
 | 
|
560  | 
\bigskip  | 
|
561  | 
||
562  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
563  | 
@{const Map.empty} & @{typeof Map.empty}\\
 | 
|
564  | 
@{const Map.map_add} & @{typeof Map.map_add}\\
 | 
|
565  | 
@{const Map.map_comp} & @{typeof Map.map_comp}\\
 | 
|
566  | 
@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
 | 
|
567  | 
@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
 | 
|
568  | 
@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
 | 
|
569  | 
@{const Map.map_le} & @{typeof Map.map_le}\\
 | 
|
570  | 
@{const Map.map_of} & @{typeof Map.map_of}\\
 | 
|
571  | 
@{const Map.map_upds} & @{typeof Map.map_upds}\\
 | 
|
572  | 
\end{supertabular}
 | 
|
573  | 
||
574  | 
\subsubsection*{Syntax}
 | 
|
575  | 
||
576  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
| 30403 | 577  | 
@{term"Map.empty"} & @{term"\<lambda>x. None"}\\
 | 
| 30293 | 578  | 
@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
 | 
579  | 
@{text"m(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\<mapsto>y\<^isub>1)\<dots>(x\<^isub>n\<mapsto>y\<^isub>n)"}\\
 | 
|
| 30440 | 580  | 
@{text"[x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n]"} & @{text[source]"Map.empty(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"}\\
 | 
| 30293 | 581  | 
@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
 | 
582  | 
\end{tabular}
 | 
|
583  | 
||
584  | 
*}  | 
|
585  | 
(*<*)  | 
|
586  | 
end  | 
|
587  | 
(*>*)  |